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Introduction

MRI acceleration methods are widely used to shorten 
image acquisition time by under-sampling k-space. Parallel 
imaging methods such as GRAPPA (1) and compressed 
sensing (CS) (2) are state-of-the-art approaches that are 
routinely used. GRAPPA uses a fully-sampled k-space 
center region to train convolution kernels which are 
subsequently used to fill in missing k-space samples. 

However, a potential challenge of parallel imaging is that 
at high acceleration factors, the g-factor could result in 
significant noise amplification. The CS method takes 
advantage of the intrinsic sparsity of the data in a specific 
transform domain and random k-space sampling (incoherent 
point spread function) to remove noise-like image artifacts 
in the image. CS-MRI typically uses predefined and fixed 
sparsifying transforms, e.g., total variation (TV), discrete 
cosine transforms and discrete wavelet transforms (3). This 
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can be extended to more flexible sparse representations 
learned directly from data using dictionary learning (4). 
However, CS-MRI is associated with challenges in finding 
appropriate regularizers for specific applications and 
manually tuning the hyperparameters, a time-consuming 
process that is difficult to standardize. In addition, the 
optimization process involves non-convex terms, so there 
is no guarantee of achieving a global minimum or even 
converging to a solution. 

Recent advances in deep neural networks open a new 
possibility to solve the inverse problem of MR image 
reconstruction in an efficient manner. Deep learning-based 
approaches are well-developed in computer vision tasks such 
as image super-resolution (5-8), denoising and inpainting 
(9-12), while their application to medical imaging is still 
at a relatively early stage. For MR image reconstruction, 
these approaches typically learn the proper transformation 
between the input (zero-filled under-sampled k-space) 
and the target (the fully-sampled k-space) by minimizing a 
specific loss-function through a training process. Recently, 
a few different networks have been used to automate 
medical image reconstruction (13-21). Jin et al. (13)  
focused on CT reconstruction and proposed a Filter Back 
Projection Convnet (FBPConv) to reconstruct the CT 
data 1,000 faster than classic methods while preserving the 
image quality. Sandino et al. (16) trained a Unet architecture 
on 3D cardiac datasets and compared the results based on 
pixel-wise loss functions. Hammernik et al. (18) proposed 
variational network to learn the effective priors to 
accelerate the knee imaging and shorten the acquisition and 
reconstruction time. Schlemper et al. (19) proposed a novel 
deep cascade network for dynamic image reconstruction 
and showed superior performance of their network to 
CS-MRI. They used the data sharing layer to learn the 
spatiotemporal correlation of dynamic cardiac imaging 
data, which substantially improved the performance of 
their network. Hyun et al. (20) used a simplified Unet 
and proposed a k-space correction method to improve 
the performance of their network in MR reconstruction. 
Zhu et al. (21) used fully connected layers followed by a 
convolutional autoencoder to directly map the k-space data 
to the image domain. 

Based on these published results, convolutional neural 
networks (CNNs) are able to learn more effective priors 
through supervised learning, compared to CS-MRI which 
employs simpler, fixed priors (typically based on sparse 
finite differences). Studies have mainly used pixel-wise cost 
functions for network training which can potentially reduce 

image sharpness. Some works have shown that high-quality 
images can be generated by using non-pixel-wise loss 
functions, such as perceptual loss (22,23). 

For deep networks to be adopted for clinical MR 
reconstruction, several aspects need to be thoroughly 
evaluated. These include the various network architectures 
and effects of loss function choices on reconstruction 
performance. In addition, reconstructions need to be 
compared in the setting of prospectively under-sampled 
acquisitions rather than retrospective under-sampling. 

In this work, we have implemented two state-of-the-
art networks [Unet and residual network (Resnet)] using 
four different loss functions (pixel-wise L2, pixel-wise L1, 
structural dissimilarity (Dssim3) and perceptual loss). The 
performance was evaluated on cardiac imaging data from 
patients and volunteers with regard to signal-to-noise (SNR) 
(dB) and Structural Similarity Index (SSIM) in relation to 
qualitative scoring by board-certified cardiac radiologist. 
The purpose was to determine which approaches lead 
to improved CNN reconstructions for real time cardiac 
imaging. In vivo validation using prospectively under-
sampled data was performed in 5 volunteers and one 
patient.

