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imaging
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Background: To assess the influence of specific histopathologic patterns on MRI diffusion characteristics 
by performing rigorous whole-mount/imaging registration and correlating histologic architectures observed 
in prostate cancer with diffusion characteristics in prostate MRIs.
Methods: Fifty-two whole-mount pathology blocks from 15 patients who underwent multiparametric 
MRI (mpMRI) at a single institution prior to radical prostatectomy were retrospectively analyzed. Regions 
containing individual morphologic patterns (N=21 patterns, including variations of cribriforming, expansile 
sheets, single cells, patterns of early intraluminal complexity, and mucin rupture patterns) were digitally 
annotated by an expert genitourinary pathologist. Distinct tumor foci on each slide were also assigned a 
Gleason grade and scored as having any high-risk histologic pattern. Digital sections were aligned to MRI 
using a patient-specific mold and registered using local mean weighted piecewise transformation based 
on anatomic control points. Density and presence of morphological patterns was correlated to apparent 
diffusion coefficient (ADC) signal intensity using mixed effects model accounting for nested intra-foci, intra-
patient correlation. Influence of intra-tumoral heterogeneity was assessed by affinity propagation clustering 
(APC) of morphology features and correlated to foci- and cluster-level ADC metrics.
Results: One hundred eleven distinct tumor foci were evaluated. Beta diversity, reflecting average 
morphology representation across inter- and intra-foci areas, demonstrated higher intra-tumor diversity 
within high-risk foci (P<0.05). ADC signal demonstrated an inverse correlation with foci-level Gleason 
grade (P>0.05), which was strengthened in cluster-level analysis for intra-foci regions containing high-risk 
morphologies (P=0.017). In voxel-based analysis, dense regions demonstrate lower ADC, but the presence 
and density for each morphology influenced ADC independently (ANOVA P<0.001).
Conclusions: Architectural features influence ADC characteristics of MRI, with more complex tumors 
having lower ADC values regulated by presence and density of specific morphologies.
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Introduction

Prostate cancer is known to frequently manifest as a 
multifocal disease with high inter- and intra-tumoral 
heterogeneity in histologic grade (1). Clinically, prostate 
cancer pathology is interpreted using the modern 
Gleason grading system, which characterizes histologic 
morphology ranging from discrete well-formed glands to 
lack of glandular formation or single cell patterns (2). Risk 
stratification in prostate cancer has a large component based 
on histologic presence of cancer with “Gleason pattern 4”, 
which encompasses specific features such as cribriform, 
fused, and poorly formed glands (2). However, these patterns 
are not individually reported despite the evidence that they 
carry differential prognostic implications (3). Previously, 
McKenney et al. have characterized a set of distinct 
architectural growth patterns that comprehensively detail 
histologic presentation of prostate cancer and validated their 
independent association to cancer recurrence after surgery 
in a large patient cohort (Canary architectural analysis) (4).

Beyond the need for more optimized pathologic grading, 
undersampling of disease at biopsy leads to underestimation 
of clinical risk prior to surgical intervention. Multiparametric 
MRI (mpMRI) for disease localization prior to biopsy 
demonstrates higher detection of clinically significant 
disease (Gleason 3+4 or higher) and detects fewer clinically 
insignificant cancers (5,6). The relationship between MRI 
imaging features and prostate histological characteristics 
has been well-studied (7). Numerous groups demonstrated 
a moderate inverse relationship between MR imaging [T2, 
apparent diffusion coefficient (ADC)] and Gleason score, 
secondary to the association of each with nuclear density 
(7,8). Other work demonstrates mpMRI detection varies 
across broad patterns of poorly formed, cribriform and fused 
architectures, and lesions containing cribriform architecture are 
poorly identified (9). However, the influence of all individual 
prostate cancer architectures on imaging signal, particularly 
those described by McKenney et al., have yet to be described. 
Therefore, the objective of this study is to assess the spatial 
distribution of prostate cancer architecture and their influence 
on imaging characteristics in a cohort of prostate cancer 
patients undergoing mpMRI prior to radical prostatectomy.

Methods

Patient population

This retrospective pilot study included 15 prostate 

cancer patients who underwent mpMRI prior to radical 
prostatectomy between 2009 and 2014. This population 
represents a subset of patients included in prior studies 
evaluating correlation of tissue characteristics on digital 
pathology and mpMRI imaging (10). Patients included in 
this study underwent further pathologic assessment for 
detailed characterization of disease morphology. This study 
is compliant with local IRB and HIPAA guidelines.

mpMRI acquisition and interpretation

MR images were acquired at 3-Tesla (Achieva 3.0T-TX, 
Phillips Healthcare, Best, Netherlands) using a combination 
of the anterior half of a 32-channel cardiac SENSE coil 
(InVivo, Gainesville, FL, USA) and an endorectal coil 
(BPX-30, Medrad, Pittsburgh, PA, USA) filled with 
45 mL perfluorocarbon-based fluid (Fluorinert, 3M, 
Maplewood, MN, USA) or a 32-channel cardiac SENSE 
coil (InVivo, Gainesville, FL, USA). Briefly, the imaging 
protocol includes T2W (axial, coronal, sagittal), diffusion-
weighted imaging (DWI) for derivation of ADC using a 
mono-exponential decay model, and dynamic contrast-
enhanced (DCE) MRI. Full acquisition parameters for 
scans obtained with coil and without coil are provided in 
Table S1. Following clinical evaluation, whole prostate and 
transition zone regions were annotated by a single expert 
genitourinary radiologist with >10 years’ experience.

