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Background: Spread through air space (STAS) is a novel invasive pattern of lung adenocarcinoma and 
is also a risk factor for recurrence and worse prognosis of lung adenocarcinoma. This study aimed to 
develop and validate a computed tomography (CT)-based logistic regression model to predict STAS in lung 
adenocarcinoma.
Methods: This retrospective study was approved by the institutional review board of two centers and 
included 578 patients (462 from center I and 116 from center II) with pathologically confirmed lung 
adenocarcinoma. STAS was identified from 90 center I patients (19.5%) and 28 center II patients (24.1%) 
from. The maximum diameter, nodule area, and area of solid components in part-solid nodules were 
measured. Twenty-one semantic characteristics were assessed. Univariate analysis was used to select CT 
characteristics, which were associated with STAS in the patient cohort of center I. Multivariable logistic 
regression was used to develop a CT characteristics-based model on those variables with statistical 
significance. The model was validated in the validation cohort and then tested in the external test cohort 
(patients from center II). The diagnostic performance of the model was measured by area under the curve 
(AUC) of receiver operating characteristic (ROC).
Results: At univariate analysis, age and 11 CT characteristics, including the maximum diameter of the 
tumor, the maximum area of the tumor, the area and ratio of the solid component, nodule type, pleural 
thickening, pleural retraction, mediastinal lymph node enlargement, vascular cluster sign, and lobulation, 
specula were found to be significantly associated with STAS. The optimal logistic regression model included 
age, maximum diameter and ratio of solid component with odds ratio (OR) value of 0.967 (95% CI: 0.944–
0.988), 1.027 (95% CI: 1.008–1.046) and 5.14 (95% CI: 2.180–13.321), respectively. This model achieved 
an AUC of 0.801 (95% CI: 0.709–0.892) and 0.692 (95% CI: 0.518–0.866) in the validation cohort and the 
external test cohort, respectively. The difference was not statistically significant (P=0.280).
Conclusions: CT-based logistic regression machine learning model could preoperatively predict STAS in 
lung adenocarcinoma with excellent diagnosis performance, which could be supplementary to routine CT 
interpretation.
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Introduction

Spread through air space (STAS) is defined as a detachment 
of micropapillary clusters, solid nests, or single cells beyond 
the edge of the tumor into the air spaces in surrounding 
lung parenchyma (1). This detachment is considered a novel 
invasion pattern of lung adenocarcinoma after or beyond 
the infiltration of the myofibroblast stroma, lymph vascular, 
and pleura (2,3). Onozato and colleagues first reported that 
the tumor island is detached to a collection of tumor cells 
that can be observed within the alveolar space from the 
primary tumor mass by a distance of at least a few alveoli (4).  
After this phenomenon was verified by two substantial 
studies and correlated with recurrence-free survival (not 
related to the stage), STAS was introduced into the 2015 
World Health Organization (WHO) classification (5). 
Even though STAS is a worse prognosticator, if patients 
with STAS-positive tumors undergo lobectomy resection 
instead of limited local resection, patients’ prognosis can 
be significantly improved (6-8) Therefore, knowledge of 
STAS status before operation can facilitate surgeons in 
choosing an appropriate operation pattern for patients. 
Unfortunately, STAS is a histopathological finding, which 
can only be obtained after the operation. Recently, several 
reports have shown that several computed tomography 
(CT) characteristics were associated with STAS status  
(9-11). In one study, de Margerie-Mellon et al. studied 40 
STAS-positive nodules and 40 STAS-negative nodules. 
From them, 203 subsolid nodules were identified; they 
found that the nodule diameter and the direct and relative 
diameters of the solid component were positively associated 
with STAS (9). In another study, Toyokawa et al. not only 
showed that a larger radiologic tumor diameter, vascular 
convergence, notch, pleural indentation, speculation, and 
the absence of ground-glass opacity (GGO) were associated 
with STAS in univariable analysis. They also found that the 
notch and the absence of GGO were risk factors of STAS 
with a combined odds ratio (OR) of 5.01 (10). Kim et al. 
analyzed CT features of 92 STAS-positive nodules and 184 
STAS-negative nodules and found that the percentage of 
solid components was an independent predictor of STAS, 
and could obtain a sensitivity of 89.2% and a specificity 
of 60.3% using a cutoff value of 90% (11). Previously, we 
developed a CT-based radiomics machine learning model 
to predict STAS (12), and the model achieved an AUC 
of 0.754 (a sensitivity of 0.880 and a specificity of 0.588) 
for predicting STAS. This model showed that the CT-
based radiomics could preoperatively predict STAS in lung 
adenocarcinoma with excellent diagnosis performance. 

