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Background: Precise patient setup is critical in radiation therapy. Medical imaging plays an essential role 
in patient setup. As compared to computed tomography (CT) images, magnetic resonance image (MRI) has 
high contrast for soft tissues, which becomes a promising imaging modality during treatment. In this paper, 
we proposed a method to synthesize brain MRI images from corresponding planning CT (pCT) images. 
The synthetic MRI (sMRI) images can be used to align with positioning MRI (pMRI) equipped by an MRI-
guided accelerator to account for the disadvantages of multi-modality image registration.
Methods: Several deep learning network models were applied to implement this brain MRI synthesis 
task, including CycleGAN, Pix2Pix model, and U-Net. We evaluated these methods using several metrics, 
including mean absolute error (MAE), mean squared error (MSE), structural similarity index (SSIM), and 
peak signal-to-noise ratio (PSNR). 
Results: In our experiments, U-Net with L1+L2 loss achieved the best results with the lowest overall 
average MAE of 74.19 and MSE of 1.035*104, respectively, and produced the highest SSIM of 0.9440 and 
PSNR of 32.44. 
Conclusions: Quantitative comparisons suggest that the performance of U-Net, a supervised deep 
learning method, is better than the performance of CycleGAN, a typical unsupervised method, in our brain 
MRI synthesis procedure. The proposed method can convert pCT/pMRI multi-modality registration into 
mono-modality registration, which can be used to reduce registration error and achieve a more accurate 
patient setup. 
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Introduction

Accurate patient setup is critical in radiotherapy. Incorrect 
setup during radiotherapy may result in an unnecessary 
radiation dose for healthy tissue while compromising 
the target dose. Variation of the target position is a 
significant challenge in the clinical practice of external 
beam radiotherapy since there is a day-to-day change 
of tumor position caused by breathing, filling of hollow 
organs, and more complex changes such as weight 
loss and tumor regression (1). In general, cone-beam 
computed tomography (CBCT) is applied in image-
guided radiotherapy (IGRT) for patient setup (2). The 
CBCT image is registered to the reference high-resolution 
planning CT (pCT) data set, which is acquired during the 
planning phase of the treatment to obtain the patient setup 
error (3). The outcomes are used to localize the patient. 
Therefore, the target during treatment is approximately at 
the same location during planning (3-6).

In some cases, however, distinguishing between different 
soft tissues on the CBCT image may prove impossible 
due to the limited soft-tissue contrast and scatter artifacts 
of CBCT images (7). Therefore, it is challenging to align 
CBCT with pCT accurately. Consequently, it is difficult 
to get a precise patient setup position and the patient must 
receive an added dose in the positioning procedure for 
intrafraction motion correction.

With the development of magnetic resonance image-
guided radiotherapy (MRIgRT), an accelerator integrated 
with a magnetic resonance image (MRI) scanner is currently 
in the process of replacing the CBCT-based IGRT method 
(8,9). MRIgRT has several clear advantages. Firstly, the 
contrast of soft tissue of MRI images is much better than 
that of CBCT images, which can provide more distinct 
tumor pathology and detail of the surrounding area. 
Secondly, MRI is free of extra radiation and can achieve 
real-time imaging, which allows for rapid adaptive planning 
and beam delivery control based on the visualization of 
soft tissues (9). Previous research proposed that the use of 
precise MR-guided radiotherapy can further lower radiation 
dose to organs at risk (OARs) in pancreatic cancer (10). 
For MRIgRT, positioning MRI (pMRI) images, instead 
of CBCT images, are acquired to align with reference 
pCT images to calculate the target position relative to the 
planned reference position (8). Consequently, the coach is 
moved to calibrate the error. 

However, cross-modality image registration between 
pMRI and pCT is a challenging problem due to the high 

variability of tissue or organ appearance caused by different 
imaging mechanism, which results in the lack of a general 
rule to compare such images (11). The pixel intensity, voxel 
size, image orientation, and field of view are also different 
in CT and MRI images, which makes multi-modality 
registration less straightforward than mono-modality 
alignment (12,13). Morrow et al. further indicated that 
registration between different modalities might adversely 
affect soft tissue-based registration for IGRT (14). For 
MRI/CT registration, Zachiu et al. illustrated better mono-
modality registration results as compared to CT-MRI 
registration (15). 