Pathology specimen processing and digitization

Highly standardized imaging and imaging-pathology 
correlation was made possible with a 3D-printed mold 
derived from radiologist annotations for precise sectioning 
of prostate specimen based on mpMRI imaging of each 
patient, ensuring that the tissue blocks correspond to the 
MR imaging sections (11). Following tissue fixation after 
surgical resection of the prostate, the tissue specimen was 
serially sectioned within the mold from apex to base at 6-mm 
intervals. Tissue blocks then underwent paraffin embedding, 
cutting and mounting on a glass slide for clinical assessment. 
Hematoxylin and eosin (H&E) slides of whole-mount 
specimens were digitized using a Zeiss AxioScan slide 
scanner at 20× magnification (pixel resolution 0.4972 μm).

Pathologic morphology interpretation and annotation

Morphological assessment of prostate cancer architecture 
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was performed by a single expert genitourinary pathologist 
with >15 years’ extensive experience in prostate cancer 
morphology, blinded to clinical imaging and information. 
Twenty-one distinct morphological patterns, based on 
the Canary architectural analysis, and their predictive 
value to risk of biochemical recurrence following radical 
prostatectomy previously defined in (4), were listed in 
Table 1. Briefly, these morphological patterns represent the 
spectrum of architectural patterns observed within prostate 
cancer histology, ranging from well-formed glands of 
varying sizes and crowding to complex cribriforming and 
sheets of individual cells without gland formation. Patterns 
were further sub-grouped by prognosis, as determined 
by correlation to outcome in original Canary data, into 
high (worse prognosis), intermediate (indeterminate/non-
independent prognosis), and low (favorable prognosis). All 
pattern definitions and prognosis groups are listed in Table 1.

Local annotations were mapped using a stylus touchscreen 
computer to encompass the architectural subtype and area 
of regions containing specific morphological features. Local 
regions of interest (ROIs) were automatically derived from 
the manual annotations by fitting a region encompassing the 
annotation area and assigned to single morphological class 
using the bio-formats package for MATLAB (12,13). For 
each local ROI, the extent (mask region), center-of-mass, 
morphological class, and foci assignment were recorded at a 
32:1 ratio from 20× resolution digital image. In addition to 
morphological annotations, Gleason grading was performed 
within each focus visualized on individual slices to assess 
the association of Gleason scoring with local morphology 
diversity and distribution (Figure 1). ROIs mapping the 
extent of tumor foci, i.e., mapping tumor boundaries, were 
created using a semi-automated tool at the 4× resolution 
level (14).

Table 1 Morphological growth patterns of prostate cancer and associated prognostic risk

Pattern Risk Description

AY1 High Gland forming carcinoma with stromal response

AY2 High Gland forming carcinoma with associated stromal response

CY High Large caliber cribriform carcinoma with irregular, angulated contours

CZ High Complex anastomosing cords of epithelium

DY High Large caliber glands with well-developed, complex intraluminal tufting and papillae

DZ High Single individual cells

EY High Cribriform growth with associated comedonecrosis

EX High Expansile cribriform growth

EZ High Solid sheets of epithelium without lumen formation

DX – Small to medium caliber glands with smooth rounded contours and intraluminal cribriforming

BX – Medium to large caliber glands without intraluminal mucin

CX – Small glands with glomerulations

BW – Medium to large caliber glands with intraluminal mucin

CW – Glands with collagenous micronodules, simple epithelial complexity

DW – Glands with collagenous micronodules, more than simple epithelial complexity

EW – Irregular nests of epithelium without lumina or complex cribriform

BZ – Small irregular aggregates of epithelium without lumina

AZ – Glands of varying caliber with admixed foci showing epithelial aggregates without lumina

AX Low Crowded glands of any caliber

AW Low Medium to large caliber glands

BY Low Medium to large caliber glands with branching
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Spatial analysis of morphological growth patterns

Several spatial analyses were performed to assess local and 
regional diversity of morphological features, including 
density mapping, spatial clustering, and spatial diversity 
representation.

