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Introduction

Since the development of radiofrequency (RF) coil array (1),  
parallel imaging has been clinically used to accelerate data 
acquisition for reduced imaging time or improved temporal/
spatial resolution (2-6) in magnetic resonance imaging 
(MRI). The mechanism underlying this technique is that 
multi-channel coil sensitivity provides spatial encoding 
information that can be used to reconstruct a full field of 
view (FOV) image from data sampled below the Nyquist 
limit. In principle, a coil array with more elements gives 
better spatial encoding capability, thereby allowing for a 
higher undersampling factor in parallel imaging. With the 
advancement of high channel count coil array (7-10), parallel 
imaging with an undersampling factor of four or higher has 
been demonstrated in research studies (11-22). In clinical 
diagnosis and treatment, however, most clinical MRI scans 
for patient examination are accelerated by a factor of only two 
or even lower. This implies that currently available parallel 
imaging techniques for clinical use cannot take full advantage 

of coil array encoding capability, indicating the needs for 
a quantitative approach to optimizing parallel imaging for 
clinical applications. Indeed, although recent years have seen 
the development of a number of parallel imaging techniques 
(11-13,15,19,23-29), their clinical imaging performance has 
not been extensively investigated. Today clinical evaluation of 
parallel imaging is still an open issue.

To evaluate and optimize parallel imaging, a clear 
definition of clinical imaging quality is needed. Unfortunately, 
as clinical applications of MRI are diversified, image quality 
has a number of widely different interpretations depending 
on what information is needed for clinical diagnosis or 
treatment. For example, cancer imaging requires high 
fidelity in image contrast for tumor diagnosis (30-32). In 
cardiac imaging, as imaging artifacts (e.g., from motion) may 
considerably compromise cardiovascular information (33,34), 
lower artifacts means better image quality. In spectroscopy, 
signal to noise ratio (SNR) is a primary factor that determines 
image quality (35,36). Due to this diversity, it is difficult 
to use the same criterions for imaging quality evaluation 
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in every MRI application, suggesting that optimal parallel 
imaging may be application dependent. 

Another issue in parallel imaging evaluation is the 
complexity of an image reconstruction error. It has been 
known that parallel imaging reconstruction contains 
multiple error components. For example, artifacts may be 
caused by insufficient spatial encoding of coil sensitivity, and 
noise may be amplified in reconstruction. To date, the only 
error component that has been clearly defined is “geometric 
factor” (g-factor) that quantifies noise amplification. Since 
the definition of this concept (3), it has become a standard 
to assess parallel imaging (7-9,11,37). It is of no doubt 
that noise suppression is important to parallel imaging. 
However, as noise is not always crucial to clinical imaging, 
other error components, such as aliasing artifacts, must be 
taken into account. In addition, it has been noticed that the 
suppression of an error component in reconstruction may 
lead to the increase of other error components, implying 
there exist tradeoffs between error components (38). No 
further effort has been made by far to investigate how these 
tradeoffs may affect parallel imaging.

The presented work provides an engineering approach 
to evaluating and optimizing parallel imaging for a clinical 
requirement that may be quantified by an error function. 
Here parallel imaging reconstruction is considered as a 
linear system. A new concept, “modulation domain”, is 
introduced for the development of a linear k-space parallel 
imaging error model. By representing undersampled 
data in modulation domain, reconstruction error may be 
decomposed into multiple error components that can be 
grouped into three different categories, which are called 
“image fidelity error”, “residue aliasing artifacts”, and 
“amplified noise” respectively in the presented work. It is 

experimentally found these error components have different 
image-space patterns that affect image quality in different 
fashions. Accordingly, an error function may be defined 
as the weighted summation of these error components. 
By utilizing a set of weightings that can characterize a 
clinical requirement, e.g., the best image fidelity in a region 
of clinical interest, parallel imaging may be evaluated 
and optimized quantitatively. This error decomposition 
model will enable application-oriented reconstruction for 
improved clinical performance of parallel imaging.

