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Introduction

With the escalating incidence of obesity, a better 
understanding of methods to assess body composition 
and fat metabolism through the development of advanced 
techniques to quantify and characterise adiposity are 
required. Recently, it has been recognized that not only 
total amount of fat, but also fat distribution plays an 
important role in metabolism. In fact, body composition 
measurements are increasingly important for diagnosis 
and monitoring of metabolic disease and metabolic 
components of other disease. Traditionally, measurements 
like skinfold thickness, bioelectric impedance, body mass 
index (BMI), waist circumference attempt to predict 
body composition and its influence on health outcomes. 
The availability, in health care, of new techniques of 

investigation like Radiomics and AI, opens wide scenarios 
and offers unexpected possibilities to integrate “classical 
measurements” into such new techniques of investigation 
with the aim to establish correlations between adiposity 
estimate and its consequences on the onsets of several 
ailments or diseases. For these purposes, the most accurate 
methods in measuring adipose tissue (AT) are computed 
tomography (CT) and magnetic resonance imaging (MRI). 
On these images could be applied the data extraction 
needed for Radiomics analysis and the development of 
AI tools in order to provide support to decisional process 
of physicians and to establish new correlations between 
radiomics features and outcome diseases. The images 
produced by these tomographies are clinically collected for 
diagnosis, classification, and treatment evaluation in various 
disease, so they are available for the purpose of research.
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Artificial intelligence (AI)

In the past few decades, the interest in a field of computer 
science known as AI, has been increasing in physicians’ 
and research communities (1). AI represents the ability 
demonstrated by a machine to “make decisions” based on 
past experiences. It could be defined by making a computer 
perform functions that could be considered intelligent had 
they had been made by a human being (2,3). First used at 
Dartmouth College in 1956 (4), since the 1970s the term 
“artificial intelligence” has been used in several research 
fields, such as pattern recognition, intelligent control, 
machine translation, and robotics, and has experienced three 
major setbacks that have slowed down its development. 
Such setbacks revealed the incompatibility of AI with the 
past information environment. In 1991, with the arrival 
of the World Wide Web, everything changed. During the 
next few years, tools with increasing computational power 
were developed and this new ability allowed to manage and 
structure Big Data. A new golden age for AI started. As a 
result, industrial and research communities started to pay 
attention to Big Data and, consequently, to AI as a tool 
to boost their analyses. As a matter of fact, AI allows for a 
rapid processing of large amount of data by computer-based 
approaches (e.g., pattern recognition and learning) (5).

AI is a multidisciplinary field of study that includes 
several methods, theories and technologies. A subset of 
AI is machine learning, which has been applied to Big 
Data analysis due to the ability of these algorithms to find 
hidden patterns in data without explicitly being instructed 
about where to look or what to conclude. It was Arthur 
Samuel that coined the term “machine learning” in 1959, 
while he was working at IBM (6). He was a pioneer in the 
field of AI and computer gaming, and he made one of the 
first successful self-learning programs, known as Samuel 
Checkers playing program. Today, machine learning is not 
a new science, but it is gaining a fresh momentum. Indeed, 
recently it has been possible to apply machine learning 
algorithms to perform complex mathematical calculation on 
Big Data faster and faster, due to the simultaneous advances 
of computing power and of the large amount of data. It is 
fast-growing even in the health care industry, where this 
technology can help physicians analyse data to point out 
trends that may lead to improve diagnoses and treatment. 
The learning methods may be distinguished in supervised, 
unsupervised, semi-supervised and reinforcement learning. 
In supervised learning, the algorithm takes in a training 
dataset made up of input-output pairs of data (labelled 

data), and learns how to map the input into the output. 
Then, supervised learning uses the acquired pattern to 
predict the values of the label in additional unlabelled 
data. Unsupervised learning, by contrast, models the data 
distribution taking in only input data (unlabelled data), in 
order to know more about them. The machine is not told 
the “right answer”, but has to figure it out and find some 
pattern in the data. The most widely adopted unsupervised 
techniques includes k-means clustering,  nearest-
neighbour mapping, self-organizing maps, singular value 
decompositions. Semi-supervised learning typically makes 
use of unlabelled data and a small amount of labelled data. 
It is used for the same application of supervised learning in 
case labelled data cost is too high to allow for a fully labelled 
training process.