A relative density map of morphological pattern 
distribution was derived from extent of all local ROIs for 
each foci on whole-mount slides using spatstat package 
in R (version 1.56-1). These density maps represent the 

points per unit area of observed spatial patterns. All points 
(pixels) contained within local ROIs were considered for 
density mapping. Density maps were calculated using an 
isotropic Gaussian smoothing filter with σ=17 to reflect 
differences in spatial sampling between MR (0.273 mm) and 
digital annotations at high resolution (15.94 μm). Density 
maps were created for two separate purposes (I) all patterns 
present within individual foci and (II) morphological classes 
within individual foci.

Affinity propagation clustering (APC) was used to 

Figure 1 Workflow of annotation extraction, spatial clustering, and relative density estimation. (A) Representative example slide of single 
foci (Gleason 3+4) with 278 individual annotations representing 9 distinct morphological patterns, with a region encompassing one 
annotation shown for pattern AX; (B) APC result with q=0 for intra-foci clustering of morphology spatial distribution and resultant cluster 
boundaries to fully encompass annotation regions; (C) relative density of all patterns, with representative pattern-specific density maps 
shown for the most prevalent patterns (AZ, BZ, DX). APC, affinity propagation clustering.
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identify geospatial clusters of local morphology ROIs within 
individual foci using the apcluster library in R (version 1.4.7). 
For this, center-of-mass locations of each local ROI were 
used to ensure even representation of individual annotations. 
Sensitivity of cluster assignment was tested by varying the q 
parameter (q=0, 0.1, and 0.5), where smaller values of q tend 
to produce fewer number of clusters. Cluster assignment for 
each local ROI was recorded. Following APC assignment, 
cluster ROI boundaries were determined by fitting a 
boundary to encompass all member morphological ROIs.

Diversity metrics were assessing presence and abundance 
of morphological class representation across different regions 
(patient, foci, and APC clusters) using vegan library in R. 
This includes the Richness (number of unique classes present 
in region), Shannon’s diversity index (probability of predicting 
morphology class given randomly selected annotation from 
region), Evenness (relative abundance of morphological 
classes within a region), and Simpson’s diversity index 
(probability that two randomly selected annotations are of 
the same morphological class). Full derivation and equations 
of diversity metrics are available in Supplemental file. 
Beta diversity was calculated to characterize variation in 
morphological class diversity in communities across a region. 
This was tested in two community-region pairs, Gleason 
grade vs. foci and foci vs. APC clusters, to evaluate inter- and 
intra-foci diversity, respectively.

Digital pathology-mpMRI registration and analysis

The use of an endorectal coil during mpMRI acquisition 
and multiple steps within tissue preparation, including 
fixation and slicing, requires the use of slice-based 
registration. Prior to registration, whole prostate 
annotations on MR were used to crop T2W imaging 
to the boundary extent of the prostate gland (Figure 2). 
Digital slide images of 4× resolution were resampled to 
the resolution and orientation of the prostate gland on 
T2W imaging. A control point co-registration pattern was 
implemented in MATLAB utilizing similar techniques to 
previously published prostate radio-pathomic work (15,16). 
In this work, 50–100 control points were selected for each 
prostate slide and corresponding MR T2W slice. Control 
points corresponding to external ink mapping, peripheral-
transition zone boundaries, and urethra. When available, 
additional points corresponding to large intraprostatic cysts, 
benign hyperplastic nodules, or ejaculatory ducts were used. 
All control points were evaluated jointly by an imaging 
scientist and pathology fellow with >2 years experience in 

prostate imaging and specimen evaluation. Registration 
transformations were estimated using local weighted 
mean transformation from fitgeotrans function (MATLAB 
version 2018b), using weighting from 20–35 neighboring 
points depending on the total number of control points per 
slice. Following registration, all resampling and registration 
transformations were applied to ROIs of individual 
morphological annotations and relative density maps.

Quantitative diffusion characteristics were compared to 
morphological density and diversity across multiple levels. 
Two region-based analyses were evaluated considering 
individual foci (tumor) regions and individual cluster (APC 
q=0) regions. For all levels of ROI and cluster-based analysis, 
minimum ADC (ADCmin) was reported. Finally, diversity 
characteristics specific to each region-based assessment 
were correlated to ADC metrics. Voxel-based analysis 
was completed within all voxels contained within tumor 
foci to evaluate the relationship between ADC and tumor 
morphology. For each voxel, the presence and density of any 
morphology annotation (binary) was considered, as well as 
the presence and density of all individual morphologies.

Statistical analysis

Prevalence of all architectural morphologies present in 
patient samples and diversity metrics (Shannon, Simpson, 
Evenness, Richness) across corresponding foci-level Gleason 
Grades were summarized using descriptive statistics. Inter- 
and intra-foci diversity were reported using descriptive 
statistics. Foci- and cluster-level correlation between ADC 
metrics and diversity metrics were evaluated using Spearman 
Correlation Coefficient. All 95% confidence intervals (CIs) 
were determined based on 2,000 bootstrap samples at the 
patient level to account for intra-patient, inter-foci and inter-
cluster correlation. Presence of high-risk morphologies vs. 
ADC metrics were evaluated across all foci using Wilcoxon 
Rank Sum test for clustered data using Rosner-Lynne-Glee 
method. Association of morphology pattern and density with 
ADC within all voxels of tumor foci was evaluated using a 
linear mixed effects model with morphology pattern and 
density as fixed effects and nested random effects to account 
for intra-patient, intra-level, intra-ROI correlation.