Methods

The MR image reconstruction problem can be formulated 
as an optimization problem. Suppose ŷ is the reconstructed 
image and xz is the under-sampled k-space measurement. Fu 
is under-sampled Fourier encoding matrix. Since ˆu zF y x=  is 
an ill-posed linear system, the problem can be approached 
as an optimization of a data consistency term plus a 
regularization term: 

2

2
ˆ1  

ˆ
ˆ  

2 u z lp

min
y x y

y
λ Ψ − + 

 
 [1] 

Where λ is a regularization parameter and Ψ is a 
sparsifying function. In general, the regularizer term includes 
lp norm (0≤p≤1) and predefined sparsifying functions may 
include finite difference or discrete wavelet functions. The 
global optimal is obtained by iterative algorithms such 
as alternating direction method of multipliers (ADMM) 
(24,25), or fast Iterative Shrinkage-Thresholding Algorithm  
(FISTA) (26).  The ISTA methods apply an affine 
transformation followed by a non-linear coordinate-wise 
function (threshold sign function) in each iteration. This 
process is similar or at least analogues to a convolution 
layer in a neural network, which starts with an affine 
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transformation and followed by a nonlinear activation 
function. Gregor et al. proposed a learned ISTA (LISTA) (27),  
which is based on training a feedforward network to 
estimate x* with 20 times less iteration than ISTA. This 
work not only paved the way for fast-CS approaches but 
also showed the possibility of applying deep learning based 
neural network to solve the ill-posed inverse problem. 

In deep learning-based MR-reconstruction, the goal is 
to learn a function fcnn based on a large dataset that maps 
under-sampled, zero-filled data to fully sampled images by 
minimizing a loss function. 

( )( )( | , y):cnn z cnn z

min
f x y L f x θ

θ
→ [2]

Where )ˆ (cnn zy f x θ=  is the reconstructed image by 

CNN in a forward propagation with parameter θ. xz 

is under-sampled data and L is the loss function. The 
following loss functions were evaluated in this work:
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where, H is the height (number of rows) of each 2D image, 
W is the width of the image, B is batch size, i.e. the number 
of images per batch, P is the number of patches for the 
Dssim3, ˆ,m n m ny R y R× ×   are the ground truth image and 
the reconstructed image, respectively. The first two-loss 
functions {Eqs. [3,4]} are pixel-based loss functions, which 
depend on low-level pixel information only. The third loss 
function {Eq. [5]} penalizes Dssim between the two images. 
Lpercep (VGGi) represents the Euclidean distance between the 
produced features of imported y and ŷ to VGG-16 (28) 
in the first layer of the ith block after activation. As shown 
in Figure 1, in each epoch, the target image (y) and the 

)ˆ (cnn zy f x θ=  flow to the VGG-16 network independently, 
and the optimizer tries to minimize the weighted (λw) mean 
squared error of perceptual loss. The weighted perceptual 
loss function used in this study is described in Eq. [7]:

( ) ( ) ( )1 2 30.65 0.3 0.05percep percep percep percepL L VGG L VGG L VGG= + +
 [7]

( ) ( ) ( )1 2 30.65 0.3 0.05percep percep percep percepL L VGG L VGG L VGG= + +

Similar loss functions have been used for super resolution 
reconstruction (22) and Eq. [7] can be regarded as one 
example from a family of perceptual loss functions that 
imparts higher importance to the first layers in capturing 
image features. We empirically assign more weight to the 
b1c1 layer of the VGG-16 than to the other two layers, 
because the extracted features are expected to progressively 
become more abstract in the deeper layers.

Finally, CNN training requires the cost functions to 
be minimized through the well-known backpropagation 
algorithm, which is defined by the chain rule:

( ) ( )1

1

i

m m i i

L Lxx
x x

θ θ
θ θ −

∂ ∂∂∂
= ⋅… ⋅

∂ ∂ ∂ ∂
[8]

Index of x equals to layer number. For instance, xi stands 
for the last layer’s output. 

Network architectures and training

The convolutional Unet has been used previously to solve 
inverse problems in computed tomography and MRI 
reconstruction (13,16,20,29). In general, it consists of two 
paths: (I) the contracting path, which contains a number 
of down-sampling stages; (II) the expanding path, which 
includes a number of up-sampling stages. In order to 
preserve high-level features, it consists of dense connections 
from the early stages to the later stages of the network. A 
version of the Unet architecture containing 1.3 million 
trainable parameters is shown in Figure 2A. 