Therefore, this study aimed to evaluate the value of the CT 
characteristics logistic regression model for the preoperative 
assessment of lung adenocarcinoma STAS status.

Methods

Patients

This retrospective study was approved by the institutional 
review board of both centers, and the requirement for 
informed consent was waived. From April 2015 to April 
2019, information from 695 consecutive patients (531 
from the center I and 164 from center II) with surgical 
histopathologically confirmed lung adenocarcinoma 
were located on the two centers’ electronic databases. 
We excluded patients who underwent CT examinations  
3 months before the operation (n=19), received preoperative 
neoadjuvant chemotherapy (n=27) or preoperative 
biopsy with the theoretical possibility of infiltration 
or contamination through needles (n=32), or whose 
pathological sections were unsuitable for STAS detection 
(n=24), or who had more than one pathological confirmed 
tumor resected (n=15). The final study cohort included  
578 patients (462 from center I and 116 from center II). 
Figure 1 shows the patient cohort’s workflow.

Histopathologic evaluation

For this study, two experienced pathologists who were 
blinded to the patient’s clinical outcomes were asked to 
review the hematoxylin and eosin (HE) tissue section again 
according to the WHO definitions of STAS in consensus 
to determine the STAS status. STAS positive is defined as 
the discovery of tumor cells in the lung air spaces beyond 
the edge of the primary tumor. It mainly consists of the 
following three forms: (I) an air space filled by micro-
nipple structure without central fibrovascular cores; (II) a 
solid nest, with air spaces filled by the solid component of 
the tumor; (III) air spaces filled by multiple discrete and 
discontinuous single cells (5).

CT image acquisition and assessment

CT examinations were performed using 16-detector CT 
scanners (Philips Brilliance 16, Philips Medical Systems, 
or Toshiba Aquilion 16, Toshiba Medical Systems);  
1.5 mm × 16 collimations were used, and images with a slice 
thickness of 2 mm and a gap of 1 mm were reconstructed 
using a standard reconstruction algorithm. The tube voltage 



1986 Li et al. CT-based logistic regression model for STAS in lung adenocarcinoma

© Quantitative Imaging in Medicine and Surgery. All rights reserved.   Quant Imaging Med Surg 2020;10(10):1984-1993 | http://dx.doi.org/10.21037/qims-20-724

462 patients from Center I

Training cohort
n=323

Validation cohort
n=139

External test cohort
n=116

116 patients from Center II

Patients with surgical histopathologically confirmed lung adenocarcinoma
(Center I, n=531 and Center II, n=164)

Patients Excluded
(a) A time interval between CT examination and surgery more 

than 3 months (n=19)
(b) Preoperative neoadjuvant chemotherapy (n=27)
(c) Preoperative biopsy with the theoretical possibility of 

infiltration or contamination through needles (n=32)
(d) Pathological sections not suitable for STAS detection (n=24)
(e) More than one pathological confirmed tumor resected (n=15)

Figure 1 Flowchart of the study. STAS, spread through air space.

was 120 kV, and the tube current was automatically adjusted. 
Two experienced radiologists analyzed the CT images 
independently on the picture archiving and communication 
system (PACS) with a lung window (1,500 HU window 
width and −600 HU window level) and mediastinum 
window (250 HU window width and 40 HU window level). 
The interpretations included 3 measurements (maximum 
diameter, maximum area, and area of the solid components 
of the tumor) and 20 semantic characteristics (nodule type, 
pleural thickening, pleural retraction, mediastinal lymph 
node enlargement, hilar lymphatic enlargement, vascular 
cluster sign, lobulation, specula, air bronchogram, satellite 
lesions, vacuolar sign, void sign, pleural effusion, distribution 
within the lobe, nodules location, low central attenuation, 
other pulmonary nodules, emphysema, pulmonary fibrosis, 
and calcification). Measurements were performed on the 
transverse section that displayed the largest nodule using 
the lung window setting. The nodule area was measured by 
a manual drawing of the region of interest. For part solid 
nodules, the area of the solid component was measured, 
and the ratio of the solid components was calculated as the 
area of the solid component divided by the nodule area. 
Any disagreement was resolved through consensus, and the 
measurements were averaged. 