Results

Population summary

In total, 52 block slides from 15 patients, median PSA 7.33 
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(2.96–13.02) ng/mL and median age 64 [52–70] years, 
were included this study. Spatial analysis of morphology 
distribution included 4,550 annotations from 111 distinct 
slide-level foci. Each slide-level foci received an individual 
Gleason score, ranging from 3+3 (N=63), 3+4 (N=37), 4+3 
(N=9), and 4+4 (N=2). The prevalence of morphological 
patterns observed in patients, slides, and tumor foci are 
summarized in Table 2. As expected, the proportion of high-
risk morphological patterns contained within individual 
foci increased with increasing Gleason grade while the 
proportion of low-risk patterns decreased (Figure S1). For 
statistical considerations, Gleason 4+3 and 4+4 tumors were 
grouped for subsequent analysis.

Morphological diversity

Qualitatively, richness, number of unique morphological 
patterns present within an individual foci, increased 

with increasing Gleason grade (Table 3). Similarly, 
Simpson’s diversity index, the probability of two randomly 
selected annotations from a single foci having the same 
morphology, decreased according to Gleason grading. 
Within these foci, an imbalanced representation of 
morphological classes were noted, with Shannon’s diversity 
index increasing with higher Gleason grades. Evenness 
did not demonstrate differences across different Gleason 
grades.

From the 111 foci, APC clustering revealed 201, 260, and 
445 unique clusters for q=0, q=0.1, and q=0.5, respectively. 
Following prior works, q=0 was selected for further analysis 
as it tends towards the fewest number of sub-clusters. For 
the final analysis using q=0, the median number of clusters 
per foci were 2 (range, 1–12) with median community 
size (i.e., number of morphological ROIs per cluster) of 
13 (range, 1–120). Summary statistics for q=0.1 and q=0.5 
clusters are provided in Table S2.

Figure 2 Workflow of pathology-radiology registration. (A) Representative example slide with two foci (Gleason 3+4, Gleason 3+3) and 
corresponding T2 imaging level, with whole prostate segmentation map overlayed in red; (B) control point selection demonstrating points 
mapped to prostate boundary, transition zone boundary, and three right-sided intra-prostatic cysts visible on both imaging and gross 
pathology; (C) final registration result.
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When evaluating inter-foci diversity, beta diversity 
estimates were modestly higher in Gleason 3+3 tumors 
as compared to Gleason 3+4 and 4+3/4+4 foci (Table 4), 
indicating that the diversity was disproportionate across 
foci-level ROIs of 3+3 grade. Conversely, alpha diversity 
was significantly higher in Gleason 4+3/4+4 foci, indicating 

that the local diversity dominates across foci-level ROIs 
for this grade. However, evaluating intra-foci diversity 
demonstrates that beta diversity is higher within APC 
clusters from higher-grade tumors, indicating regional 
existence of the morphological heterogeneity within foci of 
higher Gleason grades. This is reflected in the tendency for 

Table 2 Prevalence of morphological patterns within study population, stratified by patient, slide, and foci-level assessment

Risk Pattern
Prevalence

Patient (N=15), % Slide (N=52), % Foci (N=111), %

High AY1 13.3 5.8 2.7

AY2 Not observed Not observed Not observed

CY 33.3 13.5 6.3

CZ 20.0 13.5 6.3

DY 53.3 25.0 12.6

DZ 13.3 5.8 2.7

EY 6.7 1.9 0.9

EX 46.7 19.2 9.0

EZ 6.7 1.9 0.9

Intermediate DX 66.7 53.8 32.4

BX 66.7 30.8 18.0

CX 66.7 36.5 18.9

BW Not observed Not observed Not observed

CW 13.3 3.8 1.8

DW Not observed Not observed Not observed

EW Not observed Not observed Not observed

BZ 40.0 23.1 13.5

AZ 100.0 90.4 71.2

Low AX 100.0 90.4 86.5

AW 73.3 36.5 19.8

BY 46.7 26.9 12.6

Table 3 Morphological diversity metrics stratified by Gleason grade, reported as median and range observed within all tumor foci

Gleason grade N samples
Richness Shannon Simpson Evenness

Median Range Median Range Median Range Median Range

3+3 63 2 1–6 0.41 0–1.27 0.78 0–0.36 0.80 0.37–1.00

3+4 37 4 1–9 0.96 0–1.69 0.45 0–0.23 0.75 0.26–0.97

4+3/4+4 11 7 3–11 1.55 0.79–1.85 0.26 0.19–0.51 0.83 0.65–0.91
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high-risk patterns tended to cluster together, with higher 
representation when present within cluster compared 
to representation within foci (Table S3). The same was 
observed for low-risk patterns.

