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Background: Advance 3D quantitative radionuclide imaging techniques boost the accuracy of targeted 
radionuclide therapy (TRT) dosimetry to voxel level. The goal of this work is to develop a comprehensive 
3D dosimetric software, BIGDOSE, with new features of image registration and virtual CT for patient-
specific dosimetry. 
Methods: BIGDOSE includes a portable graphical user interface written in Python, integrating (I) input 
of sequential ECT/CT images; (II) segmentation; (III) non-rigid image registration; (IV) curve fitting and 
voxel-based integration; (V) dose conversion and (VI) 3D dose analysis. The accuracy of the software was 
evaluated using a simulation study with 9 XCAT phantoms. We simulated SPECT/CT acquisitions at 1, 12, 
24, 72 and 144-hrs post In-111 Zevalin injection with inter-scans misalignments using an analytical projector 
for medium energy general purpose (MEGP) collimator, modeling attenuation, scatter and collimator-
detector response. The SPECT data were reconstructed using quantitative OS-EM method. A CT organ-
based registration was performed before the dose calculation. Organ absorbed doses for the corresponding 
Y-90 therapeutic agent were calculated on target organs and compared with those obtained from OLINDA/
EXM, using dose measured from GATE as the gold standard. One patient with In-111 DTPAOC 
injection as well as two patients with Y-90 microsphere embolization were used to demonstrate the clinical 
effectiveness of our software. 
Results: In the simulation, the organ dose errors of BIGDOSE were −9.59%±9.06%, −8.36±5.82%, 
−23.41%±6.67%, −6.05%±2.06% for liver, spleen, kidneys and lungs, while they were −25.72%±12.52%, 
−14.93%±10.91%, −28.63%±12.97% and −45.30%±5.84% for OLINDA/EXM. Cumulative dose volume 
histograms, dose maps and iso-dose contours provided 3D dose distribution information on the simulated 
and patient data. 
Conclusions: BIGDOSE provides a one-stop platform for voxel-based dose estimation with enhanced 
functions. It is a promising tool to streamline the current clinical TRT dosimetric practice with high 
accuracy, incorporating 3D personalized imaging information for improved treatment outcome. 
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Introduction 

With the growing number of applications in targeted 
radionuclide therapy (TRT), patient-specific internal 
dosimetry is increasingly important to ensure effective 
treatment (1). Moreover, assessment of 3D absorbed dose 
distribution is of high clinical value as low dose regions 
might lead to potential lesion recurrence while high dose 
regions could cause necrosis in tissues. While for normal 
organs, different sub-compartments might have different 
tolerance to radiation and dose distribution could be non-
uniform, resulting in different level of toxicity (2). To obtain 
the 3D absorbed dose information for treatment planning 
or dose verification, one can measure the 3D cumulative 
activity distribution of the therapeutic agent in patients non-
invasively by quantitative emission computed tomography 
(ECT), i.e., single photon emission computed tomography 
(SPECT) and positron emission tomography (PET) and 
combined with blood sampling if necessary (3). However, 
the accuracy for individualized organ dose assessment is 
still limited by the uncertainties in cumulative activity 
quantification due to calibration, insufficient or inaccurate 
physic modeling in the imaging process, segmentation 
of volume-of-interest (VOI) and dose conversion (4). 
Since serial scans are usually acquired to obtain the time 
activity curve (TAC), misalignments among images at 
different time point is also a main source of errors for dose 
estimation (5). The use of computed tomography (CT) or 
magnetic resonance imaging (MRI) has been proposed to 
improve image registration and segmentation (6). For dose 
conversion, dose-point kernel (DPK) convolution (7), voxel 
S value (VSV) convolution (8) or Monte Carlo simulation 
(MCS) based method (9) are developed to convert the 
voxelized activity/cumulative activity to the 3D dose rate/
absorbed dose images. 