Statistical analysis

The statistical analysis was performed in SPSS and R version 
3.5.1 (R Foundation for Statistical Computing). A P value of 
less than 0.05 indicated statistical significance. Non-normal 

distributed continuous variables are presented as medians 
and interquartiles. Categorical variables are presented as 
frequencies and percentages. At first, patients from center I 
were randomly divided into a training cohort (n=323) and a 
validation cohort (n=139) with a ratio of 0.7:0.3. Univariate 
analysis was used to select the CT characteristics associated 
with STAS in the patient cohort from center I. Measurements 
were compared with the Student’s t-test or Mann-Whitney 
U test. Proportions were compared using either the χ2 test 
or Fisher’s exact test. Then, multivariable logistic regression 
was used to develop the CT characteristics on those variables 
with statistical significance. The model was validated in the 
validation cohort and then tested in the external test cohort 
(patients from center II). During the development of the 
model, we used the ‘bestglm’ package in R for automated 
parameter tuning with ten-fold cross-validation to find the 
optimal model. The diagnostic performance of the model 
was measured by area under the curve (AUC) of receiver 
operating characteristic (ROC). The AUC of the model 
for the validation cohort and the external test cohort was 
compared with the DeLong test using the ‘pROC’ package 
in R (13).

Results

Of the 462 tumors from the center I, 90 (19.5%) were found 
to be STAS positive. In the patient cohort from center 
II, STAS-positive nodules were identified in 28 patients 
(24.1%). The difference in the prevalence of STAS-positive 
nodules between the two centers was not statistically 
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significant (χ2=1.238, P=0.266). In center I cohort patients 
with STAS-positive tumors, it was found that the individuals 
were significantly younger than those with STAS-negative 
tumors. However, the differences in gender and smoking 
status between STAS-positive and STAS-negative tumors 
were not statistically significant (Table 1). Univariate analysis 
of the CT characteristics of STAS-positive and -negative 
nodules from centers I and II are summarized in Table 2. 
Eleven CT characteristics were associated with statistical 
significance. These factors included the maximum diameter 
of the tumor, the maximum area of the tumor, the area 
and ratio of the solid component, nodule type, pleural 
thickening, pleural retraction, mediastinal lymph node 
enlargement, vascular cluster sign, lobulation, and specula.

Regarding measurements, STAS-positive tumors tended 
to be larger in maximum diameter [18.23 mm (11.59, 
28.12) vs. 24.53 mm (18.99, 37.51)], maximum area [172.04 
(75.68, 426.30) vs. 385.02 (222.47, 719.88) mm2], areas of 
solid components [68.50 (0.00, 297.72) vs. 336.88 (193.56, 
674.67) mm2], and had a higher ratio of solid components 
(85.17%±30.04% vs. 52.64%±43.15%).

As for the semantic characteristics, STAS-positive 
nodules tended to be solid or part-solid [ground glass 
nodules (GGNs), part solid, and solid were 3.3%, 18.9%, 
and 77.8% respectively, in STAS-positive nodules, and were 
26.6%, 33.3%, and 40.1% respectively, in STAS-negative 
nodules]. STAS was also significantly associated with pleural 
thickening, pleural retraction, mediastinal lymph node 
enlargement, vascular cluster sign, lobulation, and specula. 

CT images and histopathological photos of STAS-
positive and STAS-negative nodules are shown in Figures 2 
and 3. 

The optimal logistic regression model included age, 
maximum diameter, and ratio of solid component with OR 
value of 0.967 (95% CI: 0.944–0.988), 1.027 (95% CI: 1.008–
1.046), and 5.14 (95% CI: 2.180–13.321), respectively. This 
model obtained the AUC of 0.801 (95% CI: 0.709–0.892) 
and 0.692 (95% CI: 0.518–0.866) in the validation cohort 
and the external test cohort, respectively (Figure 4). The 
difference was not statistically significant (P=0.280).

Discussion

Our study showed that several CT characteristics of lung 
adenocarcinoma were associated with STAS, which implies 
that the radiologists’ visual interpretation might have the 
potential to assess the STAS status preoperatively. Using 
automated parameter tuning, an optimal model which includes 
age, maximum diameter, and the ratio of the solid component 
can achieve high diagnostic performance for preoperative 
prediction of STAS in both the internal validation cohort and 
the external test cohort with AUC of 0.801 (95% CI: 0.709–
0.892) and 0.692 (95% CI: 0.518–0.866) in the validation 
cohort and the external test cohort, respectively. 

