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Introduction

Computed tomography (CT) has revolutionized the clinical 
diagnostic practice by depicting anatomical, physiological, 
and pathological information (1). However, this readily 
available CT scanner has not been extensively laboratory 
investigations of small animals and biomedical research, 
mainly because of its limitation in spatial resolution (2). 
The spatial resolution of clinical CT scanner is unable to 
be scaled down adequately for small animal imaging (3). It 
can only generate images made up of voxels approximately  

1 mm3 in volume when scanning human while 50 μm3 
volume elements are required when scanning small  
animal (4). Higher spatial and temporal resolutions are 
fundamental requirements for anatomical and functional 
X-ray based imaging (5). The introduction of micro-
computed tomography (μCT) scanner in 1990s, has 
overcome the limitation of clinical CT in small animal 
studies (6,7) and it has played a critical role in the evolution 
of molecular imaging (8).

A μCT scanner is built on the similar fundamental 
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physical principle as a clinical CT scanner, but it has 
been dedicatedly designed for higher quality resolution  
imaging (5). The system consists of an X-ray source with 
micro focus spot, a pair of flat panel detector, rotating 
gantry, a stationary and a horizontally positioned small bed 
to achieve a cone beam mode scan (9). It is a nondestructive 
investigation method (10), which has the ability to 
reconstruct the image slices in any plane from the scans 
and data can be represented in either 2-dimensional (2D) 
or rendered in 3-dimensional (3D) images (11). In addition, 
μCT is capable to perform volumetric CT analyses with 
isotropic voxel spacing of less than 50 μm (12). The 
small isotropic voxel spacing can eliminate the need for 
interpolation between slices when rendering samples in 3D, 
remove a source of image artifacts and allow for greater 
versatility during virtual inspection (13). This notable 
technical advancement have made μCT scanner practicable 
to obtain such high spatial resolution images of small 
particles and animals during research investigations (4).  
Furthermore, a poor inherent subject contrast of μCT 
images can easily be overcome by using an exogenous 
contrast media (CM) (14).

CM is radiopaque substances that can be administered 
intravenously or orally into the body, in order to enhance 
the radiographical visualization of internal structures (15). 
Iodinated CM show higher attenuation levels at lower X-ray 
tube voltage owing to higher photoelectric effect and lesser 
Compton scattering (16,17). To take benefit of an inherent 
attenuation property of iodine, the mean photon energy of 
the tube potential has to be adjusted closer to the k edge of 
iodine (18). In fact, Szucs-Farkas et al. (19) found that the 
attenuation value of iodine enhancement increased with 
decreasing in the tube potential and patient size. A study 
on image quality of μCT images based on the attenuation 
value of iodine at different tube potential has not yet been 
well documented. Thus, this gap warrants for further 
investigations.

Materials and methods

The contrast phantom consisted of four polyethylene 
tubes were filled with 2 mL of iodinated CM (Omnipaque  
300 mgI/mL) at different concentrations: 5, 10, 15, and  
20 mol/L, respectively. On the other hand, one control tube 
was filled with 2 mL of deionized water and all these five 
tubes were then immersed in a water filled container. The 
phantom was positioned at the iso-center of the gantry.

µCT scanning

The contrast phantom was scanned using μCT scanner 
(Skyscan 1176, SkyScan b.v.b.a., Aartselaar, Belgium). 
The scanning procedure was initially conducted using the 
following settings: 40 kVp, fixed μA; 100, and filtration 
of 0.2 mm aluminum (Al). The acquisition consisted of 
the realization of several 2D lateral projections of the 
phantom during a 360° rotation around the vertical axis. 
The scanning protocols were repeated at five different tube 
potentials: 50, 60, 70, 80, 90 kVp. The set of images were 
then processed through reconstruction algorithm provided 
by Skyscan to get the 2D reconstruction of the vials. The 
digital data were elaborated using reconstruction software 
(NRecon V1.4.0; SkyScan), which provided new axial cross-
sections with a pixel size of 32 μm × 32 μm.

Measurement of contrast noise ratio (CNR) and noise

For each scanning techniques and iodine concentration, 
the CT number was measured in Hounsfield Unit (HU) 
from the lowest contrast to highest contrast materials and 
the background of the phantom. The diameter of all vials 
are same, thus the size of region of interest (ROI) was kept 
constant in the purpose of reducing bias in measurements. 
CNR was calculated as follows (20).

CNR = [1]

where ROIm and ROIb are the CT numbers of the contrast 
material in a ROI and in the background of ROI, 
respectively. SDb is the standard deviation of CT number of 
the background. Noise was calculated as expressed as (21):

[2]

where  and  are the standard deviation of the target 
material and the background area that have; same shape 
and size of ROI. CNR and noise were calculated for each 
iodine concentration on each set of tube potentials. The 
measurement was made at the top, middle and bottom slices 
for the CT numbers and these values were then averaged.

Results

Image in Figure 1 showed that the variation in image 



258 Abdul Razak et al. Effects of different kVp and concentrations on μCT images  

© AME Publishing Company. All rights reserved. Quant Imaging Med Surg 2013;3(5):256-261www.amepc.org/qims

enhancement between different iodine concentrations in 
the contrast phantom were depended on the tube potential 
used. The highest image enhancement was found to be 
at the lowest tube voltage setting of 40 kVp (Figure 2). 
At this kVp setting, the percentage difference of image 
enhancement in HU of 20 M iodine concentration over 
HU of deionized water was 43%. By increasing the tube 
potential, it resulted in a reduction of image enhancement, 
where only 17.5% different were noticed for 90 kVp. 
Higher concentration of iodinated CM demonstrate greater 
contrast enhancement than the lower concentration of 
iodinated CM at low tube potentials.

