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Introduction

In medical  computed tomography (CT) imaging 
applications, image reconstruction plays a critical role in 
visualization and interpretation. Conventionally, the most 
widely used CT image reconstruction methods are all based 

on analytical algorithms like the filtered-back-projection 
(FBP) CT reconstruction algorithm (1,2) for parallel-beam 
and fan-beam imaging geometry, and the Feldkamp Davis 
Kress (FDK) CT reconstruction algorithm (3) for cone-
beam imaging geometry. Although the analytical CT image 
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reconstruction algorithms are fast, it is difficult to produce 
high-quality CT images with them when the radiation 
dose is reduced. Therefore, over the past two decades, 
optimization-based iterative CT image reconstruction 
algorithms, which include imaging models,  prior 
information, and proper regularization (4-10) have been 
adopted as the dominant solutions for CT image denoising 
and artifact removal. In contrast to the analytical FBP and 
FDK algorithms, the iterative algorithms usually need an 
assumed CT image to compute the forward projections, 
compare the original projection data, and update the 
assumed CT image based upon the difference between 
the calculated and the actual projection data. However, 
optimization-based iterative CT image reconstruction 
algorithms usually require longer computation times.

Recently, the deep learning technique, which has already 
become popular in computer science (11), has attracted 
research interest from the medical imaging fields. In CT 
image reconstruction applications, some pioneering studies 
(12-20) have demonstrated that the deep learning technique, 
especially the deep convolutional neural network (CNN), 
can be used to reduce the noise and artifacts on FBP and 
FDK reconstructed CT images. Technically, the CNN-
based methods implemented in prior studies have attempted 
to reduce CT image noise and artifacts via an image-domain 
post-processing procedure. For example, Chen et al. (13) 
proposed a residual encoder-decoder CNN (RED-CNN) to 
reduce image noise in low dose CT (LDCT). In this study, 
the network input was the LDCT images reconstructed 
with an FBP algorithm, and the network output was the CT 
images with a standard dose level. Zhang et al. developed a 
CNN-based method to reduce streaking artifacts in sparse 
view CT imaging (18). Similarly, the network input was 
the FBP-algorithm-reconstructed sparse view CT images 
containing severe streaking artifacts, and the network 
output was the CT image reconstructed from a full view 
scan. One advantage of using CNN over iterative CT 
image reconstruction algorithms is that it takes less time to 
reconstruct CT images. However, it should be noted that 
a CNN network always needs to be trained in advance, 
and this training time is not counted in the CT image 
reconstruction time.

Rather than starting the CNN-based CT image 
reconstructions from noise or artifacts degraded CT 
images, one recent study (21) demonstrated that CT 
images could be reconstructed directly from the acquired 
Radon projections (also known as the sinogram) by a 
properly designed end-to-end supervised CNN. Zhu et al.  

reframed the CNN network as an “automated transform 
by manifold approximation” (AUTOMAP). In this new 
paradigm, CNN learns the complicated mathematical CT 
image reconstruction procedure (21,22), including both the 
domain transformation and data filtration. However, the 
use of fully connected (FC) layers makes the AUTOMAP 
network difficult to implement, especially when the 
CT image to be reconstructed has a clinically relevant 
dimension. For example, to reconstruct a typical CT image 
512×512 in dimension, the FC layers in AUTOMAP may 
occupy up to hundreds of gigabytes of GPU memory, 
which is a challenge to handle for a workstation equipped 
with only a limited number of GPUs. To solve this 
issue, we suggest replacing the FC layer-based domain 
transformation which is used in the AUTOMAP network 
with the conventional analytical back-projection-based 
domain transformation (23,24). Since such analytical back-
projection operations can be easily implemented with a 
finite computation resource, a CT image can, therefore, 
be reconstructed from an end-to-end supervised CNN 
network on a single GPU with moderate memory capacity. 
In this work, we have coined the term “ADAPTIVE-NET” 
to refer to the newly developed analytical domain-back-
projection-driven CT image reconstruction network.