Correlation to mpMRI

Of 52 total block slides, 46 were successfully registered 
to mpMRI with remaining 6 slides removed due to 
tissue processing artifacts that resulted in poor landmark 
identification for control point mapping. A representative 
example of foci-level and cluster-level regions mapped 
to mpMRI for quantification is shown in Figure 3. 
ADC metrics within each tumor foci demonstrated an 
inverse relationship to Gleason grade for each focus 
and was similarly decreased in foci containing high-risk 

morphological patterns (Figure 4), though not significant 
(P=0.2). ADC was further sub-stratified when considering 
intra-foci clusters containing high-risk patterns (median 
ADCmin 829 when high-risk present vs. median ADCmin 
1,217.5 when high-risk absent, P=0.0013). Correlation 
of foci-level diversity with ADC metrics were consistent 
between foci-level and cluster-level metrics, with Shannon 
index most notably showing a moderate inverse correlation 
with diffusion characteristics (Table 5).

To further understand the influence of morphological 
patterns and diffusion characteristics, mixed effects 
model of voxel-based ADC values across morphology 
presence and density was assessed. Voxels within tumor 
foci that contained annotations demonstrated significantly 
decreased ADC, which further significantly decreased 
with increasing density of any morphological pattern 

Table 4 Inter- vs. intra-foci diversity stratified by Gleason grade. For inter-foci diversity, 95% CIs reported from 2,000 bootstrap samples at the 
patient-level

ROI-based 
Gleason grade

Inter-foci diversity Intra-foci diversity

β (95% CI), ROI vs. Gleason grade 𝛼 (95% CI), local: ROI Median β (range), cluster vs. ROI Median 𝛼 (range), local: cluster

3+3 3.38 (1.9–3.7) 1.83 (1.6–2.2) 0 (0–0.71) 2.00 (1–4.6)

3+4 2.03 (01.1–2.7) 4.3 (3.3–5.6) 0.33 (0–0.71) 3.00 (2.5–6.3)

4+3/4+4 1.29 (0.4–1.4) 7.00 (5.3–8.5) 0.4 (0–1.14) 5.00 (2.5–7.33)

CI, confidence interval; ROIs, regions of interest.

Figure 3 Example of large anterior lesion demonstrating diffusion restriction on mpMRI with heterogeneous morphology density spread 
over 7 intra-foci clusters. For quantification, boundary regions of the foci (red) and individual clusters (blue) were mapped to ADC. mpMRI, 
multiparametric MRI; ADC, apparent diffusion coefficient; ROIs, regions of interest.
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(Table S4). Furthermore, this negative relationship was 
significantly dependent on the presence and density 
of specific morphological patterns within each voxel 
(ANOVA, chi-squared coefficient 2,332.6, DF =32, 
P<2.2×10–16). The influence of density and presence of 
individual morphological patterns on ADC within tumor 
foci is summarized in Table 6. In total, the presence of 
an individual morphology pattern was associated with 
significantly lower ADC for 8/17 patterns observed in 
this patient population (AW, AZ, BZ, CX, DX, AY1, 
CY, DZ). Furthermore, increasing density of individual 
morphologies demonstrated an additional negative 
relationship (decrease) in ADC for 6/17 patterns (AX, 
AZ, BZ, AY1, CY, DY) with modest, yet insignificant, 
negative association in Dx. Half of high-risk patterns 
(AY1, CY, DY, DZ) incurred a negative relationship with 
ADC either by presence or density within all voxels of 
tumor foci, reflecting prior ROI- and foci-level analysis. 

Specifically within the presence of high-risk cribriforming 
patterns, only presence of large caliber cribriform 
growth with irregularly infiltrative patterns (CY) show an 
enhanced negative relationship with ADC with increasing 
density. This was similar to observed behavior of glands 
forming carcinoma with stromal response (AY1), which 
demonstrated an increasingly negative relationship  
with ADC.

Discussion

Prostate cancer is observed as a spectrum of histological 
features at histopathological assessment. Prior work 
by McKenney et al. was able to fully characterize the 
spectrum of observed histology architectures within 
prostate cancer and validated their prognostic relevance 
with regard to time to recurrence following radical 
prostatectomy (Canary architectural analysis) (4). In this 
study, we aimed to further study the spatial relationship 
and diversity of architectural patterns with respect to 
quantitative characteristics on clinical imaging at tumor 
foci, intra-foci, and voxel-level analyses. Within this 
patient cohort, we find regional and local diversity of 
morphology influences diffusion characteristics of prostate 
cancer, with both density and morphologic appearance 
affecting signal intensity.