To tackle this challenging multi-modality image 
registration problem, many researchers generated CT 
images from MRI images (7-14). These models include 
the Gaussian mixture regression model (16), random forest 
regression model (17), segmentation-based methods (18-20),  
atlas-based methods (21,22), and learning-based methods 
(23-30). However, the loss of rich anatomical information 
in the CT images makes it hard to conduct precise 
registration, since sufficient anatomical details are also 
necessary for steering accurate image registration, as 
demonstrated in (31). So, in this paper, to achieve a more 
accurate patient setup, we proposed a method to decrease 
registration error via the synthesis of MRI images based 
on pCT. Thus, multi-modality image registration problem 
is transformed into a mono-modality alignment one. 
Meanwhile, rich anatomical information is enhanced, which 
is useful for tumor recognition during the registration 
process.

Much work has been carried out to estimate CT images 
from MRI data (7-14), but for MRI synthesis based on 
CT images, only a few learning-based studies have been 
conducted. Chartsias et al. (32) used a CycleGAN model (33)  
and unpaired cardiac data to generate MRI images from 
different patient CT images. However, this work can not 
directly quantitatively evaluate the generated MRI images 
from unpaired cardiac images, as it is challenging to obtain 
paired MRI and CT images from a beating heart. Jin et al. (34)  
improved the accuracy of CT-based target delineation in 
radiotherapy planning by using paired and unpaired brain CT/
MRI data to generate MRI images. However, the authors did 
not investigate the effect of conventional supervised methods 
on this MRI synthesis task.

In this work, several deep neural networks were applied 
to implement the synthesis task, including unsupervised 
generative adversarial network (GAN), such as CycleGAN (33),  
and supervised networks, such as Pix2Pix (35) and U-Net 



1225Quantitative Imaging in Medicine and Surgery, Vol 10, No 6 June 2020

© Quantitative Imaging in Medicine and Surgery. All rights reserved.   Quant Imaging Med Surg 2020;10(6):1223-1236 | http://dx.doi.org/10.21037/qims-19-885

model (36). As well as several metrics, such as mean absolute 
error (MAE), mean squared error (MSE), structural similarity 
index (SSIM), and peak signal-to-noise ratio (PSNR), were 
used to quantitatively evaluate the performance of these 
networks. We aimed to generate synthetic MRI (sMRI) images 
from pCT images based on deep learning methods. Thus, 
the large appearance gap between pMRI and pCT images 
could be bridged by synthesizing MRI from pCT images, 
and at the same time the anatomical details could be reserved. 
Consequently, many conventional registration methods could 
be directly applied to align two similar-looking images with 
the same image modality, and finally achieve a precise patient 
positioning. To the best of our knowledge, this is the first 
study to generate sMRI images from pCT images for patient 
positioning in MRIgRT.

Methods

Neural networks for sMRI estimation

Several state-of-art deep neural networks were applied to 
generate sMRI from pCT, including the U-Net model (36), 
Pix2Pix model (35), and CycleGAN (33).

U-Net
U-Net achieved great success in the segmentation task 
(23,37-41). The structure is illustrated in Figure 1. It is an 
end-to-end convolutional neural network, which consists 
of the mirrored encoder (left side) and decoder (right side) 
layers. The encoder consists of repeated 3*3 Convolutions 
(padded), each with a Batch-Normalization (BN) (42) layer 

and LeakyReLu (43) layer except input convolution. A max-
pooling operation with stride two is used for downsampling. 
Feature channels are doubled at each downsampling 
step. The decoder consists of repeated 3*3 Convolutions 
(padded) and 4*4 ConvTranspose (padded) layers (44), 
each with a ReLu (45) layer and followed by a BN layer. 
Skip connections are used to concatenate channels from 
the encoder part to the corresponding decoder layers to use 
information from earlier layers as much as possible. At the final 
layer, a Tanh activation operation is used to map sMRI images. 

Pix2Pix
This model is a kind of conditional Generative Adversarial 
Networks (cGANs) (46-50). The difference between 
conditional and unconditional GAN is illustrated in Figure 2.  
Unlike unconditional GAN, the discriminator of cGANs 
tries to distinguish fake and real tuples, which means the 
input of the discriminator consists of the original input of 
the generator and its output as opposed to just the output 
of the generator. Pix2Pix model uses a “U-Net”-based 
generator and “PatchGAN”-based (51) discriminator. The 
“PatchGAN”-based discriminator penalizes structure at 2D 
70*70 overlapping image patches and then the averages all 
responses to supply output. A smaller PatchGAN has fewer 
parameters and runs faster when compared to other GAN 
methods.