The following methods section presents details of the 
ADAPTIVE-NET, including the network architecture, loss 
function, and error backpropagation mechanism. In the 
experiment section, the training data generation, network 
training, and quantitative evaluations are discussed. In 
the results section, details of the comparison results are 
presented for the eight methods. We discuss the relevant 
implications of our work and the major conclusions in the 
discussion and conclusion sections, respectively. 

Methods

CT imaging model

Assuming the CT system has a parallel-beam imaging f (x, y) 
geometry, the projection of an arbitrary 2D object  on the 
detector plane at a certain view-angle θ can be written as 
follows:

( ) ( ) ( ), ,p r f x y xcos ysin r dxdyθ δ θ θ
+∞ +∞

−∞ −∞
= + −∫ ∫  [1]

In Eq. [1], p(r, θ)denotes the measured Radon projection, 
δ(xcosθ+ysinθ−r)specifies an x-ray beam passing through 
the object, r is the distance from the origin (x =0, y =0) to 
the beam, and θ is the angle between the +y-axis to the 
ray penetrating the object. For the parallel-beam imaging 
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geometry, the projections are usually acquired with a 
180-degree tube-detector rotation interval, namely, 0≤ θ ≤π. 
With the linear algebra language, Eq. [1] can be rewritten 
as the following:

p=Af [2]
where matrix A represents the forward Radon  projection 

model. To reconstruct the object f(x, y) from the acquired 
projection data p(r, θ), the FBP algorithm is usually used. 
In this algorithm, the original projection data p(r, θ) needs 
to be filtered first with certain types of filtering kernels. 
Afterward, one needs to put each projection value back 
into the object space along the Radon integration direction 
one view after another. By doing so, a reconstructed image 
of the object f(x, y), denoted as ffbp(x, y), in the CT image 
domain can be obtained. This procedure can be expressed 
by the following equation:

( ) ( ){ } ( )
0

, ,fbpf x y F p r r xcos ysin d
π

θ δ θ θ θ= − −∫  [3]

where F denotes the project data filtering procedure. 
Similarly, Eq. [3] can be denoted as

T
fbpf A Fp=  [4]

Here, AT represents the adjoint of the forward projection 
operation A. Thus, AT denotes the back-projection 
operation. Essentially, the back-projection operation AT 
plays the role of domain transformation from the projection 
domain to the CT image domain.

User-developed FBP operator in TensorFlow

We here propose to make the FBP procedure an individual 

network layer, rather than a group of CNN layers as has been 
previously implemented by Würfl et al. (23,24). However, 
there is no such build-in component readily available 
in the TensorFlow platform, and thus we developed it 
independently. In TensorFlow, this component is called an 
operator. By design, this self-developed operator accepts 
a group of system parameters and performs filtration and 
back-projection during network training. The system 
parameters include the source-to-detector distance, the 
source-to-iso-center distance, the detector element size, 
the total view numbers, and others. The standard ramp 
filter was used, and the filtered data was back-projected 
into the CT image domain in a voxel-driven manner. The 
corresponding gradient back-propagation operator was also 
developed. To be compatible with the TensorFlow platform, 
all calculations were implemented by CUDA (25).

ADAPTIVE-NET

Using our own self-developed operators, we had the 
opportunity to build a new end-to-end CT image 
reconstruction network by jointly accessing the sinogram 
domain and the CT image domain. As illustrated in Figure 1,  
three individual units are cascaded one after the other to 
work simultaneously during CT image reconstructions. 
In particular, the forefront projection domain unit (PDU) 
is used to extract features on the sinogram. It has three 
convolutional layers, and the kernel size is 1×3. The middle 
unit is responsible for domain transformation from the 
sinogram domain to the CT image domain. The third 

Figure 1 Architecture of the proposed ADAPTIVE-NET. The network has three units: the projection domain unit (PDU), self-developed 
domain transformation unit (DTU), and the image domain unit (IDU). The first unit contains three layers, n64k(1,3) indicates 64 filters of 
kernel size 1×3, and the symbol ○C denotes concatenation of the feature maps. The network inside the IDU is the same as that of RED-
CNN.