Generally, 3D internal dosimetric software dosimetry 
tools involve steps of optional image registration (rigid 
or non-rigid, manual or automatic registration), VOIs 
segmentation, curve fitting for generating TAC and dose 
conversion, given the input of patient imaging data. While 
early voxelized dosimetry software does not contain all 
four modules mentioned above and would need to be used 
together with other image processing or dosimetric software 
(10-12), more one-stop research and commercial dosimetric 
software is developed recently, such as STRATOS® (13),  
PLANET® (14),  HERMES® (15),  VoxelMed (16),  
VIDA (17), RAYDOSE (18), VRAK (19), OEDIPE (20) 
and JADA (21). A review of the recent codes for internal 

dosimetry can be found from the work from Ramos  
et al. (22). Most of the developed dosimetric software only 
provides manual or rigid image registration which might 
not be adequate especially for small organs or lesions (23). 

However, non-rigid registration based on whole body 
images is relatively computational intensive. Previously, 
we proposed that organ-based non-rigid registration on 
sequential quantitative SPECT or CT images can improve 
the dosimetric estimation (24,25). On the other hand, we 
also developed a virtual CT (vCT) method to generate CT 
at different time points when only a single CT is available 
in the sequential imaging protocol to sustain the dose 
calculation accuracy (26). In this paper, we aim to develop 
a 3D voxelized internal dosimetry software, BIGDOSE 
v1.0, with new features of organ-based image registration 
and vCT. We evaluated BIGDOSE v1.0 dose estimation 
result with OLINDA/EXM v1.1 in a simulation study with 
ground truth, and demonstrated the effectiveness of this 
software in two patient studies. 

Methods

Software flowchart

BIGDOSE includes a portable wizard based graphical user 
interface (GUI) written in Python. It consists of six modules 
as demonstrated in Figure 1: (I) input of sequential ECT/
CT/vCT images; (II) ECT- or CT-based segmentation; (III) 
whole-body or organ-based, ECT or CT registration; (IV) 
curve fitting of TACs and voxel-based integration to obtain 
cumulative activity; (V) dose conversion via convolution 
with VSV kernels and (VI) 3D dose analysis. 

The patient and imaging information, i.e., imaging 
isotope, therapeutic isotope, therapeutic pharmaceutical and 
system calibration factor (Bq/count) are first input to the 
software for a study. The co-registered ECT/CT/vCT data 
acquired at multiple time points after activity administration 
are then loaded. The vCT method, which required only a 
single CT acquisition and vCTs at other time point could 
be generate by non-rigid image registration, provides 
comparable registration accuracy of sequential CT scans (27).  
The vCTs could be used for the attenuation correction, 
scatter correction and organ segmentation especially for 
organs with low uptake on SPECT images, while reducing 
the radiation dose as compared to repeated CT scans. The 
vCT option was implemented as an add-on plugin for 
BIGDOSE. The user then selected a reference image as the 
fixed time point for registration and segmentation (Figure 2A).  
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The 3D activity data are corrected, voxel by voxel, for the 
physical half live difference between the surrogate imaging 
isotope and therapeutic isotope according to the following 
equation (28): 

( )  

  
imaging isotope therapy isotope t

therapy isotope imaging isotopeA A e λ λ−= ×   [1]

In this software, three registration modes are provided, 
including organ-based, whole-body based registration and 
no registration. For organ-based registration, all organs-
of-interests are segmented out from either ECT or CT 
data at each time point semi-automatically using an open 
source program, ITK-SNAP (29). For whole-body based 
registration, the organs-of-interest are only segmented on 
the reference image. The non-rigid affine + b-spline image 
registration was implemented based on an open source 
program “Elastix” (30), applying mutual information (MI) 
as the similarity measurement. For the CT registration, the 
acquired motion vectors would later be applied to register 
the corresponding ECT images. No registration mode is Figure 1 Flowchart of BIGDOSE v1.0.

Figure 2 Interfaces of BIGDOSE: (A) data input and (B) 3D absorbed dose results.
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available for studies whose sequential ECT or CT images are 
already aligned or for the application of Y-90 microspheres 
with only one time point ECT/CT acquisition. 

For studies with more than three imaging sessions, 
a voxel-by-voxel numerical integration based on the 
trapezoidal rule is used to obtain the cumulative activity 
images, assuming only physical decay after the last time 
point. While for studies with three imaging sessions, a bi-
exponential function was used to fit the TACs for each 
organ on the registered images before integration to 
obtain the cumulative activity. For Y-90 microsphere cases 
with only 1-time point images, cumulative activities were 
calculated based on a mono-exponential model. 