The concept behind reinforcement learning is slightly 
different. It is formulated as a Markov decision process 
(MDP), but it does not draw knowledge from an exact 
mathematical model. Reinforcement learning focuses on 
the balance between exploration and exploitation of data (7). 
It has three main components: the agent, the environment 
and the actions. The model analyses the reward over a 
given amount of time for every possible action, and chooses 
the one that maximizes this reward. In this way, the agent 
will reach the goal much faster by following a good policy. 
Reinforcement learning is often used in navigation, gaming 
and robotics.

The applications of AI in medicine are several and have 
boosted discoveries in genetics and molecular medicine. 
For example, the unsupervised protein-protein interaction 
algorithm that permits to discover novel therapeutic targets 
using an adaptive evolutionary clustering method (8), 
and the computational methodology that identifies DNA 
variants (SNPs) to predict diseases or specific features (9). 
However, it is only very recently that one specific algorithm 
has emerged as the leading AI method: artificial neural 
networks (ANN) (10). This field was established before the 
advent of the computers. In 1943, McCulloch and Pitts (11) 
created a computational model for neural networks based 
on mathematics and algorithms, but at that time technology 
prevented them from doing much. Still, McCulloch and 
Pitts’ computational model was the first artificial neuron 
and it was called threshold logic.

Neural Networks are a set of algorithms designed to 
recognize patterns. They are inspired by the way the brain 
processes information. These systems learn to perform tasks 
by considering examples, in the same way that we learn 
from experience in our everyday lives, generally without 
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being programmed with any task-specific rules. This means 
that they require data to learn.

Neural networks consist of input and output layers, 
as well as one or more hidden layers consisting of units 
(neurons) that transform the input into something that the 
output layer can use. The connections of the biological 
neuron are modelled as weights. The weight increases or 
decreases the strength of the signal at a connection. All 
inputs are weighted and added to one another, as in a linear 
combination.

Different layers may perform different kinds of 
transformations on their inputs. Signals travel from the 
input layer to the output layer, and the output amplitude is 
controlled by an activation function. Just as the functions 
that compute the activation, weights can be modified by 
a process called learning, which is governed by a rule. It 
modifies the parameters of the neural network in order to 
provide the network with an input that produces a favoured 
output.

The most well-known of the traditional neural networks 
is the multi-layered perceptron (MLP) that has several 
layers of these activation functions.

Deep neural networks (DNN) are multi-layers neural 
networks and for a long time they were considered hard 
to train efficiently. They gained popularity only in the 
past few decades, when it was shown that they could result 
in good performance after training them layer-by-layer 
in an unsupervised manner followed by supervised fine-
tuning. Currently, the most popular models are trained 
end-to-end in a supervised fashion, and the most popular 
architecture widely used in medical image analysis are 
convolutional neural networks (CNNs) (12). They contain 
different types of layers, such as convolution, pooling, and 
fully connected layers, each with a specific purpose. CNNs 
called attention to image classification and object detection. 
However, CNNs have also been applied to natural language 
processing and forecasting.

There are other kinds of DNNs. They depend on the 
task that the algorithm should perform. Recurrent neural 
networks (RNNs), for example, are used in forecasting 
and time series applications, sentiment analysis and other 
text applications. That is because they use sequential 
information. Unlike traditional neural networks, inputs 
are not independent of each other, and the output for each 
element depends on the computations of its preceding 
elements.

Feedforward neural networks have no feedback loops. 
Each neuron in one layer is connected to every neuron in 

the next layer. Hence, information is fed forward from one 
layer to the next in the forward direction only.

Autoencoder neural networks are used to create 
abstractions, called encoders. Autoencoders desensitize 
irrelevant abstractions and sensitize relevant ones, seeking 
to model the inputs themselves. This method is considered 
unsupervised. Autoencoders may be used by linear or 
nonlinear classifiers.

DNNs, RNNs, CNNs and autoencoders are part of a 
specific field of AI: deep learning (DL). DL algorithms have 
been applied to fields including computer vision, speech 
recognition, natural language processing, bioinformatics, 
drug design, medical image analysis, where they have 
produced results comparable to and in some cases superior 
to human experts (13,14).