Projection domain unit ( PDU)

C
on

v 
+

 L
ea

ky
R

eL
U

C
on

v 
+

 L
ea

ky
R

eL
U

D
om

ai
n 

tr
an

sf
or

m
at

io
n

un
it 

(D
TU

)

C
on

v

Input

N64K (1,3) N64K (1,3) N129K (1,3)

Image domain unit (IDU)

RED-CNN

Output



418 Ge et al. ADAPTIVE-NET: CT reconstruction network with analytical knowledge

© Quantitative Imaging in Medicine and Surgery. All rights reserved.   Quant Imaging Med Surg 2020;10(2):415-427 | http://dx.doi.org/10.21037/qims.2019.12.12

unit (IDU) is designed to perform feature extractions in 
the CT image domain. In this study, we made use of the 
RED-CNN as the third unit. Compared with the RED-
CNN, one potential advantage of ADAPTIVE-NET 
is that the original information stored in the sinogram 
can be accessed directly, ensuring the use of raw data 
information during CT image reconstructions. Under this 
condition, the ADAPTIVE-NET becomes an extended 
version of the RED-CNN. In ADAPTIVE-NET, both the 
sinogram domain processing and the CT image domain 
processing are performed at the same time. To validate the 
performance of the ADAPTIVE-NET, we would use it for 
LDCT image reconstructions.

Loss functions

In this study, two types of loss functions were used. One was 
the mean square error (MSE) loss defined as follows:

21 MSE CNN F
x y

L I I
N N

= −  [5]

Here, .
F  denotes the Frobenius norm, Nx and Ny 

represent the number of CT image pixels along with 
the horizontal and vertical directions, respectively. The 
reference CT image is denoted as I, and the CT image 
reconstructed from CNN is denoted as ICNN.

The other loss used is defined as a weighted summation 
of MSE loss and VGG loss (26) as expressed in the 
following equation:

VGG MSEL L Lλ= +  [6]

where λ is a hyperparameter to balance the MSE loss 
and VGG loss. In particular, the VGG loss is useful in 
characterizing the similarity between two images. Often, the 
pre-trained VGG16 CNN network is chosen to measure 
the similarity between two images. By definition, the VGG 
loss LVGG is expressed as the following:

( ) ( )
5 2

1

1 n n
VGG CNNn n n F

n x y c

L VGG I VGG I
N N N=

= −∑  [7]

where VGGn is the squared feature difference at the n-th 

pooling layer of the pre-trained VGG16 network, and n
cN  is 

the number of channels of feature maps at the n-th pooling 
layer. In this study, we empirically set n from 1 to 5 for the 
natural denoising of LDCT images.

Error back-propagation in ADAPTIVE-NET

Assuming the network loss function is L, the gradients of 

network variables in the IDU (assuming it is in the j-th 
layer of ADAPTIVE-NET) can be immediately expressed 
as follows:

1

1

jn

j n n j

llL L
w l l w

+

−

∂∂∂ ∂
= …

∂ ∂ ∂ ∂
 [8]

where l denotes the output of a certain network layer. 
All the calculations are routine and based on the chain rule. 
The gradients of network variables in the PDU (assuming it 
is in the i-th layer of ADAPTIVE-NET and positioned in 
front of the DTU) can be expressed as follows:

1 1

1

n DTU i

i n n DTU i

l l lL L
w l l l w

+ +

−

∂ ∂ ∂∂ ∂
= … …

∂ ∂ ∂ ∂ ∂
 [9]

As discussed previously, the self-developed operators 
responsible for analytical CT image reconstructions by 
default are designed to be constants. In the forward network 
propagations, the operation O=ATF is utilized to perform 
CT image reconstructions. Conversely, in the backward 
network propagations, it is the following:

1 T TDTU

DTU

l O F A
l

+∂
= =

∂  [10]

Speci f ica l ly,  the  network gradients  ca lculated 
automatically in the IDU stage have to be scaled by FTA 
times in order to estimate the variable gradients in the 
PDU stage during all the ADAPTIVE-NET gradient back-
propagations.