The obtained cumulative activity image is then 
convoluted with a corresponding VSV kernel for various 
voxel sizes and tissues to generate 3D absorbed dose 
distribution images.

The 3D dose analysis includes organ absorbed dose 
information (max/mean), dose map, iso-dose contour and 
cumulative dose volume histogram (CDVH) for the organs-
of-interest (Figure 2B). 

Dosimetric evaluation

Simulation study 
We used a population of nine digital 4D extended cardiac-
torso (XCAT) (31) phantoms which model detailed 
anatomical structures and physiological functions for three 

male anatomies (Table 1), each with three In-111 Zevalin 
distributions and biokinetics (32) (Table 2) which served as 
the imaging surrogate of Y-90 Zevalin. The time-varying 
activity distributions of each target organ were used to 
simulate SPECT scans acquired at 1, 12, 24, 72, and 144 
hours post-injection. The deformation for organs-of-interest 
between each scan was modeled by translation and rotation 
randomly within 5 pixels/degrees while keeping the volume 
change within 5%. The whole torso rigid transformation was 
modeled within 5 pixels or degrees of translation or rotation 
randomly to mimic the whole body movement between each 
scan (33). The attenuation maps for attenuation modeling 
and correction in reconstruction were generated along with 
the corresponding XCAT phantoms at an effective energy of 
In-111 to serve as the CT images (32).

An analytical projector modeling attenuation, scatter, 
and geometric collimator detector response (GCDR) (34) 
was used to simulate a standard dual head clinical SPECT/
CT scanner (Discovery VH Hawkeye, GE Healthcare) 
with a crystal thickness of 2.54 cm mounted with MEGP 
collimators. The scatter modeling and correction were 
achieved by the effective source scatter estimation (ESSE) 
method based on the scattering schemes of In-111 (35). We 
simulated 128 projections with x-y dimension of 128×170 
and 30 s/projection over 360°, using an energy window 
with a 14% width centered at two photopeaks of 171 and 
245 keV. A system calibration factor of 1.43×10−4 cts·s−1·Bq−1 
was used to scale the noise-free projections to a clinical 

Table 1 Organ volumes for 3 anatomies in the simulation study

Volume (mL) Heart Lungs Liver Kidneys Stomach Spleen Gall bladder Whole torso

Anatomy #1 1,148 2,700 2,023 311 364 256 24 65,436

Anatomy #2 930 1,922 1,294 151 189 128 25 47,848

Anatomy #3 1,009 2,373 1,537 207 375 174 24 55,018

Table 2 Organ activity and effective half-life for sampled phantom

Organ Effective half-life (h)
Activity (MBq/mL) (×10−3)

1 h 12 h 24 h 72 h 144 h

Heart 36.7 10.11 8.21 6.55 2.64 0.68

Lungs 42.2 12.20 10.18 8.36 3.80 1.17

Liver 83.1 17.75 16.20 14.65 9.82 5.39

Spleen 90.9 3.77 3.47 3.16 2.19 1.27

Kidneys 76.4 1.49 1.35 1.21 0.78 0.41
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count level and then modeled with Poisson noise to obtain 
realistic noisy projections (36). These noisy projections 
were then reconstructed using OS-EM algorithm with 8 
iterations and 16 subsets, incorporating attenuation, scatter 
and detector-collimator response compensations. No post-
filtering was applied to the reconstructed images. 

BIGDOSE v1.0 vs. OLINDA/EXM v1.1
For each phantom, five sets of simulated SPECT/CT 
images were input in BIGDOSE. Our previous study 
showed that the CT organ-based registration was superior 
to other registration schemes (25) and was used in this 
evaluation study for organs-of-interest of liver, spleen, 
kidneys and lungs. The trapezoidal rule was applied to 
calculate the cumulative activity followed by the Y-90 VSV 
kernel convolution.

OLINDA/EXM v1.1 is a conventional MIRD-based 
dosimetry software with weight adjustment which calculates 
absorbed dose on organ level and the user would need to 
input organ activities at different time points (37). We used 
the same VOIs as defined in BIGDOSE to map out the 
target organs and obtain their activities on serial SPECT/
CT images. The TAC of each organ was fit based on the 
mono-exponential model to estimate the dose. 