Figure 1 Perceptual loss network: VGG-16 pre-trained network 
used as a perceptual loss network. The aliased image (xz) is 
imported into our trainable network (fcnn), shown in Figure 2, and 
the output of fcnn and the target image are imported into the VGG-
16 network separately, and the intermediate features of the VGG-
16 network based on the input of reconstructed image ( ŷ) and 
ground truth image (y) are calculated. A cost function is shown in 
Eq. [7] is calculated based on a weighted mean squared error in the 
feature space and is used in the backpropagation stage.
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Figure 2B shows an example of Resnet CNN structure. 
It consists of several residual blocks (RBs) followed by 
two convolution layers. Inside each RB, there are two 
convolutional layers by batch normalization and ReLU 
activation. Residual connections facilitate the training 
process of the deep neural networks and is effective in 
removing the aliasing artifacts (13,30,31). The number of 
trainable parameters for this network with 4 (n:32,n:3×3) 
RBs is approximately 100,000, which is 13 times less than a 
simplified version of convolutional Unet. 

For training the Unet and the Resnet, we used 
the loss functions described in Eqs. [3-6] and the 
RMSPropOptimizer with a learning rate of 0.001, weight 
decay of 0.9 and mini-batch size of 32 at each epoch. We 
empirically chose to perform 100 epochs for both networks 
based on the convergence of validation loss. In initial 
experiments, we observed for a learning rate of 0.001, that 
there was no noticeable reduction in validation loss beyond 
100 epochs.

Network training was implemented in Tensorflow on 
Windows, NVIDIA TITAN Xp and required approximately 
4–6 h.

Quantitative and qualitative image analysis metrics

To quantify the reconstruction error, SNR (dB) and SSIM 
were used. SNR and SSIM were calculated based on the 
Eqs. [9,10]: 
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Where ŷµ , µy, ŷσ , σy, and ŷyσ  are the local means, 

standard deviations, and cross-covariance for reconstructed 
and ground truth images. C1 and C2 are two variables to 
stabilize the division with weak denominator. L is the 
dynamic range of the pixel values and k1 =0.01, k2 =0.03 are 
constant values. Local operations (local mean or variance) 
were calculated in a 3×3 rectangle box. 

To qualitatively compare the performance of the 
networks and loss functions in image reconstruction, 

Figure 2 Unet and Resnet. (A) Simplified version of Unet with two Max-Pooling stages. The number of convolution filters and the 
kernel size are specified in each layer. To preserve information, some features from the contracting path is concatenated onto features in 
the expanding path; (B) simple Resnet with k RBs. The first convolution layer is used to adjust the input size to the RB. The number of 
convolution filters and its size are specified inside each layer. Resnetk [32, 3] means Resnet has k RBs and 32 convolution-kernels of 3×3 size 
each. Resnet, residual network; RB, residual blocks.
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blinded image quality comparison by using a 1–5 ranking 
system were performed with an expert radiologist. Table 1 
summarized criteria for the scoring. 

MR data acquisition

The study was approved by our institutional review board 
and each subject provided written informed consent. Three 
types of cardiac datasets were included in this study:

Real-time cardiac imaging using a continuous balanced 
steady state free precession (bSSFP) sequence with a surface 
coil array on a 1.5T MRI scanner (Avanto Fit, Siemens 
Healthcare; Erlangen, Germany) was performed in 5 
healthy volunteers. For each volunteer, 200 fully sampled 
images were acquired continuously (temporal resolution 
=333 ms/cardiac frame) in the cardiac short-axis (SA) view 
during free breathing without ECG-gating;

Conventional k-space segmented breath-held cardiac 
cine images from 48 patients who underwent clinically 
indicated cardiac MRI exams were retrospectively included 
in this work;

Real time cardiac cine data with prospective 4X k-space 
under-sampling were acquired in 5 additional healthy 
volunteers and 1 additional patient for network testing. 