By assessing the diversity across the entire spectrum 
of observed architectural patterns within a whole-mount 
specimen, we have quantitatively characterized the degree 
to which morphologic diversity is present within foci 
of similar pathologic grades. In a quantitative study by 
Iczkowski et al., the presence of cribriform formation 
within tumor volumes was associated with worse outcome, 

Figure 4 Stratification of ADCmin for foci-level Gleason grade (A), foci-level presence of high-risk patterns (B), and cluster-level presence of 
high-risk patterns (C). ADCmin, minimum apparent diffusion coefficient.

Table 5 Spearman correlation coefficient of ADCmin values with 
diversity metrics, stratified for foci-level ROIs and cluster-level 
ROIs. 95% CIs reported from 2,000 bootstrap samples at the 
patient-level

Diversity metric
Foci Cluster

𝜌 (95% CI) 𝜌 (95% CI)

Richness –0.36 (–0.21, –0.50) –0.37 (–0.31, –0.49)

Shannon –0.43 (–0.21, –0.62) –0.42 (–0.34, 0.58)

Simpson –0.39 (–0.31, –0.53) –0.37 (–0.31, –0.53)

Evenness 0.30 (0.1, 0.45) 0.21 (0.04, 0.37)

ADCmin, minimum apparent diffusion coefficient; CI, confidence 
interval; ROIs, regions of interest.
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Table 6 Results of linear mixed effects model demonstrating voxel-based effect estimates of individual morphological presence (categorical) and 
density (continuous) on ADC measurements within distinct tumor foci, calculated as ADC ~ (1|patient/foci) + ∑[pattern (subscript) i + density 
(subscript) i]. β estimates can be interpreted as factor change in ADC from the intercept value fit from all voxels contained within tumor foci

Risk Pattern Property β estimate (95% CI) t statistic P value

– – (Intercept) 1,550.7 (1,447.6, 1,653.7) – –

Low AX Presence 11.7 (5.9, 17.6) 3.95 7.68×10–5

Density –236.7 (–260.2, –213.1) –19.67 <2×10–16

AW Presence –71.3 (–84.9, –57.6) –10.23 <2×10–16

Density 72.4 (–5.3, 150.1) 1.83 0.068

BY Presence –12.1 (–29.3, 5.1) –1.38 0.167

Density 37.1 (–229.8, 304.0) 0.27 0.785

Intermediate AZ Presence –37.4 (–43.6, –31.2) –11.85 <2×10–16

Density –131.4 (–161.2, –101.5) –8.62 <2×10–16

BX Presence 45.1 (32.0, 58.2) 6.74 1.61×10–11

Density 625.1 (357.9, 892.3) 4.59 4.54×10–6

BZ Presence –111.3 (–124.7, –97.9) –16.28 <2×10–16

Density –175.9 (–319.2, –32.6) –2.41 0.016

CW Presence 12.0 (–80.2, 104.1) 0.26 0.799

Density 290.1 (–1917.9, 2498.0) 0.26 0.797

CX Presence –79.9 (–97.1, –62.6) –9.08 <2×10–16

Density 686.4 (245.4, 1127.4) 3.05 0.002

DX Presence –15.0 (–24.4, –5.6) –3.14 0.002

Density –113.8 (–236.0, 8.5) –1.82 0.068

High AY1 Presence –205.1 (–241.4, –168.8) –11.08 <2×10–16

Density –323 (–490.4, –155.7) –3.78 1.55×10–4

CY Presence –89.2 (–109.3, –69.1) –8.71 <2×10–16

Density –938.3 (–1014.1, –862.4) –24.25 <2×10–16

CZ Presence 48.3 (28.6, 68.0) 4.82 1.46×10–6

Density 85.3 (–39.2, 209.7) 1.34 0.179

DY Presence 30.0 (15.6, 44.3) 4.09 4.25×10–5

Density –78.5 (–153.5, –3.5) –2.05 0.04

DZ Presence –59.0 (–93.6, –24.3) –3.33 8.58×10–4

Density –18.0 (–351.8, 315.8) –0.11 0.916

EX Presence 2.6 (–16.2, 21.5) 0.27 0.786

Density 487.3 (347.6, 627.1) 6.84 8.25×10–12

EY Presence 191.8 (139.4, 244.2) 7.18 7.16×10–13

Density –16.8 (–410.8, 377.1) –0.08 0.933

EZ Presence –39.8 (–107.4, 27.9) –1.15 0.25

Density 27.1 (–562.1, 616.3) 0.09 0.928

ADC, apparent diffusion coefficient; CI, confidence interval.
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which effect was greatly enhanced in 17 patients who 
demonstrated cribriform architecture accounting for 
at least one third of the tumor volume (3). Regionally 
the number of represented morphologies (Richness) 
observed in our study increased in higher-grade tumors, 
but this was observed with the tendency for a dominant 
pattern (Shannon diversity) to be present, in agreement 
with Iczkowski et al.’s localized findings. Furthermore, 
we additionally demonstrate the spatial diversity of these 
growth patterns varies more regionally within a tumor 
than it does focally, as determined by cluster-based 
analysis.