Training dataset

The Mayo LDCT challenge dataset was used to generate 
the network training data. First, a linear transformation was 
applied to convert the clinical CT image [Hounsfield unit 
(HU)] to the linear attenuation coefficient µ (unit of 1/mm) 
as follows:

0.02 1
1000
HUµ  = × + 

 
 [11]

where the factor 0.02/mm corresponds to the reference 
X-ray linear attenuation coefficient of water around 60 keV. 
This is a close approximation to most of the mean X-ray 
tube energy in routine clinical CT scans. Second, fan-
beam CT imaging geometry was simulated. In particular, 
the source-to-detector distance was 1,270.00 mm, and the 
source-to-rotation center was 870.00 mm. There are 1,000 
detector elements, each with a dimension of 0.80 mm.  
We assumed that all CT images have the same pixel 
dimension of 0.625 mm × 0.625 mm. Forward projections 
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(i.e., Radon projections) were collected from 900 views with 
a 0.4-degree angular interval. Both the quantum Poisson 
noise and the Gaussian electronic noise were added in 
simulations. Poisson noise was added to each simulated 
projection with the entrance mean photon number of 5×104 
per ray. In addition, zero-mean Gaussian noise with a noise-
equivalent-quanta of 10 photons per ray was also added into 
the projection data to mimic the electronic noise. In total, 
5,413 data pairs were collected: 4,887 pairs were used to 
train the network, and the remaining 526 pairs were used 
to validate the network. All the above numerical operations 
were performed in Python. 

Comparison schemes

In this study, images were reconstructed from the seven 
following algorithms for comparison: the LDCT image 
reconstructed by FBP (denoted as LDCT), the iterative 
reconstruction algorithm with total variation (TV) regularizer 
processed image (denoted as TV), the CT image generated 
from the RED-CNN method with MSE loss (denoted as 
RedCNN-MSE), the CT image generated from the RED-
CNN method with combined MSE loss and VGG loss when 
λ=1,000 (denoted as RedCNN-VGG-1000*MSE), the CT 
image generated from the ADAPTIVE-NET with MSE loss 
(denoted as ADAPTIVE-MSE), the CT image generated 
from the ADAPTIVE-NET with combined MSE loss and 
VGG loss when λ=5,000 (denoted as RedCNN-VGG-
5000*MSE), and CT image generated from the ADAPTIVE-
NET with combined MSE loss and VGG loss when λ=1,000 
(denoted as RedCNN-VGG-1000*MSE).

Algorithm implementation

For the TV-based iteration algorithm, the weight of the TV 
regularizer was set to 0.02, and the number of iterations was 
selected to achieve the lowest NMSE for each individual 
image.

During the training of the RED-CNN network and 
ADAPTIVE-NET, the network automatically updated the 
weights and biases for all channels, and gradually learned 
the optimal parameters to minimize the loss function L. 
Specifically, the Adam algorithm was used with a starting 
learning rate of 0.00001, which exponentially decayed by a 
factor of 0.98 after every 1,000 steps. The mini-batch had a 
size of 1, and batch-shuffling was turned on to increase the 
randomness of the training data. The network was trained 
for 100 epochs on Tensorflow deep learning framework 

using a single NVIDIA GeForce GTX 1080Ti GPU. 
Once being trained, the ADAPTIVE-NET took about 
0.3 seconds to reconstruct 1 CT image of 512×512 from a 
sinogram of 1,000×900.

Quantitative evaluation metrics

The performances of the different CT image reconstruction 
methods were compared via several different quantitative 
evaluation metrics: normalized root mean square error 
(NRMSE), the structural similarity index metric (SSIM), 
peak signal-to-noise ratio (PSNR), and the noise power 
spectrum (NPS).