Radiomics

AI applications include different techniques, such as 
machine learning, neural networks and DL. They may be 
applied to process medical images, typically CT and MRI 
series. Recently, the field of medical images has grown at 
an extraordinary rate, also due to an increased number of 
pattern recognition tools and an increase in data set sizes. 
These advances have allowed the development of processes 
for high-throughput extraction of quantitative features 
that entails conversion of images into mineable data and 
the successive analysis of these data for decision support. 
All this is called Radiomics (15). This process is based on 
the idea that biomedical images contain information that 
reflect the underlying pathophysiology, and that these 
relationships can be extracted by means of quantitative 
image analysis. Although radiomics is a natural branch of 
computer-aided diagnosis and detection (CAD) systems, 
it is, in fact, substantially different from them. In contrast 
to CAD systems, which aim at giving a single answer 
(i.e., the presence of a lesion, or cancer), radiomics is a 
process explicitly aimed at extracting a large number of 
quantitative features from digital images, store these data 
in shared databases, and successively mine the data for 
hypothesis generation, testing, or both. Although radiomics 
can be applied to a large number of medical applications, 
it is especially developed in oncology: quantitative image 
features based on intensity, shape, size or volume and 
texture offer information on tumour phenotype and 
microenvironment (or habitat) that is distinct from that 
provided by clinical reports, laboratory test results, and 
genomic or proteomic assays. Such features, joined with 
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other information, can be linked with clinical outcomes 
data and used for evidence-based clinical decision support. 
The reason of major development of a radiomics approach 
for cancer is that digital radiologic images are acquired for 
nearly every patient affected by cancer.

There are several clinical applications of AI and 
radiomics in radiology. In the last decade, AI has been 
employed in image processing for disease detection, 
classification, organ segmentation, lesion segmentation and 
assessment of treatment response, especially in oncology 
(16-21). One of the most interesting advantages of the 
use of AI is the possibility of creating a patient-specific 
medicine. As a matter of fact, AI can effectively support 
analysis of radiomic features and their correlation between 
measures of fat and muscle in a person’s body and other 
diseases.

Body composition analysis (BCA)

BCA may be performed using BMI, calculated as weight in 
kilograms divided by height in square meters. BMI does not 
distinguish between muscle and AT. Furthermore, low BMI 
may mask excess adiposity, while high BMI may mask low 
muscularity (22). Since several studies have demonstrated 
correlation of body composition with many diseases, 
such as cardiovascular pathologies, diabetes type II, liver 
inflammation and fibrosis, cancer risk and survival (23-25), 
a direct measurements of body size is required.

The incidence of several cancers is increased by obesity, 
supporting the hypothesis that biological interactions 
between fat and the survival of tumour cells may occur (26). 
There are several reasons why obesity is linked with cancer. 
Primarily, (I) the high levels of insulin and insulin growth 
factor-1 (IGF-1) may help the proliferation of cancer cells; 
(II) people who are obese are characterized by low levels of 
chronic inflammation that is linked with an increased cancer 
risk; (III) fat tissue releases higher amounts of oestrogen 
which is described as a factor involved in the development 
of some cancers, such as breast and endometrial cancers; (IV) 
fat cells may be involved in the altered regulation of cancer 
cell growth (27,28). Interestingly, several works showed that 
the direct measurement of adiposity could contribute to 
highlight medical conditions known to be associated with 
obesity in cancer patients.

The direct measurement of adiposity is useful to predict 
surgical complications and short-term surgical outcomes 
as well as survival and recurrence in colorectal (29,30), 
breast (31,32), and prostate (33,34) cancers. Due to the 

escalating incidence of cancer, a better understanding 
of the relationship between tumorigenesis and fat 
metabolism is necessary. It is important to characterize the 
different biologic activity of different fat compartments 
and to evaluate whether visceral and subcutaneous fat 
measurements can predict the development of medical 
complications related to obesity.

Several studies found that the fatty infiltration into 
muscle fibres, the reduced function and quality of muscle 
(defined by a low skeletal muscle radiodensity) are associated 
with an increased risk of death (32,35). Accordingly, 
imaging tools that are able to investigate severe loss of 
skeletal muscle mass (sarcopenia) are important to examine 
associations between measures of body composition and 
overall mortality. Moreover, the assessment of cachexia, 
characterized by the progressive reduction of skeletal 
muscle mass and functional impairment, with or without 
fat mass loss, is important for the care and monitoring of 
cancer patients (36).