Furthermore, L1 distance is used in the Pix2Pix model to 
decrease blurring. Isola et al. (35) demonstrated that cGANs 
could produce consistent results on a variety of problems 
rather than focus on specific problems. In this work, we 
applied this network to synthesize brain MRI images. 

Figure 1 U-Net structure. The size of the features is denoted at the top of each Convolutional block. The number at the bottom of each 
convolutional block is the channel number. Colored bars show different operations. MRI, magnetic resonance image.
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CycleGAN
CycleGAN is a neural network that can translate an 
image from one domain to another using unpaired data. 
It alleviates the problem posed by a lack of paired datasets 
since there is a vast amount of unpaired image data. The 
schematic of this network is shown in Figure 3. The network 
has a forward and backward cycle. The forward cycle learns 
a mapping G to translate A to IB and tries to make IB as real 
as the ground truth of image B to fool the discriminator DB. 
The discriminator DB is used to identify whether the input 
is real or fake. The mapping of F is trained to transform IB 
back to IA and make IA as real as the ground truth of image 
A to ensure that IB can translate back to where it started. 
An added cycle-consistency loss is used to support this 
schedule. Opposite to the forward cycle, the retrograde 
cycle is trained to translate B to IA to improve the stability of 
the network. More details of CycleGAN can be seen in (33).  
In this work, we input brain pCT and corresponding brain 
MRI images as A and B, respectively. 

Implementation

To generate MRI from CT images, we first rescaled the 
MRI and CT value of the acquired images to [0, 255], then 
converted these data to [0, 1] tensor and normalized each 
image to [−1, 1]. Instead of image patches, whole 2D images 
were used to train all models. The axial CT and MRI pairs 
were put into networks with a size of 256*256 pixels. To 
augment the training data, all training images were padded 
to the size of 286*286 pixels, and then randomly cropped 

to sub-images of 256*256 pixels from full images when 
training the networks. 

For the Pix2Pix and CycleGAN models, we set the 
batch size as one and used Adam (52) to optimize both the 
generator and discriminator. Two hundred epochs were 
trained for each model. A fixed learning rate of 2*10−4 was 
applied for the first 100 epochs and linearly reduced to 0 
during the training of the rest 100 epochs. The paired brain 
CT and MRI images were shuffled to create an unpaired 
dataset. The only difference between unpaired and paired 
datasets was that the unpaired dataset MRI was not input in 
the same sequence as a paired dataset. Unlike the Pix2Pix 
model, CycleGAN was trained with paired and unpaired 
CT/MRI datasets, respectively, since the synthesis result 
of the paired and unpaired input data form was a point of 
interest. To investigate the degree of misalignment of the 
unpaired images, we compared the randomly shuffled data 
and found that there were only 221/812,600 (0.27%) paired 
training images (each epoch with 4,063 training images, 
812,600 training images for 200 epochs in total). 

To contrast these models, similar parameters were 
applied in U-Net as used in CycleGAN and Pix2Pix model, 
including set batch size to 1, adopt Adam optimizer, training 
200 epochs, and the learning rate was fixed at the first 100 
epochs and then linearly decreased to 0 during the rest 100 
epochs. Different from CycleGAN and Pix2Pix model, 
we used different loss functions for U-Net training. Isola 
et al. (35) suggested that designing sufficient losses is vital 
because the losses tell the CNN what to minimize. Inspired 
by this perspective, different losses were designed for U-Net 
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Figure 2 The difference between conditional and unconditional GAN. The generator, G, learns to fool the discriminator. The discriminator 
D of unconditional GAN tries to distinguish whether the input is real or fake, while the discriminator of conditional GAN tries to classify 
between real and fake {CT, MRI} tuples. GAN, generative adversarial network; CT, computed tomography; MRI, magnetic resonance 
image.
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Figure 3 Schematic of the CycleGAN model. This model contains two mapping functions G: A→B and F: B→A and is associated with 
adversarial discriminators DB and DA. DB encourages G to translate A into outputs indistinguishable from domain B, and vice versa for DA 
and F. Two cycle-consistency losses are introduced to capture if the images translate from one domain to another can translate back again. 

in our experiments. We first used L2 loss to minimize the 
squared difference between ground truth MRI image and 
sMRI image. L2 loss is widely used in tasks like denoising, 
debugging, deblurring, and super-resolution, etc. (53). 
However, if there are outliers in image data, the difference 
between the predicted image and ground truth may be 
quite significant because of squaring. In this case, L1 loss 
may be a better choice, so we used it as a comparison. L1 
loss minimizes the absolute difference between ground 
truth and sMRI and encourages less blurring (35). In our 
experiments, we found that by combining these two losses, 
the performance could be improved, so we used L1 + L2 as 
a new loss. The L1 loss can be expressed as:

1

11 ( ) s ( )n

i
L MRI i MRI i

n =
= −∑  [1]

L2 loss can be expressed as:
2

1

12 ( ( ) ( ))n

i
L MRI i sMRI i

n =
= −∑  [2]

So, the new object is:
2

1

1 ( ) ( ) ( ( ) ( ))n

i
L MRI i sMRI i MRI i sMRI i

n =
 = − + − ∑  [3]

We implemented these networks in Pytorch1 and used 
a single NVIDIA Tesla V100 (32GB) GPU for all of the 

training experiments.

Evaluation

Thirty-four patient images were acquired, each with brain 
CT and corresponding T2-weighted MRI. The CT images 
were acquired with tube voltage 120 kV, current 330 mA, 
exposure time 500 ms, in-plane resolution 0.5*0.5 mm2, 
slice thickness 1 mm, image size 512*512 on SOMATOM 
Definition Flash (Siemens). T2-weighted MRI images 
[repetition time (TR): 2,500 ms, echo time (TE): 123 ms, 
1*1*1 mm3, 256*256] were acquired on a 1.5T Avanto scanner 
(Siemens). The MRI distortion correction was applied for the 
acquired MRI images by the MRI data acquisition system. 

To remove the unnecessary background, we first 
generated binary head masks through the Otsu threshold 
method (54). Then, we used the generated binary masks 
and “AND operation” to exclude unnecessary background 
and keep the interior brain structures. We resampled 
CT images of size 512*512 to 256*256 to match MRI 
images by bicubic interpolation (55). To align CT with the 
corresponding MRI images, we took CT as a fixed image, 
and the MRI images were registered to CT space by rigid 

1https://pytorch.org/
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registration. Elastix (56) toolbox was used to perform the 
rigid registration, and mutual information was taken as the 
cost function. We randomly selected 28 patients to train 
neural networks. The other six patients were used as test 
data. Overall, 4,063 training image pairs and 846 test image 
pairs were obtained.

Several metrics were used to compare the ground truth 
MRI and sMRI, including MAE, MSE, SSIM, and PSNR. 
These metrics were widely used in medical image evaluation 
(23-30,34,57,58). These metrics can be expressed as follows:

1

1= ( ) ( )
N

i
MAE MRI i sMRI i

N =

−∑  [4]

( )2

1

1 ( ) ( )
N

i
MSE MRI i sMRI i

N =

= −∑  [5]

2
( )

1010 log
MAX
MSEPSNR = ⋅  [6]

Where N is the total number of pixels inside the head 
region, i is the index of the aligned pixels inside the head 
area. MAX denotes the largest pixel value of ground truth 
MRI and sMRI images, here MAX =4,095. 

SSIM (59) is a metrics that can be used to quantify the 
similarities in whole image scale, which can be expressed as

1 2
2 2 2 2

1 2

(2 )(2 )
( )( )

MRI sMRI MRI sMRI

MRI sMRI MRI sMRI

c cSSIM
c c

µ µ σ
µ µ σ σ

+ +
=

+ + + +


 [7]

Where μMRI and μsMRI are the average of ground truth 
MRI image and sMRI image. σMRI and σ sMRI are the 
variance of ground truth MRI and sMRI, respectively. 
σMRI·sMRI is the covariance of ground truth MRI and  
sMRI. 2

1 1( )c k L= , 2
2 2( )c k L=  are two variables to stabilize the 

division with the weak denominator, is the dynamic range of 
the pixel-values, here L=4,095, k1=0.01 and k2=0.03 are set 
by default.

Results

In our experiments, clinical CT images of six patients 
were acquired to test the proposed models, as shown. 
The generated sMRI images were compared with the 
corresponding ground truth MRI images. Figure 4 shows 
cross-sectional views of two representative sMRI results by 
using U-Net with L1 + L2 loss, U-Net with L2 loss, U-Net 
with L1 loss, Pix2Pix model, unpaired CycleGAN, and 
paired CylceGAN. For the Pix2Pix methods, the generated 
sMRI images were significantly different from the ground 
truth MRI images, which lost some anatomical information 
and did not predict the cerebrospinal fluid. For the 
CycleGAN methods, there was no clear visible difference 

between paired and unpaired sMRI images. Despite the 
images generated by CycleGAN networks all looking 
realistic, they tended to be noisier compared with those 
generated by U-Net networks for the whole image scale. As 
for the U-Net methods of different losses, U-Net with L2 
loss generated blurry outputs, while U-Net with L1 + L2 
loss was much better than other methods.