Materials and methods

In parallel imaging, data acquisition is accelerated by 
undersampling in the phase encoding direction. This 
requires a special reconstruction algorithm that combines 
undersampled data from multi-channel coil array and 
generates a full FOV image with minimal loss of clinical 
information. To optimize reconstruction, an error function 
is needed for quantifying the information loss. This section 
gives a theoretical description of the proposed error 
decomposition model for parallel imaging. Also presented 
is how to use this model to define an error function that 
can evaluate the loss of clinical information. For notation 
simplicity, only the mathematical equations for 2D parallel 
imaging are provided. With minor modification of notation, 
they may be used generically in 3D or dynamic imaging.

Parallel imaging error model in k-space

Parallel imaging reconstruction can be represented by the 
weighted summation of multi-channel images in image 
space (19,20,39). In principle, the weighting coefficients 
for every channel are dependent on multi-channel coil 
sensitivity (3,12,19), implying these coefficients in image 
space are as smooth as coil sensitivity. It is reasonable to use 
low-pass filters to model parallel imaging reconstruction 
in k-space. As shown in Figure 1, data filtering forms the 
primary signal path in k-space model. The other signal path 
is the noise amplification of reconstruction filters. This 
noise amplification is called “g-factor” in literature (3,37). 
The model output in Figure 1 is a reconstruction error 
defined as the difference between the reconstructed and 
target image data.

Modulation-domain representation of undersampled data

Uniformly undersampled data can be mathematically 

Figure 1 k-space error model for parallel imaging with an 
N-channel coil array. i, channel index; ui(k1,k2), reconstruction 
filter (low-pass) for ith channel; ai(k1,k2), undersampled data from 
ith channel; wi(k1,k2), noise from ith channel;  , reconstructed 
data; m(k1,k2), target image data; ew(k1,k2), amplified noise in 
reconstruction; er(k1,k2), total reconstruction error.
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represented as the modulation of fully-sampled data with a 
function fm(k1,k2) given by:
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where R is the reduction factor in undersampling, i.e., the 
acceleration factor, k1 is the phase encoding line index, and 
k2 is the frequency encoding data index. As the function 
fm(k1,k2) equals unity if k1 is a multiple of the reduction factor 
and zero otherwise, the modulation of full k-space data with 
this function keeps one of every R phase encoding lines and 
zero the others, resulting in the same partial k-space data 
as those collected in parallel imaging. This mathematical 
representation of undersampling operation is termed as 
“modulation-domain representation” in the presented work. 
As illustrated by Figure 2, a set of undersampled data may 
be decomposed into R different components in modulation 
domain: one is the original fully-sampled data and the 
others are the fully-sampled data modulated by a series of 
harmonics with normalized frequencies equal to n/R, n=1, 
2,…, R-1.

Error decomposition in parallel imaging reconstruction 
using modulation-domain representation

The k-space model in Figure 1 can be transformed to 
modulation domain by replacing the undersampled data 
with the modulation-domain representation in Figure 2. As 
summation and convolution are interchangeable in a linear 
system, a k-space model (Figure 3) equivalent to Figure 1 can 

be generated. In this model, the total reconstruction error 
er(k1,k2) is decomposed into multiple error components: 
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where “*” represent the convolution, {di(k1,k2)}i=1, 2, 
…, N are fully sampled data, {ui(k1,k2)}i=1, 2, …, N are 
reconstruction filters, m(k1,k2) represents the target 
image data, and {wi(k1,k2)}i=1, 2, …, N are the noise from 
data acquisition. In Eq. [3], it can be seen that the error 
components, {en(k1,k2)}n=0, 1, 2, …, R-1, are generated 
from the R modulation-domain components. They are 
accordingly called “modulation-domain error” in this work.