GATE dosimetry
In this study, we calculated the absorbed dose of Y-90 for 
phantoms without any misalignment in a MCS code (GATE 
v6.1) with physics modelling of photoelectric absorption, 
Compton interaction, Rayleigh scattering, ionizations, 
multiple scatter and bremsstrahlung photons, to serve 
as the gold standard (38). The electron energy spectrum 
was acquired from the Brookhaven National Laboratory 
database (39). The density maps of the target organs 
were input to the program separately and the S-values 
for Y-90 beta particles were output and stored in the unit 
of Gy∙MBq−1∙s−1for each voxel. A total of 2×107 photon 
histories were traced to keep the statistical uncertainty 
to be <10% in each voxel. The cumulative activity for 
each target organ was calculated by integration along the 
TAC with known effective half-lives. We assumed beta 
particles were locally absorbed inside each organ owing to 
their short ranges, thus absorbed doses for target organs 
were originated from their own and were obtained from 
multiplying their cumulative activity by the corresponding 
S values output from GATE (40). 

We calculated the total absorbed dose error of 
BIGDOSE vs. OLINDA/EXM for different organs-of-

interests as compared to GATE:

/ /%    BIGDOSE OLINDA EXM GATE

GATE

D DTotal absorbed dose error
D

−
=  [2]

An independent t-test analysis was performed with 
MATLAB to compare results of different software. A P 
value of <0.05 was considered to be statistically significant. 

Clinical study 

In-111 octreotide
To evaluate the clinical feasibility of BIGDOSE, a female 
patient (age: 73; weight: 82 kg) with known history of 
neuroendocrine tumors was enrolled. A written informed 
consent was obtained following the guidelines of the 
local ethics board. Three-time point In-111 Octreo 
SPECT/CT scans were obtained using a clinical SPECT/
CT scanner (Bright View XCT, Philips Healthcare) 
at 24, 48, and 72 hours post-injection of 222 MBq In-
111 DTPAOC for Y-90 DOTAOC dosimetry. Sixty-
four projections were acquired over 360˚ with 30 s/
projection for each scan. Energy windows of 171 keV 
±10% and 245 keV ±10% were used for acquisition, 
while 140 keV ±10% was used for scatter correction. 
The CT scanning parameters were 120 kV, 20 mA and 
slice thickness of 1 mm. The reconstructed CT matrix 
size was 512×512×406, with a voxel size of 1×1×1 mm3.  
A CT-based attenuation correction and dual energy window 
scatter correction were used in the SPECT OS-EM 
reconstruction with a voxel size of 6.4×6.4×6.4 mm3. Target 
organs, i.e., liver, kidneys and spleen, were segmented out 
from the CT images at all time points in BIGDOSE with 
organ-based registration for dose analysis.

Y-90 microsphere
We recruited 2 patients with Y-90 microspheres embolization 
under the local ethics approval. Patient#1 was treated with 
glass microspheres (TheraSphere®, MDS Nordion, Ottawa, 
Canada) while Patient#2 was treated with resin microspheres 
(SIR-Sphere®, Sirtex Medical, Sydney, Australia). They 
underwent one time point bremsstrahlung/CT scan using 
a dual head SPECT/CT scanner (Discovery NM/CT 
670, GE Healthcare) 4 hrs post embolization. Projection 
data were acquired over 360˚ with 30 s/projection. Three 
10% wide energy windows centered at 70, 135, 167 keV 
were used to collect the bremsstrahlung photons. The CT 
scanning parameters were 120 kV, 42 mA, helical mode, 
0.938:1 pitch, scan rotation speed of 18.75 (mm/rot) and slice 
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thickness of 3.75 mm. The reconstructed CT matrix size 
was 512×512×73, with a voxel size of 1×1×3.75 mm3. A CT-
based attenuation correction was used in the SPECT OS-
EM reconstruction with a voxel size of 4.42×4.42×4.42 mm3.  
Additionally, contrast CT images were performed for each 

patient with a voxel size of 0.72×0.72×5 mm3. No registration 
mode was chosen and we assumed physical decay after drug 
delivery. After calculating the cumulative activity of SPECT 
images, a Y-90 dose kernel with a voxel size of 4.42 mm was 
employed to convolve with them to achieve dose conversion. 
The VOIs of healthy liver and tumor were segmented 
on SPECT images by setting an activity threshold such 
that the volumes of the VOIs were equal to those of the 
corresponding contrast CT images for each patient (41). 