A comparison of 1D profiles passing through three 
different lines, which were acquired from images generated 
by U-Net with L1 + L2 loss and paired CycleGAN model, 
is shown in Figure 5A,B,C. Based on these images, the sMRI 
images produced by U-Net with L1 + L2 loss matched well 
with the ground truth MRI at pixel scale. For Figure 5A, the 
paired CycleGAN produced a more vibrational profile, which 
indicated that the CycleGAN model generated more details 
for sMRI images. However, these generated details may be 
inaccurate compared with the ground truth MRI image. We 
typically chose a long vertical line to compare more pixel 
details of these two models in Figure 5C. It was proved that 
at a large pixel scale, the results of the U-Net model with L1 
+ L2 loss were still well matched with the ground truth MRI. 
Figure 5A,B,C shows that even the profile tendency of the 
CycleGAN is dissimilar to the ground truth MRI.

Overall statistics of the four quantitative metrics over the 
whole brain image are shown in Table 1. The results showed 
that the GAN methods of paired CycleGAN, unpaired 
CycleGAN, and Pix2Pix model had higher MAE and lower 
SSIM value when compared with the U-Net model, which 
means that U-Net models with L1 loss, L2 loss, and L1 + 
L2 loss were more accurate than the GAN methods used 
in our experiment. Among all these methods, U-Net with 
L1 loss achieved much higher MSE and lowered PSNR. 
This showed that the pixel values of predicted sMRI images 
by L1 loss U-Net were more volatile. U-Net with L2 loss 
was more stable than that with L1 loss in MSE and PSNR. 
U-Net with combined L1 loss and L2 loss achieved the best 
quantitative results in MAE, MSE, SSIM, and PSNR out of 
the overall methods used in this paper. To investigate if the 
combination of L1 and L2 loss was statistically significant, we 
performed paired t-tests to compare U-Net with L1 loss and 
U-Net with L2 loss against that with L1 + L2 loss. The t-test 
results indicated that U-Net with L1 + L2 loss significantly 
outperformed U-Net with L1 loss in MSE and PSNR, the 
P values were 4.5×10−6 and 7.9×10−7 respectively, which were 
much less than 0.05. The results of the t-test also showed that 
U-Net with L1 + L2 loss was statistically better than U-Net 
with L2 loss in SSIM, with P<0.05 (0.017).



1229Quantitative Imaging in Medicine and Surgery, Vol 10, No 6 June 2020

© Quantitative Imaging in Medicine and Surgery. All rights reserved.   Quant Imaging Med Surg 2020;10(6):1223-1236 | http://dx.doi.org/10.21037/qims-19-885

Ground Truth MR

Ground Truth MR

CT

CT

U-Net L1 + L2

U-Net L1 + L2

Pix2Pix

Pix2Pix

U-Net L2

U-Net L2

Unpaired CycleGAN

Unpaired CycleGAN

U-Net L1

U-Net L1

Paired CycleGAN

Paired CycleGAN

A

B

Figure 4 Qualitative comparison of different neural network models. There are two examples of MRI synthesis results generated by 
different models. For both (A) and (B): from left to right, the first row shows the ground truth MRI image, sMRI images produced by U-Net 
with L1 + L2 loss, U-Net with L2 loss, and U-Net with L1 loss. The second row shows ground truth CT image, sMRI images produced by 
the Pix2Pix model, unpaired CycleGAN, and paired CycleGAN, successively. MRI, magnetic resonance image; sMRI, synthetic MRI; CT, 
computed tomography.

Discussion

In this study, we proposed a sMRI generation method 
to help pCT align with pMRI images. This method 
can be used for patient positioning in the radiotherapy 
process. Different deep learning models were compared, 
including GANs methods of CycleGAN, Pix2Pix model, 
and traditional U-Net. To further improve the accuracy 
of the synthetic method, we combined L1 loss with L2 
loss together as a new loss function for U-Net training. 
The qualitative and quantitative comparison suggests that 

U-Net with L1 + L2 loss achieved the best results, with the 
lowest overall average MAE of 74.19 and MSE of 1.035*104, 
respectively, and the highest SSIM of 0.9440 and PSNR of 
32.44, respectively.