Network training and testing based on retrospectively 
under-sampled data
The network was trained and validated based on Datasets 
1 and 2. The k-space data from the 48 patient images were 

retrospectively under-sampled by a typical GRAPPA under-
sampling pattern (4×, 22 auto-calibration lines) and zero-
filled images were produced using inverse 2D FT. Each 
individual image was normalized linearly to have an intensity 
between 0 and 1 and matrix size adjusted to 192×128. The 
real time cardiac cine data from the 5 volunteers were also 
retrospectively under-sampled in a similar fashion. The 
5 healthy volunteers and 48 patient datasets were split 
randomly into 3 different sets including: (I) training set  
(3 healthy volunteers +24 patients); (II) validation set  
(1 healthy volunteer +6 patients); (III) test set (1 healthy 
volunteer +18 patients). For the training set, among  
20,000 images, 2,000 images were selected that included a 
large diversity of cardiac data with regard to anatomy and 
imaging orientation. For the validation set, in each epoch, 
500 random images from the 6,000-image validation dataset 
were selected. The test set included all of the images acquired 
in the volunteer and the 18 patients in the test set (III).

The following evaluations were performed on the test set 
(III): 

(i) We evaluate the loss functions using the Unet, which 
is representative of existing CNN architectures used 
in MRI reconstruction;

(ii) Using the preferred loss function from part (i) we 
implemented a new Resnet architecture to compare 
with the Unet and explored key parameters for this 
network;

(iii) Statistical comparison between the performance of 
the various loss functions and network architectures 
were performed according to the aforementioned 
metrics in qualitative image quality scoring and 
SNR/SSIM measures. 

Testing based on prospectively under-sampled data
To further demonstrate the performance of our technique, 
we also compared the performance of the Unet and Resnet 
architectures based on qualitative image quality scoring 
using our prospectively under-sampled data in Dataset 3 to 
mimic a more realistic clinical scenario. The under-sampling 
trajectory used in Dataset 3 was the same as the retrospective 
under-sampling trajectory used for Datasets 1 & 2.

Results

To evaluate the performance of the four loss functions 
(L1, L2, Dssim3, Perceptual loss), we performed image 
reconstructions using the test set data based on the 
Unet shown in Figure 2A. As can be seen in Figure 1, the 

Table 1 Visual image quality scoring criteria

Score Criteria

1 Poor image quality; non-diagnostic

2 Fair image quality; diagnostic image, but very blurry 
endocardial borders without clear definition of fine  
intra-cardiac structures

3 Good image quality; diagnostic image, with less blurry 
endocardial borders and without clear definition of fine 
intra-cardiac  
structures

4 Good image quality; diagnostic image, with sharp 
endocardial borders and without clear definition of fine 
intra-cardiac structures

5 Excellent image quality; diagnostic image, with  
well-defined endocardial borders and clear definition of 
find intra-cardiac structures
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perceptual loss function VGG-16 is a pre-trained network 
that minimizes the mean square error in the feature space. 
Our perceptual loss function uses features extracted from the 
first three layers of the VGG-16 [bic1 (i =1,2,3)] according 
to Eq. [7]. Figure 3 shows representative reconstruction 
results of the Unet based on the four loss functions from a 
randomly chosen patient from our study. The reconstruction 
based on perceptual loss function produced considerably 
sharper boundaries for the anatomical structures and was 
closest to the ground truth. 

For the Resnet structure, the number of RBs included 
in the network has significant impact on the image quality. 
In order to find a proper number of RBs for Resneti [32, 3], 
different number of RBs ranging from 2 to 7 was tested. In 
this step, all the Resneti [32, 3] networks were trained using 
perceptual loss function. To have a fair comparison, all 
other parameters related to optimizer were fixed. Figure 4  
shows the reconstruction results for Unet (perceptual) 
and the Resneti [32, 3] networks with 2–4 RBs. The image 

reconstruction of Resneti [32, 3] with 2 or 3 RBs provided 
sub-optimal results due to residual noise and image 
blurring. The Resneti [32, 3] reconstruction with 4 RBs 
was similar to the Unet reconstruction; however, as marked 
with blue arrow, certain subtle details were better recovered 
with Unet. Regions pointed to by the red arrows were not 
recovered well by either Resneti [32, 3] or Unet, when 
compared with ground truth. For the remainder of the 
work, all Resnet is Resnet4 Resneti [32, 3], i.e., Resnet with 
4 RBs, and 32 convolution kernels of size 3×3. 