Modulation-domain error components can be grouped 
into two categories: the first category includes one error 
component, e0, which is the difference between the target 
image data and the sum of filtered fully-sampled data. 
This error component quantifies how well the original 
image information is preserved by reconstruction filters 
and is thus called “image fidelity error”. The other error 
components, e1, e1, …, eR-1, are in the second category. They 

Figure 2 Modulation-domain representation of uniformly-undersampled data in parallel imaging. di(k1,k2), fully-sampled data from ith 
channel; ai(k1,k2), undersampled data from ith channel. Inside the dashed-line rectangular box are the R different modulation-domain 
components, the summation of which gives the undersampled data.
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can be considered as the modulation of fully-sampled data 
with a series of different harmonics. By inverse Fourier 
transform, one can find that this modulation introduces 
image-space shifts equal to n/R of FOV (n=1, 2,…, R-1) in 
the phase encoding direction, indicating these modulated 
data generate aliasing. Reconstruction filters are designed 
to zero these aliasing and these error components represent 
residue aliasing after data filtering. They are accordingly 
called “residue aliasing artifacts” in this work.

Error function with weightings on error components

Parallel imaging techniques are typically designed to 
minimize the total reconstruction error {er in Eq. [2]}. 
This cannot address the needs of clinical imaging well for 
two reasons: first, a single quantity cannot cover a wide 
range of diversified clinical requirements; second, the total 
reconstruction error is the mix of multiple error components 
that affect image quality differently. As a result, most parallel 
imaging techniques give a sub-optimal solution to clinical 
applications. Using error decomposition, an error function 
may be defined as the weighted summation of different 
error components. This allows for quantification of different 
clinical requirements by choosing different combinations of 
weightings in the error function. By minimizing a defined 

error function, image reconstruction can be optimized for 
a clinical requirement, providing an “application-oriented” 
approach to parallel imaging. Apparently, there exist multiple 
ways to define this error function. For the purpose of concept 
demonstration, the presented work uses the following one:
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where α, β, and λ are the weighting coefficients for image 
fidelity error, residue aliasing artifacts and amplified 
noise. These weighting coefficients evaluate the relative 
significance of each error component in terms of a clinical 
requirement: a higher weighting on one error component 
means higher significance and leads to more suppression of 
that component, but less suppression of other components.

In image space, the error function defined by Eq. [4] 
becomes:
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where Ei’s (i=0, 1, 2, …, R-1) and Ew are inverse Fourier 
transforms of ei’s and ew in Eq. [3], and (r1, r2) represents 
the position indexes in image space. As inverse Fourier 
transform converts k-space convolution to image-space 
multiplication, image-space error function is pixel-wise. 

Figure 3 Error decomposition in modulation domain for parallel imaging reconstruction. The undersampled data are replaced by R 
modulation-domain components in Figure 2. The total reconstruction error er(k1,k2) is decomposed into multiple error components: {en(k1,k2)}
n=0, 1, 2, …, R-1 are modulation-domain errors and ew(k1,k2) is the amplified noise.
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Practical solution to reconstruction

The minimization of an error function in Eq. [4] or Eq. 
[5] requires the partial derivative of εss with respect to 
the conjugate of the reconstruction filters {ui(k1,k2)}i=1, 
2, …, N be equal to zero. This generates a set of linear 
equations: the unknowns are the reconstruction filters and 
the coefficients are dependent on the fully-sampled data 
{di(k1,k2)}i=1, 2, …, N, the target image data m(k1,k2), and 
the noise data {wi(k1,k2)}i=1, 2, …, N. Practically in a MRI 
scan, fully sampled data may use low-resolution calibration 
data acquired either from pre-scan or from auto-calibration 
signals (ACS). The target image data can be generated from 
the low-resolution data: they can be either the data from a 
single channel (channel by channel reconstruction), or the 
data for a composite image, e.g., sum of square image. The 
noise data can be estimated from a noise scan. The solution 
to reconstruction can be found either in k-space using Eq. [4] 
or in image space using Eq. [5].