Techniques of body composition profiling

There are several non-invasive techniques for BCA. 
The most widely used way to estimate body fat is the 
BMI body weight normalized by the square of height 
(kg/m2). Unfortunately, BMI and other anthropometric 
measures, such as waist circumference and waist-to-hip 
ratio, are poor predictors for individual fat distribution 
and metabolic risk (37). Through many attempts, scientists 
have tried to determine the body composition in different 
ways, with a wide range of different physical principles 
and devices, and using different models and hypotheses 
[densitometry, air displacement plethysmography (ADP), 
bioelectrical impedance analysis (BIA), dual-energy X-ray 
absorptiometry]. Currently, in vivo measurements of 
several fat depots and fat infiltration in organs can be made 
using tomographic imaging techniques, such as CT and 
MRI. These techniques are today recognized as golden 
standards for body composition assessment (23). Indeed, 
CT provides a three-dimensional high-resolution image 
of the full body or some specific parts of it, reconstructed 
by the acquisition of many X-ray projections of the body 
from different angles. The technique uses the known 
differences in attenuation coefficients of X-rays between 
lean soft tissue (LT) and AT, and can then be used both to 
separate these tissues and to determine mixtures of them. 
The accuracy of CT to evaluate fat in skeletal muscle tissue 
and in the liver is high, but it is significantly lower for liver 



1654 Attanasio et al. AI and radiomics in body composition assessment

© Quantitative Imaging in Medicine and Surgery. All rights reserved.   Quant Imaging Med Surg 2020;10(8):1650-1660 | http://dx.doi.org/10.21037/qims.2020.03.10

fat (<5%) which limits the use of CT to diagnose low-grade 
steatosis. In clinical practice, CT-based body composition 
assessment is in most cases performed by two-dimensional 
analysis of one or a few axial slices of the body, which allow 
for a good evaluation of the volume of AT. The reasons for 
this limitation are easily perceivable. First, it is important 
to keep the part of the body to be scanned as limited as 
possible in order to minimize the ionizing radiation dose. 
Second, manual segmentation of different compartments in 
the images is a very intensive task, which may be reduced by 
limiting the analysis of a full, a three-dimensional volume to 
a few slices.

MRI, conversely, does not use ionizing radiation: it takes 
advantage of the different magnetic properties of the nuclei 
of hydrogen in water and fat to produce images of soft tissue 
in the body. A very precise method to quantify AT and LT, 
as well as diffuse fat infiltration in other organs, uses the so-
called ‘quantitative fat water imaging’. This is based on fat 
water separated (Dixon) imaging, in which the difference 
between magnetic resonance frequencies of proton in fat 
and water are used for separating the two signals into a fat 
image and a water image (38). The safety of MRI technique 
allows for true volumetric three-dimensional imaging both 
in the adult and the paediatric populations, even in healthy 
volunteers and infants. The drawback of MRI is due to its 
limited accessibility and cost.

I either case (CT and MRI), the analysis of these images 
remains a very time-consuming task for radiologists. 
It requires expertise to be performed manually, hence, 
advanced techniques that implement automatic detection 
and segmentation of body composition could be useful in 
clinical practice.

The purpose of this review is to describe the current 
status of imaging techniques used to study measures of 
body composition, including adiposity, and muscle quality 
in obese and high-risk cancer patients and introduce AI and 
radiomics applications to body composition management, 
leading to a patient-specific treatment of several diseases.

AI and radiomics in BCA 

Literature search strategy

For the purposes of the present review a literature search 
was performed on PubMed and Google scholar, Embase, 
between January 2016 and October 2019. Key terms are the 
following: “medical images” and “BMI”; “CT” and “BMI”; 
“MRI” and “BMI”; “CT” and “adipose tissue”; “CT” 

and “muscle mass”; “MRI” and “adipose tissue”; “MRI” 
and “muscle mass”; “Body Composition Assessment CT 
MRI”; “Body Composition Assessment Radiomics”; “Body 
composition Artificial Intelligence”; “Artificial Intelligence 
and visceral adiposity”; “Artificial Intelligence” and “BMI”. 
Retrieved publications were manually selected based on the 
relevance for our objective.

About 213 articles or reviews have been found. Review 
articles, randomized trials, single center studies, multi-
centric studies were excluded and considered only those 
since 2015 in order to have a survey as comprehensive and 
up-to-date as possible of the literature on the subject.