Results

Simulation study

When compared with OLINDA/EXM, large improvement 
could be observed in absorbed dose estimation in target 
organs especially for lungs. The average absorbed dose errors 
of BIGDOSE for the nine phantoms were −9.59%±9.06%, 
−8.36%±5.82%, −23.41%±6.67%, −6.05%±2.06% for liver, 
spleen, kidneys and lungs, while they were −25.72%±12.52%, 
−14.93%±10.91%, −28.63%±12.97% and −45.30%±5.84% 
for OLINDA/EXM (Figure 3). The differences are 
statistically significant for the liver and lungs.

Clinical study

In-111 octreotide
Absorbed doses of kidneys, spleen and liver calculated 
from BIGDOSE are listed in Table 3, while the CDVHs, 
dose maps and iso-dose contours provide their 3D dose 
distribution information (Figure 4). The total computational 

Figure 3 Total absorbed dose error of BIGDOSE vs. OLINDA/
EXM for different organs-of-interests, using dose calculated from 
GATE as the gold standard. * indicates P<0.05.

Figure 4 Sampled 3D dosimetric results for the clinical In-111/Y-90 study. (A) CDVHs for liver, spleen and kidneys; (B) dose map (left) and 
iso-dose contour (right) for kidneys. CDVH, cumulative dose volume histogram.
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time for 3 organs-of-interest was about 3 hours on a 
Macintosh Operating System, with a 2.6 GHz Intel Core i5 
processor and 8 GB RAM.

Y-90 microsphere 
Healthy liver and tumor absorbed doses for different 
patients from BIGDOSE are listed in Table 4. Sampled 
CDVH, dose map and iso-dose contour of liver for Patient 
#1 and Patient #2 are shown in Figure 5. 

Discussion

While OLINDA/EXM is still the main stream organ-based 
dosimetric software in the clinic, the increased popularity of 
Y-90 and Lu-177-based TRT raises the demand of 3D voxel-
based personalized dosimetry. A new feature for BIGDOSE 

is the implementation of organ-based registration, with 
flexible number of input images. Our previous study 
showed that organ-based registration generally performed 
better than whole-body based registration (25), and can 
reduce the dosimetric error of up to 25% as compared to no 
registration performed. However, organ-based registration 
is relatively operational intensive as segmentations need to 
be performed for multiple time point images and organs-of-
interest. Both organ-based and whole-body registrations are 
available in BIGDOSE. 

 Monte Carlo based techniques provide the highest 
accuracy for internal dose estimates yet they are hampered 
by the long computational time for clinical practice. A 
previous study showed that the 3D dose distributions 
produced by MCS and VSV are nearly identical while the 
processing time for VSV is more clinically feasible (42). 
In this study, the more pronounced difference between 
BIGDOSE and OLINDA/EXM could be due to several 
factors. The use of different curve fitting methods may lead 
to a discrepancy in cumulative activities. OLINDA/EXM 
uses organ-level S values based on fixed phantoms, while 
the average organ S values varies for each phantom based 
on its own geometry for BIGDOSE. OLANDA/EXM also 
assumes the cumulative activities and organ absorbed doses 

Figure 5 Sampled 3D dosimetric results for the clinical Y-90 microsphere study. (A) CDVH, (B) dose map and (C) iso-dose contour for the 
liver for Patient #1 (top row) and Patient #2 (bottom row). CDVH, cumulative dose volume histogram.