To identify any statistically significant differences in the 
image quality of Unet- and Resnet-based reconstructions 
using various loss functions, an experienced clinical 
MRI evaluator subjectively assessed the image quality 
using a  1–5 ranking system. We randomly chose  

Figure 3 Reconstruction results of Unet based on different loss 
functions: Aortic valve view of a test patient retrieved by zero-
filling, Unet (L2), Unet (L1), Unet (Dssim3), Unet (perceptual) and 
ground truth image. Blue stars and yellow circles indicate regions 
where L1, L2, and Dssim loss function-based image reconstruction 
provided inferior image quality than the perceptual loss-based 
reconstruction. Dssim, dissimilarity.

Figure 4 Reconstruction results of Resnet, and Unet: aortic arch 
view of a test patient reconstructed by Resnet2, Resnet3, Resnet4 
and Unet. Both types are trained based on perceptual loss. Resnet2 
is not sufficient due to significant blurring. Resnet3 has obvious 
residual image artifact pointed by the yellow arrow. These issues 
are resolved by using four residual blocks in Resnet4. The red 
arrow shows detail in the Ground-Truth image that was recovered 
with neither Unet nor Resnet. The green circles point to residual 
blurring in the Unet and Resnet4 reconstructions. The blue arrows 
mark a subtle inferior region of the spinal cord which is preserved 
with Unet but, partly vanished with Resnet4. Resnet, residual 
network. 
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25 datasets from our study data, each dataset including 5 
images reconstructed using five techniques: (I) Unet with 
perceptual loss function; (II) Resnet using perceptual loss 
function; (III) Unet with Dssim loss function; (IV) Unet 
with L1 loss function; (V) Unet with L2 loss function. 
During the evaluation session, the evaluator was presented 
one dataset at a time with the order of the five images 
randomized and blinded to the evaluator. The evaluator 
was asked to rank the five images from 1–5, 1= best 
subjective image quality. Figure 5A shows the ranking 
score distributions for each of the five reconstruction 
techniques. To asses if the difference was significant, null 
hypothesis is assumed that the rank distribution of groups 
is same. Null hypothesis is rejected significantly (P<0.05) 
by applying Friedman’s two-way analysis (32) on the rank 
scores of different groups. Paired comparisons between the 
5 techniques are reported in Figure 5B, which shows that 
the Unet with perceptual loss had significantly (P<0.05) 
better ranking than the remaining three Unet techniques 
with L1, L2 and Dssim loss functions, respectively. There 
was no statistically significant difference between Unet 

with perceptual loss and the Resnet with perceptual loss. 
Figure 5C graphically demonstrates the statistical analysis 
results, with yellow lines indicating statistically significant 
differences.

To show the potential utility of the networks in 
real clinical scanning scenario, Figure 6 demonstrates 
representative prospective reconstruction results from 
4 healthy volunteers using Unet (perceptual) and  
Resnet4-Perceptual [32, 3]. The data was prospectively acquired 
with k-space under-sampling and reconstructed using 
the networks (which had been trained on retrospectively 
acquired data). The prospective data was acquired using 
a bSSFP sequence with 4X k-space under-sampling. The 
performance of the Unet and Resnet in the reconstruction 
of prospectively under-sampled data was diagnostically 
acceptable based on radiologic scores.

Tables  2-4  summarizes quantitat ive metrics  for 
reconstruction results of the test set using Unet and 
Resnet with the 4 cost functions studied in this work. The 
normality test shows that the SNR and SSIM metrics 
were not normally distributed. The results show that the 

Figure 5 Statistical analysis of rank scores. (A) Rank histogram of Unet and Resnet. Unet trained based on different types of loss functions, 
Resnet4 trained on the perceptual loss function; (B) pair comparison of different methods includes Unet based on 4 loss functions and 
Resnet4 based on perceptual loss. The last column of the table shows the statistical test results with the significance level of 0.05; (C) graph 
representation of significantly different methods. The yellow edge between two different nodes shows the statistically significant (P<0.05) 
difference between them. *, the rejection of null hypothesis for corresponding pairs. Resnet, residual network. 
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Table 2 Normality test for SNR metrics of test results (distribution 
of SNR and SSIM is not normal)

Normality test for SNR
Shapiro-Wilk test

Statistics df Sig.

Zero-filled 0.968 1,500 0.000

Unet-perceptual 0.991 1,500 0.000

Unet-Dssim 0.996 1,500 0.002

Unet-L1 0.988 1,500 0.000

Unet-L2 0.983 1,500 0.000

Resnet-perceptual 0.994 1,500 0.000

Resnet-Dssim 0.986 1,500 0.000

Resnet-L1 0.991 1,500 0.000

Resnet-L2 0.987 1,500 0.000

SNR, signal-to-noise; df, degree of freedom; Dssim, dissimilarity;  
Resnet, residual network. 