Widespread usage of low dose CT screening and micro 
intervention operation leads to the early detection of lung 
cancer and limited resection which preserves more lung 
parenchyma and improves patients’ prognosis in turn (14). 
With the aid of artificial intelligence, CT scanning can be 
used to predict the invasive patterns of lung cancer (15). The 
newly defined invasion manner of lung adenocarcinoma, 
STAS, was shown to be a significant prognosticator for 
locoregional recurrence when patients with STAS-positive 
nodules received limited resection. However, if these 

Table 1 Clinical characteristics of the patient cohort from center I and II

Characteristics
Center I: STAS status Center II: STAS status

Positive (n=90) Negative (n=372) P value Positive (n=28) Negative (n=88) P value

Age (years) 55.1±13.2 58.8±12.4 0.013 53.4±13.7 61.2±10.9 0.018

Gender, n (%) 0.165 0.822

Male 46 (51.1) 160 (43.0) 13 (46.4) 43 (48.9)

Female 44 (48.9) 212 (57.0) 15 (53.6) 45 (51.1)

Smoker status, n (%) 0.075 0.936

Smoking 30 (33.3) 90 (24.2) 9 (32.1) 29 (33.0)

Nonsmoking 60 (66.7) 282 (75.8) 19 (67.9) 5 (67.0)

STAS, spread through air spaces.
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Table 2 Association between STAS and CT characteristics 

Characteristics

Center I Center II

Nodules 
(n=462)

STAS status
P value Nodules (n=116)

STAS status
P value

Positive (n=90) Negative (n=372) Positive (n=28) Negative (n=88)

Maximum 
diameter (mm)

20.00  
(12.70, 30.20)

18.23  
(11.59, 28.12)

24.53  
(18.99, 37.51)

<0.001 23.40  
(16.60, 37.63)

37.78  
(20.78, 49.23)

21.98  
(15.13, 33.46)

0.002

Maximum area 
(mm2)

223.69  
(89.67, 474.77)

172.04  
(75.68, 426.30)

385.02  
(222.47, 719.88)

<0.001 302.295  
(150.30, 781.53)

727.80  
(284.07, 1,239.99)

251.83  
(130.20, 626.61)

0.001

Area of the solid 
component (mm2)

114.08  
(10.25, 384.46)

68.50  
(0.00, 297.72)

336.88  
(193.56, 674.67)

<0.001 254.91  
(52.97, 705.17)

585.88  
(220.75, 1,160.43)

181.40  
(49.70, 523.56)

0.001

Ratio of solid 
component (%)

58.97±42.88 85.17±30.04 52.64±43.15 <0.001 69.89±37.20 79.67±32.25 60.77±38.28 0.014

Nodule type, n (%) <0.001 0.096

GGN 102 (22.1) 3 (3.3) 99 (26.6) 11 (9.5) 0 (0.0) 11 (12.5)

Part-solid 141 (30.5) 17 (18.9) 124 (33.3) 41 (35.3) 9 (32.1) 32 (36.4)

Solid 219 (47.4) 70 (77.8) 149 (40.1) 64 (55.2) 19 (67.9) 45 (51.1)

Pleural thickening, n (%) 0.002 0.186

Present 287 (62.1) 69 (76.7) 218 (58.6) 84 (72.4) 23 (82.1) 61 (69.3)

Absent 175 (37.9) 21 (23.3) 154 (41.4) 32 (27.6) 5 (17.9) 27 (30.7)

Pleural retraction, n (%) 0.001 0.142

Present 275 (59.5) 67 (74.4) 208 (55.9) 78 (67.2) 22 (78.6) 56 (63.6)

Absent 187 (40.5) 23 (25.6) 164 (44.1) 38 (32.8) 6 (21.4) 32 (36.4)

Mediastinal lymph node enlargement, n (%) 0.002 0.350

Present 54 (11.7) 19 (21.1) 35 (9.4) 22 (19.0) 7 (25.0) 15 (17.0)

Absent 408 (88.3) 71 (78.9) 337 (90.6) 94 (81.0) 21 (75.0) 73 (83.0)

Hilar lymphatic enlargement, n (%) 0.058 0.277

Absent 51 (11.0) 15 (16.7) 36 (9.7) 21 (18.1) 7 (25.0) 14 (15.9)

Present 411 (89.0) 75 (83.3) 336 (90.3) 95 (81.9) 21 (75.0) 74 (84.1)