Data acquisition

The human imaging experiments in this work were 
conducted in compliance with the regulations of the 
institution’s human ethics committee. The following 
experiments were used to demonstrate the presented 
approach:

(I) A set of axial brain images was collected on a 3.0 T  
GE scanner using T1 FLAIR sequence (FOV 
220×220 mm, matrix size 512×512, TR 3,060 ms, TE 
126 ms, flip angle 90°, slice thickness 5 mm, number 
of averages 1). The phase encoding direction was  
left-right. The coil was an 8-channel head coil.

(II) A set of cardiac function images was collected on 
a 1.5 T SIEMENS scanner using a cine true FISP 
sequence (FOV 340×255 mm, matrix size 384×150, 
TR 20.02 ms, TE 1.43 ms, flip angle 46°, slice 
thickness 6 mm, number of averages 1). The phase 
encoding direction was anterior-posterior. The coil 
was a 12-channel cardiac coil array.

(III) A set of breast images was collected on a 1.5 T  
SIEMENS scanner using a turbo spin-echo 
sequence (FOV 340×340 mm, matrix size 196×384, 
TR 750 ms, TE 1.6 ms, slice thickness 1 mm, 
number of averages 1). The phase encoding 
direction was left-right. The coil was a 12-channel 
breast coil.

(IV) A set of saggital cervical spine images was collected 

on a 3.0 T PHILIPS scanner using a T2-weighted 
multi-slice turbo spin-echo sequence (FOV 
160×248 mm, matrix size 200×248, TR 3,314 ms, 
TE 120 ms, slice thickness 3 mm, flip angle 90°, 
echo train length =16, interleaving factor 4). The 
phase encoding direction was superior-inferior. 
The coil was a 16-element neurovascular coil array.

Parallel imaging reconstruction

Data were fully sampled in all the experiments. Partial 
k-space data were generated by down-sampling in the phase 
encoding direction during post-processing. The presented 
reconstruction, if not specified, were generated with 24 ACS 
lines in calibration. The reconstruction algorithms were 
implemented in MATLAB® (MathWorks Inc., Natick, MA, 
USA). Channel by channel reconstruction was used. The 
images from fully-sampled data were used as references. 
In the presented results, an error image is the difference 
between the reconstructed and reference images. The Root 
of the Sum of Squares (RSS) error is defined as the square 
RSS of the error image. This error is normalized with 
respect to the reference image, i.e., RSS error represents 
the ratio (in percentage) of the RSS of the error image to 
that of the reference image.

Results

Image-space pattern of different error components

If an error function given by Eq. [4] or [5] is minimized, 
weighting coefficients, α, β, and λ, play a role of balancing 
different error components in the reconstructed image. 
In an extreme case, i.e., when a weighting coefficient is 
much smaller than the others, one error component will 
be dominant. Figure 4 shows the reconstruction results of 
three extreme cases using the brain imaging data with a 
reduction factor of 4. In the first case (Figure 4B) where 
image fidelity error is dominant, the reconstructed images 
give low artifacts and noise. However, by comparing the one 
dimensional (1D) intensity plots along the projection line 
(dashed line) in the enlarged center-region images, it can 
be seen that there exists considerable distortion in image 
contrast (image intensity differences in different tissues). 
In the second case (Figure 4C) where the residue aliasing 
artifacts are dominant, the error is concentrated in local 
regions. In the plot that shows 1D image intensity along 
the projection line, these artifacts manifest as sharp peaks 
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(marked by arrows). In the third case (Figure 4D) where 
the amplified noise is dominant, the reconstructed image 
shows high variation of image intensity. This noisy feature 
can be easily seen in the enlarged center-region image and 
the 1D intensity plot along the projection line. Typically, 
the amplified noise reduces SNR, resulting in loss of image 
details, as in the circled regions of Figure 4D. From the error 
images, it can be seen that the image-space patterns of three 
error components are different: image fidelity error is global 
and follows the original image patterns; residue aliasing 
artifacts are localized and can be destructive; amplified 
noise randomly spreads over the entire image space with a 
“patterned” power distribution (related to g-factor). These 
different patterns may introduce loss of different clinical 

information in reconstruction. Practically, three image-space 
patterns coexist and have tradeoffs, introducing complicated 
noise or artifact behaviors in image space. The following 
experimental work will be focused on whether these 
tradeoffs can be controlled by adjusting the weightings on 
different error components in an error function.