The NRMSE is defined as the following:

( ) ( )
0 2

0 0max min
x x

NRMSE
x x
−

=
−

 [12]

where x denotes the reconstructed image and x0 denotes 
the corresponding reference image.

( ) ( )( )
( )( )

0 0

0 0

1 , 2
0 2 2 2 2

1 2

2 2
,? x x x x

x x x x

c c
SSIM x x

c c

µ µ σ

µ µ σ σ

+ +
=

+ + + +
 [13]

where µ denotes the mean value of the image, σ2 denotes 
the variance of the image, and σa,b denotes the covariance 
of two images. In our calculations, C1=(0.01×R)2, and 
C2=(0.03×R)2, where R is the value range of image x. The 
images used to calculate SSIMs were 512×512 in size. 
Moreover, the 2D NPS was calculated from 200 noise-only 

samples with the following equation{ }n
ix : 

( )
{ }

2
200

1
,

200

n n
ii

u v
u v

DFT x xu vNPS f f
N N

=
−∆ ∆

=
∑

 [14]

In Eq. [14], ∆u and ∆v are the image pixel size along axis 
u and v, respectively, and Nu and Nv are the total number of 
pixels along axis u and v, respectively. The averaged noise-
only image nx  was estimated from 200 samples as follows:



200

1

1
200

n n
i

i

x x
=

= ∑  [15]

Results

Parameter selections

As shown in Eq. [6], the value of hyperparameter λ needs to be 
pre-determined in order to generate the most optimal LDCT 
imaging results. For this purpose, we empirically selected five 
different λ values: 10,000, 5,000, 2,000, 1,000, and 0.

For each value, the network was trained independently. 
Once the network converged, both the MSE loss and the 
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VGG loss were calculated and drawn together to obtain the 
corresponding L-curve, as shown in Figure 2. According to 
the obtained L-curve, we selected two λ values: 5,000 and 
1,000. Results were compared between them.

Imaging results

Figure 3 illustrates the lung imaging results with different 

reconstruction methods, and Figure 4 shows the zoomed-
in region of interest (ROI) images. Visually, images 
reconstructed from the TV algorithm had strong plastic 
textures, and the spatial resolution was also poor. Both the 
RedCNN-MSE and ADAPTIVE-MSE methods could 
be used to improve the image quality, and the proposed 
ADAPTIVE-MSE method outperformed the RedCNN-MSE 
in recovering the fine anatomical lung structures, as circled in 
Figure 4. Overall, the images generated from the combined 
MSE loss and VGG loss had better image quality than that 
with only MSE loss. For the lung imaging study, the results 
obtained from different λ values looked quite similar.

Figure 5 illustrates the results of one abdominal image, 
and Figure 6 shows the zoomed-in ROI images around 
the liver region. Again, images reconstructed from the 
RedCNN-MSE and ADAPTIVE-MSE methods had 
better spatial resolution than those reconstructed from the 
TV algorithm. With the MSE loss, the newly developed 
ADAPTIVE method generated better image spatial 
resolution than RED-CNN. Finally, images generated from 
combined MSE loss and VGG loss had better quality than 
those with only MSE loss. However, the zoomed-in image 
in Figure 6E contains strong checkboard artifacts, while 
they become less significant if processed by the proposed Figure 2 L-curve obtained from different λ values.
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Figure 4 Zoomed ROI of the blue rectangle in Figure 3. The display window for all images is [0, 0.005] cm-1. Red dashed circles indicate 
lung nodules with very small dimension. ROI, region of interest.

Figure 5 Abdomen CT images reconstructed using seven different methods. (A,B,C,D,E,F,G,H) NDCT, LDCT, TV, RedCNN-MSE, 
RedCNN-VGG-1000*MSE, ADAPTIVE-MSE, ADAPTIVE-VGG+5000*MSE, ADAPTIVE-VGG+1000*MSE. All images are displayed 
in the same window of [0.018, 0.025] cm-1.
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ADAPTIVE-NET with VGG loss. Additionally, the result 
in Figure 6H demonstrates that λ=1,000 can better reserve 
the natural-looking features of the reconstructed LDCT.