In the end, 7 scientific papers met our criteria and were 
considered for this review.

AI and radiomics state-of-the-art overview

Besides personalized medicine, there is a growing interest in 
BCA for the assessment of effects on patients and treatment 
in various pathologies. In the body composition assessment, 
AI and radiomics could be a powerful tool.

The practice of radiomics involves discrete steps: (I) 
acquiring the images; (II) identifying the volumes of 
interest; (III) segmenting the volumes (i.e., delineating the 
borders of the volume manually or with computer-assisted 
contouring); (IV) extracting quantitative features from 
the volume; (V) using the latter to populate a searchable 
database; (VI) mining these data to develop classifying 
models to predict outcomes either alone or in combination 
with additional information (genomic, proteomic and 
other clinical data) (15). As three steps (II), (III) and (VI), 
recurring to AI proves to be crucial. In the last year, many 
computer science teams have worked on the use of AI 
algorithm in medical images. Generally, the measurement 
of visceral adiposity tissue (VAT) using imaging techniques 
is performed in two steps: finding the image/slice of interest 
and assessing the body composition (39-42). It has been 
noted that slices at the third and/or fourth lumbar vertebra 
region are the most commonly selected for measuring VAT 
(43,44). ANNs are usually used to perform these operations. 
Such networks must undergo supervised training on specific 
datasets which the algorithm can learn. Next, ANNs should 
be tested against a validation dataset to tune the architecture 
parameters and evaluate if the model fits the new data. 
Next, an unseen and unlabelled dataset will be used to assess 
the network performance.

Belharbi et al. (41) presented a pipeline that applies a 
CNN for spotting a particular slice in a CT scan. His team 
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tackled this task as a regression problem, where the slice 
position height is estimated. In their approach, the CT 
scan is converted into a 2D input using maximum intensity 
projection (MIP) method. This step is fundamental to 
overcome the need of large computing and memory 
resources required from CNN without loss of important 
information. Moreover, the input size of CNN models 
impacts the model’s number of parameters. Hence, the 
direct use of 3D images without dimension reduction is 
not efficient if a large training dataset is not available. 
In the learning phase, the stochastic gradient method 
was used to perform the parameters optimization. Large 
number of training samples was required. To overcome 
the lack of training data, the transfer learning method was 
adopted (45,46). CNN architectures previously trained for 
a different task on computer vision problems where large 
dataset exists were selected: AlexNet, VGG16, VGG19, 
GoogleNet. Moreover, a homemade CNN architecture 
was designed and trained from scratch. Only weights of 
the convolutional layers are set using transfer learning. 
Fully connected layers are initialized randomly. In the 
decision phase, a sliding window procedure on the MIP 
images is performed. The dataset used consists of six 
hundred forty-two CT exams acquired from four different 
scanners and different acquisition protocols were used. 
All the models have been evaluated in a cross-validation 
procedure by computing the absolute difference between 
the predicted value and the target as the prediction error. 
Balharbi’s results were compared to a random forest (RF) 
regression as a regression method instead of CNN. They 
showed that RF has not good performance over this task. 
Moreover, the results confirmed a benefit from the use of 
transfer learning and the interest of use DL algorithms in 
medical problems.

Some groups have proposed atlas-based methods for 
the selection of the L3 slice in a CT scan. Chung et al. (47) 
group is one of them. They implemented an automatic 
method for muscle, VAT and subcutaneous adiposity tissue 
(SAT) segmentation. Their approach is to use an implicit 
shape model for the analysis of muscles that is robust to 
topological changes. The free form deformation (FFD) 
model was utilized to parametrize image deformation. It 
consists of B-splice cubic interpolation of regular lattice 
points. Moreover, incremental deformations were encoded 
using principal component analysis (PCA). To determine 
the performance the performance of their segmentation 
algorithm, twenty CT images of patients showing a normal 
muscle shape were used. Results showed high agreement 

between manual and automated segmentations. However, 
the segmentation failed if images with abnormal muscle 
shape were utilized.