Dependence of RSS error on weighting coefficients in error 
function

RSS error is a “total reconstruction error” that has been the 
primary target to be minimized in most parallel imaging 
techniques (19-23,26). Figure 5 shows an experimental 
investigation on how RSS error changes with the weighting 

Figure 4 Reconstruction using Eq. [4] with weighting coefficients in three extreme cases (reduction factor R =4): (A) reference image; 
(B) reconstruction with small α(α=0.4, β=1.0, λ=1.0, RSS error =39.63%); (C) reconstruction with small β(α=1.0, β=0.5, λ=1.0, RSS  
error =30.13%); (D) reconstruction with small λ(α=1.0, β=1.0, λ=0.0, RSS error =21.48%). The top row shows full images. The second row 
shows enlarged center regions (the rectangular boxes) in the top row images. The third row shows 1D intensity plots (in the same scale) 
along the dashed lines in the second row images. The plot in (B) shows difference in signal intensity and contrast compared with the others. 
The arrows in (C) indicate the aliasing signals. The bottom row shows the error images between the reconstructed and reference images. 
RSS, Root of the Sum of Squares.

A B C D
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Figure 5 3D plots of RSS error against weighting coefficient ratios β/α and λ/α in reconstruction using Eq. [4] as an error function to 
minimize. Four different datasets were used: (A) brain imaging; (B) cardiac imaging; (C) breast imaging; and (D) spine imaging. The  
left-most column displays the reference images. The center column is the 3D plots for a high reduction factor (R =4). The right-most 
column is the 3D plots for a low reduction factor (R =2). The letters in the plots: “N” represents “noise dominant”; “F” represents “image 
fidelity error dominant”; “A” represents “residue aliasing dominant”; and “B” represents “balanced”. RSS, Root of the Sum of Squares.

B

C

D

A

coefficients α, β, and λ, if the error function in Eq. [4] is 
minimized. Four datasets acquired from the brain, cardiac, 
breast, and spine imaging experiments were used. Parallel 
imaging reconstruction was implemented with a high (R =4) 
and a low (R =2) reduction factor. From the 3D plots of the 
calculated RSS error against the weighting coefficient ratios 
β/α and λ/α, it can be seen that the plots for a high reduction 

factor have three high-RSS-error regions corresponding 
to the three extreme cases given by Figure 4. Here three 
capital letters, “F”, “A”, and “N” are used to indicate the 
three regions where “image fidelity error”, “residue aliasing 
artifacts”, and “amplified noise” are respectively dominant. 
A valley surrounded by “N”, “F” and “A” regions can 
be seen. In this valley region, all error components are 
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well balanced and the RSS error is minimal. A letter “B” 
that represents “balanced” is used to indicate this region. 
Compared with the plots for a high reduction factor, those 
for a low reduction factor do not have a clear “N” region, 
indicating that image fidelity error and residue aliasing 
artifacts dominate the RSS error. This is reasonable because 
SNR is high in data acquisition with a low reduction factor 
and noise amplification is trivial. Consequently, RSS error 
relies primarily on the balance of image fidelity error and 
residue aliasing artifacts. Furthermore, it is found that the 
weighting coefficients for “B” region vary largely with 
data differences. The error function in Eq. [4] provides 
an approach to minimizing the RSS error empirically by 
locating the “B” region in 3D plots given by Figure 5.