Images in Figures 7 and 8 illustrate results from another 
abdominal image. As can be seen, the RedCNN-MSE and 
ADAPTIVE-MSE methods generate images with better 
spatial resolution than those reconstructed from the TV 
algorithm. When only using the MSE loss, the newly 
developed ADAPTIVE method was able to generate LDCT 
images with slightly better image spatial resolution than 
the RED-CNN. When combining the MSE loss and VGG 
loss together, the reconstructed LDCT images looked more 
natural. However, the RED-CNN method contained strong 
checkboard artifacts. On the other hand, the checkboard 
artifacts were less significant when processed by the 
proposed ADAPTIVE-NET with VGG loss. Additionally, 
the result in Figure 8H demonstrates that λ=1,000 generates 
more natural-looking CT images than λ=5,000.

Moreover, quantitative comparisons were also conducted 
for a single test image and all 526 pairs of test images. For 
different body parts, taking the PSNR as an example, the 
Red-CNN-MSE and ADAPTIVE-MSE algorithms gained 
higher value than the TV method. More importantly, 
the joint use of VGG loss could further improve the 

PSNR values of both the RED-CNN and ADAPTIVE-
NET method to very similar levels, as seen in Table 1. 
Our experiments found that even the ADAPTIVE-VGG-
1000*MSE method was able to generate the most natural-
looking LDCT images; however, the quantitative indices 
derived from it are slightly (<5%) lower than the highest 
achievable values. These results indicate that the loss 
functions may impact the quantifications, and this has been 
found in a previous study as well (27).

Across different body parts, the same quantitative 
measurements were performed and averaged, with the 
results being summarized in Table 2. Overall, the joint use of 
VGG loss could indeed enhance the network performance 
and thus generate better LDCT images. Again, all the 
CNN methods with and without VGG loss had similar 
quantitative outcomes (difference less than 5%). 

Noise power spectrum (NPS) analyses

The measured noise power spectra for each CT image 
reconstruction method are presented in Figure 9. These 
1D curves were generated by radially averaging the 2D 
NPS maps, which were generated from 200 independent 
noise-only samples. The ADAPTIVE-VGG-1000*MSE 

Figure 6 Zoomed ROI of the blue rectangle in Figure 5. The display window is [0.018, 0.025] cm-1. Red arrows indicate hepatic vessels. 
ROI, region of interest.
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Figure 7 Abdomen CT images reconstructed using seven different methods. (A,B,C,D,E,F,G,H) NDCT, LDCT, TV, RedCNN-MSE, 
RedCNN-VGG-1000*MSE, ADAPTIVE-MSE, ADAPTIVE-VGG+5000*MSE, ADAPTIVE-VGG+1000*MSE. All images are displayed 
in the same window of [0.018, 0.025] cm-1.

A B C D

E F G H

Figure 8 Zoomed ROI of the blue rectangle in Figure 7. The display window is [0.018, 0.025] cm-1. Red arrows indicate hepatic vessels. 
ROI, region of interest.
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method had the best performance in terms of preserving 
the NPS shape and generating the most natural-looking 
LDCT images on par with the standard FBP-reconstructed 

NDCT images. The NPS curves obtained from RED-
CNN-VGG-1000*MSE and ADAPTIVE-VGG-5000* 
MSE methods had very similar shapes but tended to have 
stronger low-frequency correlations and less significant 
high-frequency correlations. Compared with the RED-
CNN-MSE algorithm, the new ADAPTIVE-MSE method 
exhibited more high-frequency correlations. The TV based-
method showed the strongest shift towards the low-frequency 
range, indicating dramatic image blurring. Because the 
LDCT images reconstructed from the ADAPTIVE-VGG-
1000*MSE method had the closest visual performance to the 
NDCT images, we chose it as the candidate reconstruction 
algorithm for our LDCT imaging application.