Table 4 Organ absorbed doses calculated from BIGDOSE for the 
Y-90 microsphere study 

Patient # Healthy liver (Gy) Tumor (Gy)

1 102.37 196.76

2 66.87 165.24/120.43 (tumor #1/#2)

A B CCDVH

CDVH

0             100           200           300           400

0             100           200           300           400

Absorbed dose (Gy)

Absorbed dose (Gy)

Liver

Liver

100

80

60

40

20

0

350

300

250

200

150

100

50

0

300

250

200

150

100

50

0

100

80

60

40

20

0

%
 V

ol
um

e
%

 V
ol

um
e



167Quantitative Imaging in Medicine and Surgery, Vol 10, No 1 January 2020

© Quantitative Imaging in Medicine and Surgery. All rights reserved.   Quant Imaging Med Surg 2020;10(1):160-170 | http://dx.doi.org/10.21037/qims.2019.10.09

are uniformly distributed. 
Final absorbed dose errors are attributed to many aspects 

including activity quantification, organ segmentation, image 
registration, curve fitting of TAC and dose conversion. In 
this study, we preliminarily investigated the errors after 
quantitative image reconstruction, image registration, 
cumulative activity calculation and the dose conversion 
on organ absorbed doses. We found that the quantitative 
reconstruction (quantitative SPECT vs. original phantom) 
affected most on the absorbed dose calculation, while the 
residual errors from registration, trapezoidal integration 
of the TAC and dose conversion were similar and had 
relatively smaller effects (data not shown). Figure 3 showed 
that the absorbed dose error is higher for low uptake organs, 
i.e., kidneys and lungs, possibly due to the “spill-in” effects 
from the adjacent high uptake organs and background 
especially in the later time points during the quantitative 
image reconstruction.

In the In-111 Octreotide/Y-90 DOTAOC study, the 
calculated dose range from BIGDOSE is similar to the 
reported dose (43). In the Y-90 microsphere clinical study, 
the healthy liver absorbed dose of Patient #1 with glass 
microspheres is 102.37 Gy which is less than maximum dose 
limit of 120 Gy for clinical studies with intensive dosage 
(44-46). The tumor absorbed dose of Patient #1 (196.76 Gy)  
is larger than 120 Gy as recommended by the guideline, 
considering to be an effective treatment (47). For Patient #2 
using resin microspheres, the healthy liver absorbed dose 
(66.87 Gy) is smaller than the suggested dose limit of 80 Gy 
while the tumor absorbed dose (165.24/120.43 Gy) is larger 
than 120 Gy as proposed by SIR-Sphere manual.

There are certain limitations for BIGDOSE. For 
example, it only considers absorbed dose for beta particle 
and assuming absorbed dose contributions from organs 
other than the target organs are negligible. Although 
TRT mostly relies on short-ranged radiation like beta, 
alpha particles or Auger electrons to kill the cancer cells, 
the contribution of long-ranged gamma photons is not 
negligible for some radionuclide, e.g., Lu-177, whose 
gamma photons account for about 13% of the total 
absorbed dose (48). Combined weighted absorbed dose with 
beta particles and photons would be included to address 
this problem (19). The S value for gamma photons could be 
computed as a long-ranged low-resolution volumetric dose 
kernel. The absorbed dose from gamma photons and beta 
particles could be obtained by convoluting the cumulative 
activity images with two different kernels separately, and 
then normalizing the 2 dose images into the same voxel 

size before summing them up as the final absorbed dose 
image. On the other hand, for our current organ-based 
registration, the marginal absorbed dose from adjacent 
organs is not considered, e.g., dose attributed from liver to 
lungs and vice versa. One possible solution is to combine 
the cumulative activity images of all critical organs as one 
single cumulative image before the VSV convolution and it 
requires extra computational processing time, or to select 
whole-body registration mode which would require more 
registration time but reduce the number of segmentation 
required. Besides, ECT and CT images are co-registered 
in the simulation study which might not be clinically 
realistic. In the future, we would provide image registration 
option between ECT and CT images. More patient data 
with different tracers and applications are warranted to 
demonstrate the effectiveness of BIGDOSE.

Conclusions

BIGDOSE provides a one-stop platform for voxel-based 
dose estimation, which can substantially alleviate the activity 
inhomogeneity problem in dose calculation, with enhanced 
function of non-rigid registration and vCT options. It is 
a promising tool to streamline the current clinical TRT 
dosimetric practice for treatment planning and post-therapy 
dose verification, with high accuracy and 3D personalized 
information for potential improved treatment outcome. 
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