Moghbeli et al. (39) presented an unsupervised method 
for VAT and SAT segmentation using a self-organized map 
(SOM) neural network and a new level set method called 
distance regularized level set evolution (DRLSE) on axial 
magnetic resonance images (MRI) of the abdomen. The 
method was performed on 23 subjects and for each case 
three slice (L4-L5, L3-L4 and L2-L3) of the whole-body 
abdominal MRI were selected. These images were obtained 
on a 1.5 T unit Siemens scanner. Manual segmentations 
were performed by four experienced radiologists and were 
used as gold standard for the automatic segmentation 
method evaluation. Standard algorithms for image analysis 
were used. For example, signal intensity inhomogeneity 
(48,49) correction was applied to eliminate its impact on 
automatic intensity-based tissue classification methods. As 
stated above, a self-organized map neural network, usually 
known as Kohonen network (50), was used. It allows to 
visualize and analyse high dimensional data projecting 
them into a two-dimensional grid. The SOM neural 
network consists of two layers (input and output neurons 
respectively) that are connected with settable weights (51).  
This network classifies the image pixels in four classes: 
air and water, bone narrow, fat, and muscles. Total 
abdominal tissue mask was created by selecting the second 
maximum value of pixel number and then, a ROI only in 
the abdomen was created to decrease the computational 
cost of the calculation. For the creation of SAT mask, 
a higher dimensional function called level set function 
DRLSE (52,53) was used. Their method was found to be 
precise and robust. According to their results, automatic 
and manual segmentation of VAT and SAT are significantly 
correlated.

In their work, Bridge et al. (40) describe a fully 
automated analysis of body composition from CT images 
in a two-step process. The method used a DenseNet 
architecture (54) to select the CT slice at third lumbar 
level (L3) and a U-net (55) architecture to perform 
segmentation of muscle, subcutaneous fat and visceral 
fat. The selection of the L3 slice was posed as a slice-wise 
regression problem. This allowed the use of a 2D network 
model (DenseNet) and reduced the network complexity. 
Single CT slices downsampled to a 256×256 images were 
given to the model as input. The DenseNet model learns to 
predict the z-coordinate along the craniocaudal axis of the 
L3 slice (zL3). The mean absolute error loss between zL3 
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and the regression target was calculated. After the model 
selected the L3 slice, the full 512×512 image was passed 
to the U-net model for the segmentation needed in the 
BCA. Batch normalization was added to the model before 
each activation and soft Dice maximization loss (56) was set 
as loss function of the network to overcome the problem 
of class imbalance between three tissue classes and the 
background class. They experimented the architectures with 
different parameters and selected the one that has higher 
performance. For all the models, Adam optimizer and data 
augmentation were applied. Independent cohorts consisting 
of 595 CT scans (dataset A) and 534 CT scans (dataset B) 
respectively were used to train and test the algorithms. 
To evaluate this method Dice scores and correlation 
coefficients were determined. Their results show that a fully 
automated BCA is feasible.

Lee et al. (42) demonstrated automated segmentation 
and quantification of skeletal muscle cross-sectional area 
(CSA) using a full convolutional neural network (FCN) (57)  
with weight initialization of an Image-Net pre-trained 
model. Their method includes grayscale image conversion. 
Therefore, the effects of window and bit settings on 
segmentation performance were evaluated by using 
different window configurations and bit depth per pixel. 
Lee et al. used transfer learning method to allow a fast 
convergence of the loss function when a small training 
dataset is available. The model was trained using the 
stochastic gradient descent (SGD) algorithm with a fixed, 
tiny learning rate and weight decay (57). The algorithm 
was implemented on four hundred axial CT slices taken 
at L3. Its performance was evaluated using dice similarity 
coefficient (DSC) to compare the overlap degree between 
the ground truth segmentation mask and the FCN-derived 
mask and using CSA error to measure the percentage 
difference in area between the ground truth segmentation 
mask and the FCN-derived mask. The accuracy increased 
as the number of features of different layers was fused 
and it was markedly better than a traditional thresholding 
method without human tuning.

Zgallai et al. (58) focused on providing a quantification 
of SAT and VAT from MRI images of obese patient before 
and after fasting using DL and CNN. They utilized three 
hundred thirty images segmented manually by expertise 
and semi-automatically by using professional software. The 
U-net CNN (55) and the VGG-16 CNN were used to 
perform the automated segmentation. All the images were 
pre-processed using Matlab Image Processing Toolbox and 
OpenCV with Python to eliminate artefacts and noise, and 

to create a region of interest (ROI). Data augmentation 
methods were applied to increase the number of images 
available. Running the DL CNN, the SAT surface area 
has been recognized and quantified. Within this area, all 
non-VAT parts were excluded, and on the remaining ones 
another run of the CNN was performed to quantify the 
VAT tissue. Their process is fully automatic. Therefore, 
their results are completely reproducible and independent 
of clinical expertise. Initial applications show that this 
method produces better results than the semi-automated 
software.