Spatially different weighting coefficients in error function

The pixel-wise image-space error function in Eq. [5] can 
quantify local information loss in image space, providing an 
approach to optimizing reconstruction in a region of interest 
smaller than the FOV. Assuming the clinical significance of 
all error components in the region of interest is known, the 
following spatially different weighting coefficients may be 
used to define an error function in Eq. [5]:
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where ROI represents the “region of interest” in image 
space, and the parameters αROI, βROI, λROI, α0, β0, and λ0 will 
be determined from priori knowledge. 

Figure 6A gives an example of image reconstruction 
from brain imaging data using spatially different weighting 
coefficients. In this reconstruction, the rectangular box is 
defined as an ROI. It is assumed that there is a clinical need 
for more suppression of residue aliasing artifacts in the 
ROI than that in Figure 6B. In this example, the weighting 
coefficients outside the ROI, α0, β0, and λ0, are kept the 
same as those in Figure 6B. Inside the ROI, we let αROI = α0,  
βROI =1.5β0, and λROI = λ0. By comparing Figure 6A-C, it 
can be seen that spatially different weighting coefficients 
improve SNR without considerable increase of residue 
aliasing artifacts in the ROI. Although this improvement 
introduces a slight increase in RSS error, the image quality 

inside the ROI is better. From the error images in Figure 
6A,B, it can be seen that the reduction of residue aliasing 
artifacts in the ROI is associated with the increase of 
image fidelity error outside the ROI, implying that the 
reconstruction in Figure 6A achieves low artifact level in 
the ROI by trading the image fidelity error outside the 
ROI. Therefore, error decomposition offers the ability 
to balance reconstruction errors across regions in image 
space using spatially different weightings. This is useful in 
clinical imaging that requires the preservation of clinical 
information within a region of interest smaller than the 
FOV.

Determination of weighting coefficients without priori 
knowledge

Practically, ROI information is not always known. It is 
desirable to calculate weighting coefficients from the 
acquired data. A solution to automatic weightings can be 
found using the error-decomposition model in Figure 3. 
In this model, different error components are generated 
respectively from original images, modulated versions of 
original images, and noise. These signal sources go through 
the same reconstruction filters before final combination. 
The reconstruction filters play a role to maximally suppress 
the modulated versions of original images and noise 
with minimal distortion of the original images. From 
this perspective, the relative signal strength of original 
images, their modulated versions, and noise level, are 
the natural quantities to weight the error components in 
reconstruction. It is sensible that an error component needs 
more suppression in reconstruction if it is generated from 
a stronger signal source. Since only relative ratios of these 
weighting coefficients matter, image fidelity error and 
residue aliasing artifacts may be weighted by the relative 
signal strength of original images and their modulated 
versions with respect to the noise level, i.e., the SNRs in 
original images and their modulated versions. Practically, 
the calibration data can be used to estimate SNRs. One may 
calculate SNRs of composite images, e.g., sum of square 
images, using Roemer’s method (1). Alternatively, one may 
calculate SNRs from phase image because phase variation 
decreases as SNR increases and the reciprocal of local 
phase variation in image space evaluates SNR level (40).  
Compared with the direct calculation of SNRs using 
Roemer’s method, phase variation is more robust because it 
is not sensitive to absolute image intensities that may vary 
largely in different clinical applications. 
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Figure 6D shows an example of reconstruction from brain 
imaging data using SNRs calculated from phase image as 
weightings in the error function. This reconstruction in 
the region of interest is comparable to Figure 6A which 
uses weightings obtained from priori knowledge. Table 1 
summarizes a series of experiments with the brain, cardiac, 
breast, and spine imaging data. It can be seen that the 
reconstruction using estimated SNRs as weightings gives 
RSS errors close to the minimum which can be achieved by 
seeking “B” regions empirically from the 3D plots in Figure 5.