Figure 1 A cross sectional μCT image of contrast phantom 
containing five vials of 2 mL in volume that has been filled 
with deionized water and different concentrations of iodinated 
CM: 5, 10, 15, 20 M. The circle shape of ROI is used for HU 
measurements. Abbreviations: μCT, micro-computed tomography; 
CM, contrast media; ROI, region of interest; HU, Hounsfield unit. Figure 2 Image enhancement of iodinated CM at different 

concentration and tube potential setting. Graph shows direct 
correlation between tube potential and iodine concentration with 
image enhancement. Abbreviation: CM, contrast media.

Figure 4 Calculated noise of iodinated CM at different 
concentrations and tube potentials setting. Graph shows an 
exponential decreasing pattern of noise from 40-90 kVp. 
Abbreviation: CM, contrast media.

Figure 3 Calculated CNR of iodinated CM at different 
concentrations and tube potentials setting. Graph shows a slight 
CNR degradation at 90 kVp. Abbreviations: CNR, contrast-to-
noise ratio; CM, contrast media.
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and the highest noise were seen at 90 and 40 kVp, with the 
percentage difference of 72.4%. Besides, with increasing the 
tube potential and iodine concentration, noise exponentially 
decreased. At same tube potential the differences in noise 
variation decreased; the noise value was constant across all 
iodine concentrations.

Discussions

The degree of contrast enhancement is directly related 
to the amount of iodine within the system and the level 
of tube potential, where contrast enhancement increases 
proportionally with iodine concentration (22). Our 
findings are in accordance with a previous study, where 
CT attenuation value of iodine increased at lower tube 
potential and resulted in higher image enhancement (19). 
The potential explanation for this phenomenon would be 
referred to the photoelectric effect (17). At a lower tube 
potential, the influence of the photoelectric interactions 
in the present of iodinated CM is greater compared with 
Compton scattering effects because of the 33-keV k-edge 
of iodine (23). As a consequence, it leads to an increase 
in the linear attenuation coefficient of iodine much more 
dramatically than water and this offers superior contrast 
enhancement (24).

On the other hand, higher concentration of iodinated CM 
provide significantly greater contrast enhancement compared 
with those of lower concentration, which mainly due to 
higher production of signal intensity on the detector (25).  
The present study seems to be in consistent with previous 
reported data on CT angiography (CTA) of renal arterial 
vessels where the usage of highly concentrated iodinated 
CM at lower tube potential demonstrated higher contrast 
enhancement compared to moderate concentration (26).  
Even though higher concentration of iodinated CM 
improves contrast enhancement, but it results in increased 
osmolality which may cause higher risk of contrast induced 
adverse reactions (27). In addition, an excessive concentration 
of iodinated CM can lead to beam hardening artifacts and 
directly degrade the image quality produced (28).

This study demonstrated that CNR increased with the 
increment of tube potentials and iodine concentrations. It is 
in accordance with previous phantom study where the CNR 
was increased by factor of up to 3.6 when increasing tube 
potential from 80 to 140 kVp (29). Although our data have 
shown that increment of the tube potential improves the 
CNR, this does not necessarily imply that μCT should be 
performed at the highest possible kVp value. Higher tube 

potential could increase the radiation dose as a result of 
exposure to higher X-ray energies (30). It is also important 
to note that if the image quality at lower tube potential is 
adequate to achieve a high level of diagnostic accuracy, then 
any improvement in CNR would not be further translated 
towards improving diagnostic performance (29).

Scanning with lower tube potential will result in 
increasing noise caused by direct reduction in photon  
flux (31). Lower tube potential scans produce smaller 
number of photon strike the detector and thus results 
in limited data to construct an optimum image. These 
inadequate amounts of constructed data may cause the 
image appear to be very grainy (32) and influence the 
diagnostic value of images (29). Our study demonstrated 
that image noise exponentially decreased with the increment 
of tube potential. The percentage difference of image 
noise obtained at 40 and 90 kVp was 72.4%. It is consistent 
with those previously reported data on CTA of the aorta 
where a 35% increment of image noise was noted with the  
100 kVp protocol in comparison with the 120 kVp protocol 
by using constant level of tube current (33). The usage of 
higher concentration of iodinated CM was able to reduce 
image noise (34). On the contrary, our study showed 
almost unchanged level of image noise across all iodine 
concentrations at same tube potential. Image noise is closely 
related to tube current and tube potential, where both of 
these parameters determine the photon fluency and incident 
beam energy (35). In order to compensate image noise when 
decreasing the tube potential, the tube current needs to be 
increased. Therefore, an appropriate selection of scanning 
parameter is critical in obtaining optimum image quality as 
well as radiation exposure (36). 

This study has its own limitation, where the investigation 
only focused on manipulation of tube potential setting 
but did not take into account the manipulation of tube 
current. Image quality and examination efficiency of CT 
scan depend on the tube current setting (37); decreasing 
tube current produces lower sampling rate with resultant 
lower image quality and higher image noise. Future work 
should include the tube current investigation, therefore the 
optimum tube current setting can be selected with reference 
to tube potential in the purpose of reducing image noise and 
improving image quality.

Conclusions

This phantom study shows that μCT scanning with lower 
tube potential setting yields higher image enhancement 
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(HU) in conjunction with increasing concentration of 
iodinated CM although the image noise is increased. 
Overall, CNR substantially improves when tube potential 
setting and iodine concentrations are increased. By utilizing 
these unique scanning techniques (low kVp and high iodine 
concentration), a better quality of μCT images could 
therefore be produced; without CNR degradation.
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