In this  s tudy we have observed morphological 
heterogeneity occurring at varying scales within and across 
tumors. Correlation of tumor grade and morphology 
with medical imaging can be summarized as either 
regional (at the level of the entire tumor volume) vs. 
quantitative characteristics at local scales. The level of 
correlation also differs by the level of detail defined on 
pathology including overall grade, individual presence of 
morphology, or microenvironmental features. Voxel-based 
spatial correspondence between digital pathology and 
mpMRI for quantitative intra-lesion assessment of disease 
heterogeneity requires accurate registration. Within the 
relatively sparse literature, previously published methods 
lack critical involvement of a pathologist in detailing 
intra-prostatic points of spatial co-localization (16,17). 
We attempted to control for variation due to registration 
inconsistencies by highly detailed control point selection 
with a pathologist and use of previously published 
methodology (16).

For region-based correlation of MRI to pathology, 
moderate relationship between prostate cancer grade 
and MRI characteristics has been well-established in the 
literature (7,18). Beyond overall grade, prior studies have 
further indicated that specific morphological growth 
architectures can influence MRI characteristics. Work 
by Truong et al. suggested that lesions with cribriform 
architecture are more likely to be missed on prospective 
mpMRI assessment (9,19). McGarry et al. similarly reported 
a complex relationship between morphology and ADC 
characteristics, illustrating Gleason 4 cribriform areas have 
a moderate, unstable inverse relationship with diffusion 
restriction. While our analysis was limited to voxels within 
tumor foci, the methodology of our study allows us to 
additionally bridge qualitative and quantitative works by 
assessing the influence of granular architectures on local 
imaging features. Our study is concordant with prior 

works in that cribriform patterns demonstrate a complex 
modulation of ADC, with some establishing a robust 
inverse relationship (Cy, Dx) when present that can further 
enhanced with increasing density. However, others (Ex, Ey) 
demonstrate a positive relationship to ADC, potentially in 
support of Truong et al. findings.

Kwak et al.  (10,17) and Hectors et al.  (20) have 
demonstrated the cellular components of histology 
strongly correlate to diffusion characteristics. Several large 
studies have demonstrated correlation of ADC values with 
Gleason grade. Langer et al. have demonstrated differential 
diffusion characteristics in “sparse” compared to “dense” 
tumors, based on semi-quantitative estimation by expert 
pathologists assessing the dominant composition of tumor 
regions by cancer cells vs. intermixed normal prostate  
tissue (21). Dense tissues demonstrated significantly 
restricted diffusion characteristics compared to sparse 
and normal tissues, the latter two of which did not 
show significant differences between each other. These 
studies all indicate that tissue composition and density 
within tumor regions may influence perceivable imaging 
characteristics. We have investigated this relationship 
with higher specificity to prognostic significance by 
assessing the influence of different structural patterns, 
where we observed both the presence and density of each 
architecture modulates the correlation with imaging 
signal. This is particularly noted in cribriform patterns. 
While we only assessed diffusion characteristics in 
this small study, ADC is a known correlate of tissue 
microenvironment related to glandular structure (8).  
Further assessment of the differential influence on presence 
and density of morphology in larger patient cohorts is 
warranted to understand the biophysical relationship 
between architectural morphology and its influence on 
imaging.

The heterogeneity of prostate cancer patterns (and thus 
Gleason grade) across tumors is well known, particularly in 
tumors with higher-grade (1). This is inherently due to the 
nature of Gleason scoring, which reports the two highest 
grades observed within a single foci and where each grade 
encompasses a variety of morphologic patterns (2). The 
prevalence of all morphologies evaluated in this study were 
previously reported within a larger patient population (4).  
This study demonstrates higher frequency of pattern 
presence, indicating a higher-grade heterogeneity within 
patients, likely due to the inclusion of the entire tumor 
field in review. This reflects the subsampling of disease 
heterogeneity contained within tissue microarrays, which 
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is more concordant with the foci-level representation 
observed in this  study.  This work is  addit ionally 
concordant with prior works by Aihara et al. and Ruijter et 
al., which demonstrate substantial grade heterogeneity in 
radical proctectomy specimens that is highly correlated to 
tumor volume (1,22).

Our study has several limitations. Control-points for 
each patient varied for each pathologic slide depending 
on the available paired 2D structural information between 
MRI slices and pathology. Methodology that uses 3D 
structural information may improve our technique. We 
attempted to control for gross registration errors by 
detailed analysis and pathologist review. Additionally, 
the density-based correlation analysis was performed 
using an isotropic Gaussian smoothing filter to reflect 
differences in spatial sampling between MR and pathology. 
While grading of pathologic lesions was carried out on 
individual foci contained within each slide (N=111), only 
15 patients were used in this study. The subjectivity in 
pathologic interpretation and segmentation limits the 
generalization of these methods to larger cohorts, as all 
individual morphologic patterns characterized in this study 
are not routinely identified in clinical grading. However, 
the results of this study do indicate that specific patterns, 
particularly differential cribriform architecture should be 
evaluated in larger patient cohorts due to their influence 
on patient prognosis, intra-tumoral diversity, and imaging 
characteristics.