In our experiment, the U-Net model produced better 
quantitative results than the paired and unpaired CycleGAN 
and Pix2Pix models. This may be partially due to some 
hidden details of CT images being unrecognizable to the 
generator, since these methods belong to global optimized 
methods. To generate realistic-looking MRI images to 
deceive the discriminator in the GANs model, the generator 
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produced some fake details to match these loss functions. 
However, these details are generated without foundation 
and are different from the ground truth MRI, which leads 
to worse results than U-Net.

The sMRI images generated by U-Net with L1 + L2 
loss also achieved better qualitative results compared with 
paired CycleGAN. The difference map of U-Net with L1 
+ L2 loss and paired CycleGAN (the best GAN methods 
in our experiments) can be seen in Figure 6. According to 
the difference map between ground truth MRI and the 
corresponding sMRI, U-Net with L1 + L2 loss learns to 
distinguish different anatomical structures in the head area 
from similar CT pixel values. Errors are evenly distributed 
in the head region, which may be partially attributable to 
the non-perfect alignment between the ground truth MRI 
and the corresponding CT images. As Han (23) mentioned 
in his work, it is challenging to achieve one-to-one 
correspondence pixel values between training MRI and CT 
images by a linear registration. If there are misalignments, 
the errors in training data will cause inaccuracy in the 
model since the model will be trained to make the wrong 
prediction. Compared with U-Net with L1 + L2 loss, the 
paired CycleGAN model has a significant error, which 

means in our MRI synthesis task with small clinical data, a 
supervised learning network of U-Net is more accurate than 
unsupervised learning networks of CycleGAN.

In our CT to MRI study, we generated sMRI from CT 
images to convert MRI-to-CT cross-modality registration 
problem into the single modality of MRI-to-MRI 
registration to facilitate the use of registration methods and 
further improve the registration accuracy. In this paper, we 
used 2D networks to achieve the MRI synthesis task, which 
may cause potential inter-slice discontinuity problem. In 
our future work, we will continue to apply 3D networks 
to investigate if there are any differences in MRI synthesis 
tasks between 2D and 3D networks.

Conclusions

In this work, we proposed a deep learning method to help 
patient positioning in radiotherapy progress by generating 
synthetic brain MRI from corresponding pCT images. 
Instead of aligning pCT with pMRI, it can be easier to align 
sMRI with pMRI. L1 loss and L2 loss can be combined 
as a new U-Net loss function. Several methods were 
compared, and U-Net with L1 + L2 loss achieved the best 

Table 1 Results of four evaluations between ground truth MRI and synthesized MRI images: MAE, MSE, SSIM, and PSNR

Variable MAE ± SD ↓ MSE ± SD ↓ SSIM ± SD ↑ PSNR ± SD ↑

Paired_CycleGAN 87.73±7.86 1.392×104±2.103×103 0.9240±0.0041 30.85±0.62

Unpaired_CycleGAN 98.71±12.68 1.736×104±3.309×103 0.9154±0.0088 29.93±0.91

Pix2Pix 94.62±17.20 1.628×104±4.860×103 0.9139±0.0051 30.28±1.24

U-Net_L1 75.51±13.41 4.911×104±7.662×103 0.9438±0.0089 25.37±0.62

U-Net_L2 75.48±11.68 1.052×104±3.051×103 0.9417±0.0088 32.16±1.13

U-Net_L1+L2 74.19±12.80 1.035×104±3.049×103 0.9440±0.0087 32.44±1.18

↑ means larger numbers are better, ↓ means smaller numbers are better. MRI, magnetic resonance image; MAE, mean absolute error; 
MSE, mean squared error; SSIM, structural similarity index; PSNR, peak signal-to-noise ratio; SD, standard deviation.
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Figure 6 Qualitative comparison of ground truth MRI and synthetic MRIs. The image type of each image is shown at the top of the 
corresponding image. First column: CT; second column: ground truth MRI; third column: synthetic MRIs (rows 1 and 3 show the U-Net 
with L1 + L2 loss results; rows 2 and 4 show the CycleGAN with paired training data results); fourth column: difference maps (rows 1 and 3 
correspond to the U-Net with L1 + L2 loss results; rows 2 and 4 correspond to the CycleGAN with paired training data results). The color 
bars are associated with each difference map. MRI, magnetic resonance image; CT, computed tomography.

performance in our test set. The proposed method will be 
used in the increasingly popular MRIgRT scheme for future 
radiotherapy applications.
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