Liu et al. (59) aimed at quantifying automatically four 
tissue components in the body torso—SAT, VAT, bone 
tissue and muscle tissue—using low-dose CT images. 
Their work is in three phases. First, they construct a fuzzy 
anatomy model where all anatomic organs and tissue 
regions and interfaces are organized in a hierarchical order. 
Hence, the model includes a fuzzy object-model for every 
object/organ in the image and the relationship between 
organs in the image taken pairwise. The second phase 
involved finding the location of each object in any given 
whole-body image according to the hierarchy set in the 
model. The results of these first two phases is a fuzzy mask 
for each object that includes the approximate position, 
size and shape of the object. During the third phase, the 
body components were quantified using the localization 
information and the intensity distribution of the four tissue 
components, already encoded in the model. The low-
dose CT images of 38 patients were used in a 5-fold cross 
validation strategy. Their method quantifies four tissues 
with under 5% overall error. Less than one minute is 
required to process one patient image.

Some teams have developed automated assessment 
of body composition for tight MR images. For example, 
Yang et al. (60) developed and validated a 3D automatic 
segmentation algorithm based on machine learning for 
thigh composition segmentation on Dixon MR images. 
A three-class classification method was implemented and 
applied to datasets of (I) four contrast images, (II) water and 
fat images, and (III) unsuppressed images acquired from one 
hundred ninety subjects. The most accurate segmentation 
was achieved by the application of the algorithm to the first 
dataset.

These works regard the first steps of the radiomic 
pipeline excluding the extraction and analysis of radiomic 
features. Up to date there are no works that applied 
the entire radiomic workflow to investigate the body 
composition.
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Discussion and conclusions

These studies show that automatic muscle and fat 
segmentation using AI methods may be challenging. 
Machine learning and DL techniques have been shown to 
outperform semi-automated algorithms and, sometimes, 
even manual segmentation. They permit better integration 
with other quantitative clinical measures such as radiomic 
features and genomic data. Since radiomics seems to offer 
almost a limitless source of imaging biomarkers that can 
be linked with genomics (DNA), transcriptomics (RNA), 
proteomics (proteins) and metabolomics (metabolites) data, 
we may very well suppose that—after the identification in a 
CT or MRI series of VAT, abdominal subcutaneous adipose 
tissue volume (ASAT), liver-fat fraction, and muscle fat 
infiltration (MFI)—a radiomic analysis could be performed 
on CT and MR images. Just like in cancer treatment, the 
extracted features could be correlated with clinical outcomes 
data and, could be used in metabolism assessment and as 
quantitative predictors of the risk for metabolic disorder 
diseases and for cancer itself.

AI algorithms can also improve reproducibility and 
the standardization of medical procedures. A limitation 
of this type of methods is the need of a big set of data to 
train the algorithm: this is not always available, especially 
in medicine. The current status of medical records is 
mainly not structured in standard forms, hence they have 
to go through a long process—in term of time and costs—
before they can actually be useful for the training phase of 
automatic algorithms. Clinicians and laboratory technicians 
need to collaborate for the implementation of electronic 
health records (61). Medical datasets should be shared by 
physicians via open-source and made automatically available 
for further scientific researches. However, the legal and 
ethical concerns about these data platforms are enormous, 
even more if omics-data are considered. Together with 
other partners, our group is working on the implementation 
of a European platform that can contain and integrate 
medical data, from imaging and clinical data to radiomics 
features. If personalized medicine is the final goal, such 
datasets are essential.

Lately, there has been huge excitement about the 
application of AI and radiomic techniques to images 
and this has led to increasing investments in start-up 
companies dealing with these issues. Nevertheless, while 
AI is spreading, the interest in even larger dataset and 
more types of data will increase. This could lead to even 
greater accuracy in early detection and target prevention in 

medicine. Certainly, a better understanding of the natural 
correlation of the disease to the BCA should be investigated 
more deeply.
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