In conclusion, architectural features within prostate 
cancer foci influence ADC characteristics of MRI, with 
more complex tumors having lower ADC values regulated 
by presence and density of specific morphologies. Further 
exploration of these architectural histopathology features’ 
correlation with in vivo imaging in larger scaled studies can 
enable better understanding of tumor biology.
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Supplementary

Spatial diversity metrics
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Where S Eq. [1] is the set containing N total observations (o) of R patterns observed in region.
R = number of unique classes observed in region.
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Where pj Eq. [2] represents the proportion of observations belonging to a specified class pattern (j) of all observed classes (R).
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Shannon’s diversity index (H, Eq. [3]): probably of predicting morphology class given randomly selected observation from 
region.
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Simpson’s diversity index (λ, Eq. [4]): probably that two randomly selected annotations are of the same morphological class.
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Evenness (EH, Eq. [5]): relative abundance of morphological classes within a region.
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Alpha diversity (α, Eq. [6]): local mean species diversity within sites.
Where N = total number of distinct classes in region, S = total number of distinct classes in population, p = proportional 

abundance of each class weighted by proportion of data, and q taken to be 0 in this manuscript.
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Gamma diversity: total species diversity.
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Beta diversity: differential diversity across local and regional sites.



Table S1 Multiparametric prostate MR imaging sequence parameters at 3T

Parameters
with endorectal coil*, N=12 without endorectal coilǂ, N=3

T2 weighted DWI DCE MR imaging T2 weighted DWI DCE MR imaging

Field of view (mm) 140×140 140×140 262×262 180×180 140×140 262×262

Acquisition matrix 304×234 112×109 188×96 320×216 80×79 176×66

Repetition time (ms) 4,434 4,986 3.7 3,686 4,766 3.7

Echo time (ms) 120 54 2.3 120 45 2.3

Flip angle (degrees) 90 90 8.5 90 90 8.5

Section thickness (mm), 
no gaps

3 3 3 3 2.73 3

Image reconstruction 
matrix (pixels)

512×512 256×256 256×256 512×512 128×128 256×256

Reconstruction voxel 
imaging resolution  
(mm/pixel)

0.27×0.27×3.00 0.55×0.55×2.73 1.02×1.02×3.00 0.35×0.35×3.00 1.09×1.09×2.73 1.02×1.02×3.00

Time for acquisition 
(min:s)

2:48 4:54 5:16 4:48 4:54 5:16

*, With endorectal coil: ADC calculated from five evenly-spaced b values (0–750 s/mm2); ǂ, without endorectal coil: ADC calculated from 
three evenly-spaced b values (0–600 s/mm2) were used. For both protocols: DCE images obtained at 5.6 s intervals before, during, and 
after a single dose of gadopentetate dimeglumine 0.1 mmol/kg at 3 mL/s. DWI, diffusion-weighted imaging; DCE, dynamic contrast-
enhanced; ADC, apparent diffusion coefficient.

Figure S1 Proportion of high-risk patterns (left) and low-risk patterns (right) from all patterns identified within single foci, stratified by 
Gleason grade.
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Table S2 Summary statistics of cluster analysis, summarizing the number of clusters/foci and the number of individual morphology ROIs per 
cluster

Cluster similarity  
coefficient (q)

Number of clusters/foci Number of ROIs/clusters

Median range Median Range

q=0 2 1–7 13 1–120

q=0.1 2 1–10 11 1–74

q=0.5 3 1–18 7 1–50

ROIs, regions of interest.

Table S3 Summary statistics of cluster analysis, summarizing the proportion of high-risk pattern ROIs within regions when present, assessed per 
foci and the maximum proportion observed within clusters of each foci

Morphology representation
Foci Cluster

Median Range Median Range

Proportion of high-risk when present (N=20 foci) 0.14 0.004–0.95 0.24 0.01–1

Proportion of low-risk when present (N=96 foci) 0.74 0.007–1 0.83 0.025–1

ROIs, regions of interest.

Table S4 Results of linear mixed effects model demonstrating voxel-based effect estimates of any morphological presence (categorical) and 
density (continuous, from all patterns) on ADC measurements within distinct tumor foci, calculated as ADC ~(1|patient/foci) + present + density. 
β estimates can be interpreted as factor change in ADC from the intercept value fit from all voxels contained within tumor foci

Property β estimate (95% CI) t statistic P value

(Intercept) 1,550.0 (1,445.6, 1,654.4)  – –

Present (any pattern) –13.4 (–18.8, –8.0) –4.86 1.20×10–6

Density (all patterns) –246.6 (–263.2, –230.0) –29.11 <2×10–16

ADC, apparent diffusion coefficient; CI, confidence interval.