Reconstruction with higher undersampling factors and less 
calibration data

Typically, a brain imaging protocol on a clinical MRI system 
with an 8-channel head coil uses 4 as the upper limit of 

acceleration factor and 24 as the default ACS lines for parallel 
imaging. This work investigates whether error decomposition 
can improve parallel imaging reconstruction when a high 
undersampling factor (>4) or a small number of ACS lines 
(<24) is used. In this experiment, it was found a conventional 
technique, such as GRAPPA, gives destructive aliasing artifacts 
or high noise when only 12 ACS lines or a reduction factor 
of 5 is used Figure 7A,B. In contrast, the reconstruction using 
automatic SNR weightings with error decomposition performs 
well (Figure 7C,D), suggesting the presented technique can 
enhance acceleration capability of parallel imaging. 

Discussion

What can be optimized from RSS error minimization?

RSS error has been widely used in parallel imaging 

Figure 6 Reconstruction with different weighting techniques based on error decomposition (Reduction factor R =4). (A)
Reconstruction using Eq. [5] with spatially different weightings (β is 1.5 times higher in the region of interest than that 
in b, RSS error =14.21%); (B) Reconstruction using Eq. [4] with empirical weightings in “B” region given by Figure 5  
(α=1.0, β=0.9, λ=0.7, RSS error =13.36%). The arrows indicate the residue aliasing in the region of interest; (C) GRAPPA reconstruction 
for reference (RSS error =19.58%); (D) Reconstruction using Eq. [5] with automatic weightings (RSS error =13.59%). The upper row is the 
full reconstructed images. The rectangular boxes indicate the region of interest in this example. The center row is the enlarged images in 
the region of interest. The bottom row is the error images between the reconstructed and the reference images. The grey scale in the error 
images is two times higher than that in Figure 4. RSS, Root of the Sum of Squares.

A B C D
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reconstruction. This work indicates that RSS error may 
not be a good quantity to evaluate local information loss 
that critically affects clinical imaging performance. The 
experiment in Figure 6 gives an example. In GRAPPA 
reconstruction (Figure 6C) ,  noise amplification is 
high, which is reasonable because of the lack of noise 
regularization. Figure 6B shows a reconstruction result using 
Eq. [4] with the weighting coefficients in the “B” region of 
the 3D plot given by Figure 5. This reconstruction gives a 
much lower RSS error (13.36%) than GRAPPA (19.58%). 
From the enlarged center-region and error images in 
Figure 6B,C, it can be seen that GRAPPA gives lower SNR 
while the reconstruction with the minimum RSS error 
gives higher residue aliasing artifacts (marked by arrows), 
implying residue aliasing artifacts are traded for SNR in 
this optimization. This can effectively reduce the RSS error 
because RSS error is more dependent on global noise than 
on localized aliasing artifacts. It is obvious that aliasing 
artifacts are more destructive than noise if they appear in 

the region of interest due to their higher concentration 
of energy. For this r;on, RSS error can be misleading in 
clinical imaging. 

In clinical applications, including brain, cardiac, breast, 
or spine imaging, the region of interest is typically a small 
part of FOV. The image quality over the entire FOV is 
not as important as that of the ROI in many clinical cases. 
From this perspective, the minimization of RSS error is 
not equivalent to the preservation of clinical information. 
Since most parallel imaging techniques are designed to 
minimize RSS errors, their clinical performance seems to 
be sub-optimal. This has been a reason why the speed of 
clinical imaging is lower that what has been demonstrated 
in research.

Evaluation of reconstruction methods

Error decomposition may be used to evaluate the 
performance of a reconstruction technique. By comparing 

Figure 7 Reconstruction using error decomposition with automatically calculated weighting coefficients when a small number of ACS lines 
or a higher reduction factor is used. (A) GRAPPA reconstruction with 12 ACS lines and a reduction factor of 4 (RSS error =19.91%); (B) 
GRAPPA reconstruction with 24 ACS lines and a reduction factor of 5 (RSS error =29.36%); (C) Reconstruction using error decomposition 
with 12 ACS lines and a reduction factor of 4 (RSS error =13.60%); (D) Reconstruction using error decomposition with 24 ACS lines and a 
reduction factor of 5 (RSS error =16.32%). ACS, auto-calibration signals; RSS, Root of the Sum of Squares. 