Table 3 Normality test for SSIM metrics of test results (distribution 
of SNR and SSIM is not normal)

Normality test for SSIM
Shapiro-Wilk test

Statistics df Sig.

Zero-filled 0.993 1,500 0.000

Unet-perceptual 0.964 1,500 0.000

Unet-Dssim 0.980 1,500 0.000

Unet-L1 0.977 1,500 0.000

Unet-L2 0.979 1,500 0.000

Resnet-perceptual 0.985 1,500 0.000

Resnet-Dssim 0.981 1,500 0.000

Resnet-L1 0.991 1,500 0.000

Resnet-L2 0.991 1,500 0.000

SSIM, structural similarity index; df, degree of freedom; Dssim, 
dissimilarity; Resnet, residual network.

Figure 6 Prospective results for four subjects: HLA view (left side) and SA view (right side) are reconstructed prospectively for four 
volunteers. Temporal profile is reported on dash-line for each image. Overall image quality score is reported on the top-left corner of each 
image. HLA, horizontal long axi; SA, short axis.
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conventional pixel-wise loss functions (L1, L2) and Dssim 
are associated with higher SNR and SSIM than perceptual 
loss. However, the subjective image quality ranking by 
radiologist (Figure 5) and the visual assessment (Figure 3) 
favor the perceptual loss function.

Discussion

Neural networks or any supervised learning algorithms 
create the output based on pre-defined cost functions. 
Training the network based on pixel-wise loss functions 
such as L2, L1, and even Dssim (patch-wise loss function) 
produces a blurry image in reconstruction tasks. As can be 
seen in Figure 3, reconstruction results for Unet (L1), Unet 
(L2) and Unet (Dssim) appear blurry in comparison to 
Unet (perceptual). This is because pixel-wise loss functions 
remove part of image texture information and produce 
blurry output. For the region with flat signal intensity 
marked by a blue star, the output of Unet (L2) and Unet 
(L1) was contaminated with the splotchy artifact. The Unet 
(Dssim) and Unet (perceptual) maintained the constant 
signal intensity that is free of splotchy artifacts. Subjective 
image quality ranking results in Figure 5A is consistent with 
this observation. Based on results in Tables 2-4, Unet (Dssim) 
had the highest SSIM and Unet (L1) had the highest SNR 
among the techniques compared. However, these images 
had significantly lower subjective image quality ranks in 
comparison to Unet (perceptual). This disagreement exists 
because the SNR and SSIM metrics evaluate aspects of the 
images that may be different from how a radiologist visually 
perceive the images. One could argue that perceptual 

loss could be more correlated with visual image quality 
scoring. In order to develop and validate a more appropriate 
quantitative evaluation parameters that are better correlated 
with visual image quality scoring, a separate cost network 
could be designed and trained based on visual image quality 
scores. However, development of such an image quality 
evaluation network is beyond the scope of the current work.

Our results in Figure 5 and Tables 2-4 emphasizes the 
importance of choosing appropriate loss functions in 
training the network. In this work, the perceptual loss 
function based on the pre-trained VGG-16 network 
performed better than the other three pixel-wise loss 
functions. Future research is warranted to develop and train 
more advanced networks for the loss function.

The Resnet in the study had less than 0.1 million 
trainable parameters, but could produce comparable results 
to Unet with >1.3 million trainable parameters. As reported 
graphically in Figure 5C, the difference between subjective 
image quality ranks using the Resnet4 [32, 3] with perceptual 
loss and the Unet with perceptual loss was not statistically 
significant. Both networks could be implemented in online 
MR-reconstruction applications. In Figure 4, certain details 
in the ground truth image as marked with red arrow and 
green circle was not recovered completely with either Unet 
or Resnet. This issue could be possibly related to regular 
parallel imaging- type k-space under-sampling patterns. 
Using variable density under-sampling pattern may improve 
the reconstruction results further. Such a variable density 
pattern may be better applied in 3D acquisitions due to the 
flexibility of designing the sampling pattern in both phase 
encoding and slice encoding directions. As mentioned in 