Discussion

In this paper, we propose a new end-to-end supervised 

Table 1 Quantitative results of different algorithms for the testing images in Figures 3,5,7

Algorithm
Lung Abdominal 1 Abdominal 2

PSNR SSIM NRMSE PSNR SSIM NRMSE PSNR SSIM NRMSE

LDCT 38.5195 0.8967 0.0119 30.4167 0.5876 0.0301 31.6664 0.6469 0.0261

TV 41.8727 0.9567 0.0081 37.3804 0.8786 0.0135 38.0982 0.8945 0.0124

RedCNN-MSE 44.8781 0.9782 0.0057 40.0759 0.9348 0.0099 41.2589 0.9467 0.0087

ADAPTIVE-MSE 44.3783 0.9774 0.0060 39.6627 0.9364 0.0104 40.5510 0.9441 0.0094

RedCNN-VGG-1000*MSE 47.0619 0.9852 0.0044 40.5442 0.9425 0.0094 42.0989 0.9540 0.0079

ADAPTIVE-VGG-5000*MSE 46.3096 0.9842 0.0048 40.1877 0.9405 0.0098 41.6529 0.9520 0.0083

ADAPTIVE-VGG-1000*MSE 46.0407 0.9835 0.0050 39.5937 0.9342 0.0105 41.1898 0.9485 0.0087

NRMSE, normalized root mean square error; SSIM, structural similarity index metric; PSNR, peak signal-to-noise ratio.

Table 2 Quantitative results of different algorithms for all 526 testing images

Algorithm PSNR SSIM NRMSE

FBP 33.8273±2.0114 0.7475±0.0774 0.0209±0.0049

TV 39.5959±1.7598 0.9261±0.0245 0.0107±0.0021

RedCNN-MSE 42.7613±1.8630 0.9626±0.0137 0.0074±0.0016

ADAPTIVE-MSE 41.7831±1.8240 0.9639±0.0140 0.0083±0.0016

RedCNN-VGG-1000*MSE 43.9774±2.0509 0.9685±0.0131 0.0065±0.0016

ADAPTIVE-VGG-5000*MSE 43.1503±1.9297 0.9680±0.0131 0.0071±0.0016

ADAPTIVE-VGG-1000*MSE 42.5767±1.9243 0.9652±0.0138 0.0076±0.0017

FBP, filtered-back-projection; NRMSE, normalized root mean square error; SSIM, structural similarity index metric; PSNR, peak signal-to-
noise ratio.

Figure 9 The radial averaged NPS curves measured from different 
algorithms. NPS, noise power spectrum.
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CT image reconstruction network by incorporating the 
analytical domain transformation knowledge. With this 
newly developed ADAPTIVE-NET, high-quality LDCT 
images having clinically relevant dimensions of 512×512 and 
are able to be reconstructed directly from the full sinogram 
on a single GPU. 

Essentially, the idea of integrating CNN and analytical 
domain transformation knowledge together has already 
been proposed in other recent literature. For example, 
Würfl et al. demonstrated that it is possible to map the FBP 
and FDK type CT image reconstruction algorithms into 
a CNN (23,24). In these studies, domain transformation 
was precisely implemented via analytical back-projection, 
which was embedded in the entire network as a specific 
layer with fixed constant weights. Since these networks 
are designed faithfully with the purpose of mapping the 
FBP and FDK type CT image reconstruction algorithms, 
it is likely difficult to use them for solving most typical 
problems related to CT reconstruction tasks, like LDCT 
reconstruction. To overcome this issue, we thought of 
modifying the network architecture to make it more general 
for end-to-end network-based CT image reconstructions. 
From this, we proposed the new ADAPTIVE-NET 
architecture.