DCBA

Table 1 RSS errors of the reconstruction from four imaging datasets in Figure 5 with different reduction factors. Standard GRAPPA  
reconstruction is used for reference. “Empirical” represents the reconstruction using Eq. [4] with empirical weighting coefficients in “B”  
region given by Figure 5. “Automatic” represents the reconstruction using Eq. [5] with SNR weightings estimated from calibration data. 
The reconstruction with different weightings on different error components generates lower RSS errors than GRAPPA. The reconstruction  
using automatic weightings give RSS errors close to the minimum in “B” regions found using empirical method as in Figure 5

R
Brain imaging Cardiac imaging Breast imaging Spine imaging

2 3 4 2 3 4 2 3 4 2 3 4

GRAPPA 4.73 10.99 19.58 5.31 9.99 18.16 3.55 4.98 6.50 5.89 8.10 11.94

Empirical 3.92 8.50 13.36 4.08 8.98 17.02 3.01 4.01 5.32 4.13 6.78 9.73

Automatic 3.99 8.92 13.59 4.32 9.01 16.89 3.08 4.10 5.38 4.55 6.82 9.71

RSS, Root of the Sum of Squares; SNR, signal to noise ratio.
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multiple error components, the presented modulation-
domain model {Eq. [3] and Figure 3} provides a better view 
of image information loss than RSS error in reconstruction. 
An example of such evaluation is shown in Figure 8. In this 
example, GRAPPA (4) and regularized SENSE (41) are 
compared using the brain imaging data. Using RSS error, 
the difference between these two methods is not significant. 
However, if three different error components are compared 
respectively using Eq. [3], it can be seen that GRAPPA 
gives lower image fidelity error, but higher residue aliasing 
artifacts and amplified noise, than the regularized SENSE. 
Therefore, GRAPPA performs better if image contrast 
is important while the regularized SENSE gives a better 
solution if aliasing and noise are destructive. This is valuable 
to clinical imaging because it can be used to assist the 
selection of appropriate parallel imaging techniques based 
on a clinical requirement.

Summary

In this study, the total reconstruction error of parallel 
imaging is decomposed into multiple error components 
based on a modulation-domain representation of 
undersampled data. These error components can be grouped 
into three categories: image fidelity error, residue aliasing 
artifacts, and amplified noise. The error decomposition 
allows for the use of different weightings on different error 
components to define an error function for the optimization 

of reconstruction. As these error components compromise 
image quality differently, this weighting approach can 
optimize parallel imaging in several ways:

(I) By empirically adjusting weighting coefficients, 
the error components can be balanced to minimize 
RSS error that evaluates the global imaging quality;

(II) Using spatially different weightings obtained from 
priori information, the reconstruction can be 
optimized for a region of clinical interest smaller 
than the FOV;

(III) Spatially different weighting coefficients can be 
automatically calculated from calibration data 
for image space reconstruction, providing a 
solution close to the optimum parallel imaging 
reconstruction.

The error decomposition can also quantify clinical 
information loss in reconstruction, providing a better 
approach to evaluating a parallel imaging technique than 
RSS error. It is expected that this work will improve 
the clinical utility of parallel imaging and enhance its 
acceleration capability in a wide spectrum of clinical 
applications.
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Figure 8 Quantitative comparison of regularized SENSE and GRAPPA using error decomposition in modulation domain. (A) RSS error 
plots; (B) Image fidelity error plots; (C) Residue aliasing artifact plots; (D) Amplified noise plots. The horizontal axis represents reduction 
factors. The vertical axis shows the error in percentage. ACS, auto-calibration signals; RSS, Root of the Sum of Squares.
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