Table 4 SNR and SSIM metrics for test results include 3 quartiles

Quartiles Zero-filled Unet-perceptual Unet–Dssim Unet-L1 Unet-L2 Resnet-perceptual Resnet-Dssim Resnet-L1 Resnet-L2

SNR (dB)

25% 18.00 25.47 25.27 26.23 25.83 24.86 24.94 24.86 24.99

50% 19.57 25.18 27.04 27.61 27.16 26.50 26.33 26.39 26.41

75% 21.15 28.63 28.83 29.04 28.45 27.90 27.56 27.80 27.66

SSIM

25% 0.5468 0.8011 0.8271 0.8228 0.8052 0.7855 0.7812 0.7864 0.7701

50% 0.5845 0.8245 0.8608 0.8494 0.8276 0.8130 0.8083 0.8132 0.7950

75% 0.6491 0.8445 0.8848 0.8718 0.8470 0.8383 0.8295 0.8393 0.8163

Quantitative metrics reported for Unet and Resnet4 [32, 3] that trained based on 4 different loss functions. SNR, signal-to-noise; SSIM, 
structural similarity index; Resnet, residual network. 
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Figure 4 and marked with the blue arrow, Unet preserves 
some subtle details better than Resnet4. This could be due 
to the larger of trainable parameters in the Unet and more 
importantly the dense connections. The dense connections 
helped the network to reuse the extracted features from 
previous layers. Although in the Resnet architecture, there 
are residual connections, the difference seems related to the 
concatenation and global connection paths in the Unet.  

By increasing the number of RBs from 2 to 7, the 
validation loss of Resnet with perceptual loss reduced from 
0.1731 to 0.1366. We showed the results for Resnet with 
2 to 4 RBs, because we observed no significant reduction 
of the validation loss of Resnet with 4 blocks (0.1376) to 
Resnet with 7 blocks (0.1366). It is important to mention 
that, the number of kernels within each block was fixed to 
32. Increasing the number of kernels may further improve 
the reconstruction performance, although it would also 
increase the number of trainable parameters. 

The number of epochs for training the network 
was selected based on validation loss. Due to several 
experiments, we observed for learning rate =0.001, the 
training process should be stopped at 100 epochs, because, 
after 100 epochs, there were no noticeable reductions in 
validation loss. In this study, we focus on achieving clinically 
accepted results by using a simple version of Resnet. It is 
beyond the scope of the current study to further optimize 
certain aspects of the network, including: (I) number of 
kernels of each block; (II) using dense connection instead 
of residual connection; (III) using multiscale filters inside 
each block; (IV) using a gated version of RBs. These 
optimizations have been studied in computer vision tasks 
(33-36), but not specially studied in image reconstruction 
problems.

In this work, temporal information was not considered 
and only space domain information was used. It is possible 
to use recurrent CNNs to exploit the temporal information. 
Nevertheless, adding an additional temporal dimension 
to CNNs could significantly increase the complexity of 
the network and may result in challenges in training. 
Development and evaluation of such strategies require a 
separate study.

As shown in Figure 6, the performance of the Unet and 
Resnet in the reconstruction of prospectively under-sampled 
data was diagnostically acceptable based on the radiologic 
scores. Based on our observation, prospective results by 
a small margin have inferior quality in comparison to 
retrospective results. Such small differences show that the 
trained network was robust to the changes in the dataset. 

It is worth to note that previous studies in deep learning-
based image reconstruction almost always train and test 
the network retrospectively. In this study, by changing the 
sampling pattern of the pulse sequence, performance of 
networks in the real prospectively accelerated cardiac exam 
is shown. Further investigation should be performed to 
understand the difference between prospectively under-
sampled data and retrospectively under-sampled data. 
With a good understanding of the difference, one could 
change training data to mimic prospective undersampled 
data, therefore, fine-tuning the network and improving 
further the performance of the network for prospective 
reconstruction tasks. 

Conclusions

Deep learning-based image reconstruction help to achieve 
a 4-fold acceleration in 2D cardiac imaging, prospectively. 
The images reconstructed using the network based on 
perceptual loss function can generate the best image quality 
compared to the other loss function (L1, L2, and SSIM), 
despite not generating the best SNR or SSIM score. Resnet 
used in this work generate reconstructed image with the 
similar quality compared to that by Unet while required 
only 8% of the trainable parameters needed for Unet. 
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