In order to train the ADAPTIVE-NET, a full-size 
sinogram and NDCT image are needed. Unlike the RED-
CNN network, the new network is not able to work with 
patched data, a patched sonogram, or a patched NDCT 
image. This requirement may potentially increase the 
number of full-size NDCT images used for network 
training. However, the benefit of using full-size sinogram 
data and NDCT image data in preserving the natural 
textures of the reconstructed LDCT images is also 
apparent. To compare, in this study, we also trained the 
RED-CNN with a full-size CT image, rather than using 
a patched CT image. With the same number of training 
data, results demonstrated that the ADAPTIVE-NET 
was able to outperform the RED-CNN. We thought 
this was because the ADAPTIVE-NET has the ability 
to simultaneously access the information stored in the 
original projection data and the reconstructed CT image. 
Because of the combination of projection information 
and CT information, results indicated that the proposed 
ADAPTIVE-NET would be more efficient than the RED-
CNN in generating high-quality CT images, especially 
for LDCT imaging applications. Notice that the RED-
CNN purely works in the CT image domain, and has been 
implemented as the image domain unit of the proposed 

ADAPTIVE-NET (Figure 1).
The value of parameter λ defined in Eq. [6] needs to be 

carefully selected to balance the contribution of MSE loss 
and VGG loss. Moreover, the value of λ may also depend on 
the imaging task. Different values may lead to different final 
results, such as image quality, noise correlation property, 
and so on. In this study, λ=1,000 was considered as one of 
the best selections for ADAPTIVE-NET when trained 
with joint MSE loss and VGG loss. This is because, in this 
case, the measured image quantification indices, such as 
SSIM, PSNR, and NRMSE, can reach a fairly high level. 
Additionally, the obtained NPS curve from ADAPTIVE-
NET under this condition also has the closest shape to the 
NPS curve obtained from FBP-reconstructed CT images. 
Due to the high similarities, the reconstructed LDCT 
images with λ=1,000 from ADAPTIVE-NET have a more 
natural-looking appearance than the conventional NDCT 
images.

As seen in Figure 1, the proposed ADAPTIVE-NET in 
this study contains three cascaded units, with each one being 
responsible for a specific task. The forefront projection 
domain unit is used to extract features on the sonogram, 
the domain transformation unit is used to transform the 
sinogram into the CT image domain, and the image domain 
unit is used to extract features on CT images. Although 
we validated the ADAPTIVE-NET for LDCT imaging 
by exactly following the three-unit network structure, the 
illustrated three-unit structure in Figure 1 could be varied. 
For example, the first PDU might be abridged. In this 
condition, the ADAPTIVE-NET immediately becomes 
the RED-CNN network. If we further modify the network 
structure of the IDU, as has been done previously (28), then 
the ADAPTIVE-NET can be used as a back-projection-
filtration CNN network. In contrast, the IDU might also be 
removed. In this case, the ADAPTIVE-NET will acquire 
a very similar network structure as those proposed by 
Würfl et al. (23,24). Specifically, it would become a CNN-
based FBP or FDK CT image reconstruction algorithm. 
Therefore, the ADAPTIVE-NET is truly adaptable to 
certain applications.

In addition to being applicable for LDCT imaging, as 
demonstrated in this study, the new ADAPTIVE-NET can 
also be used in other CT image reconstruction tasks, such 
as the limited-view CT image reconstruction, the limited-
angle CT image reconstruction, and in other conditions. 
This network is not only practicable in CT imaging but 
also has the potential for positron emission tomography 
(PET) and single-photon emission computed tomography 
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(SPECT) image reconstruction applications. In brief, the 
ADAPTIVE-NET is truly adaptable to both the network 
architecture and imaging applications. 

Future research will focus on performing comprehensive 
comparisons with the state-of-art CT imaging networks 
(29-32) for varied scenarios. In addition, we would also like 
to investigate the other potential imaging applications of 
ADAPTIVE-NET, as briefly discussed above.

Conclusions

We developed a novel end-to-end supervised CT image 
reconstruction network which incorporates an analytical 
back-projection domain transform layer to directly 
reconstruct CT images of clinically relevant dimensions 
from a full sinogram on a single GPU of moderate memory 
size. Due to the direct access and use of the projection 
information in ADAPTIVE-NET, the quality of the 
reconstructed LDCT image can be improved. In addition, 
the use of VGG loss is beneficial in generating more 
natural-looking LDCT images.
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