Vascular cluster sign, n (%) <0.001 0.162

Present 161 (34.8) 46 (51.1) 115 (30.9) 45 (38.8) 14 (50.0) 31 (35.2)

Absent 301 (65.2) 44 (48.9) 257 (69.1) 71 (61.2) 14 (50.0) 57 (64.8)

Lobulation, n (%) <0.001 0.274

Present 205 (44.4) 55 (61.1) 150 (40.3) 60 (51.7) 17 (60.7) 43 (48.9)

Absent 257 (55.6) 35 (38.9) 222 (59.7) 56 (48.3) 11 (39.3) 45 (51.1)

Specula, n (%) <0.001 0.590

Present 234 (50.3) 62 (68.9) 172 (46.2) 57 (49.1) 15 (53.6) 42 (47.7)

Absent 228 (49.4) 28 (31.1) 200 (53.8) 59 (50.9) 13 (46.4) 46 (52.3)

Air bronchogram, n (%) 0.912 0.446

Present 93 (20.1) 23 (25.6) 70 (18.8) 27 (23.3) 8 (28.6) 19 (21.6)

Absent 369 (79.9) 67 (74.4) 302 (81.2) 89 (76.7) 20 (71.4) 69 (78.4)

Satellite lesions, n (%) 0.988 0.501

Present 46 (10.0) 9 (10.0) 37 (9.9) 20 (17.2) 6 (21.4) 14 (15.9)

Absent 416 (90.0) 81 (90.0) 335 (90.1) 96 (82.8) 22 (78.6) 74 (84.1)

Table 2 (continued)
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Table 2 (continued)

Characteristics

Center I Center II

Nodules 
(n=462)

STAS status
P value Nodules (n=116)

STAS status
P value

Positive (n=90) Negative (n=372) Positive (n=28) Negative (n=88)

Vacuolar sign, n (%) 0.437 0.706

Present 99 (21.4) 22 (24.4) 77 (20.7) 26 (22.4) 7 (25.0) 19 (21.6)

Absent 363 (78.6) 68 (75.6) 295 (79.3) 90 (77.6) 21 (75.0) 69 (78.4)

Void sign, n (%) 0.513 0.806

Present 29 (6.3) 7 (7.8) 22 (5.9) 15 (12.9) 4 (14.3) 11 (12.5)

Absent 433 (93.7) 83 (92.2) 350 (94.1) 101 (87.1) 24 (85.7) 77 (87.5)

Pleural effusion, n (%) 0.383 0.011

Present 14 (3.0) 4 (4.4) 10 (2.7) 2 (1.7) 2 (7.1) 0 (0.0)

Absent 448 (97.0) 86 (95.6) 362 (97.3) 114 (98.3) 26 (92.9) 88 (100.0)

Distribution within the lobe, n (%) 0.334 0.321

Center 91 (19.7) 69 (76.7) 302 (81.2) 98 (84.5) 22 (78.6) 76 (86.4)

Peripheral 371 (80.3) 21 (23.3) 70 (18.8) 18 (15.5) 6 (21.4) 12 (13.6)

Nodule location, n (%) 0.415 0.239

LUL 116 (25.1) 27 (30.0) 89 (23.9) 29 (25.0) 11 (39.3) 18 (20.5)

LLL 65 (14.1) 16 (17.8) 49 (13.2) 19 (16.4) 3 (10.7) 16 (18.2)

RUL 164 (35.5) 26 (28.9) 138 (37.1) 43 (37.1) 7 (25.0) 36 (40.9)

RML 33 (7.1) 5 (5.6) 28 (7.5) 6 (5.2) 2 (7.1) 4 (4.5)

RLL 84 (18.2) 16 (17.8) 68 (18.3) 19 (16.4) 5 (17.9) 14 (15.9)

Central low attenuation , n (%) 0.201 0.321

Present 32 (6.9) 9 (10.0) 23 (6.2) 18 (15.5) 6 (21.4) 12 (13.6)

Absent 430 (93.1) 81 (90.0) 349 (93.8) 98 (84.5) 22 (78.6) 76 (86.4)

Other pulmonary nodules, n (%) 0.819 0.963

Present 236 (51.1) 45 (50.0) 191 (51.3) 70 (60.3) 17 (60.7) 53 (60.2)

Absent 226 (48.9) 45 (50.0) 181 (48.7) 46 (39.7) 11 (39.3) 35 (39.8)

Emphysema, n (%) 0.903 0.985

Present 79 (17.1) 15 (16.7) 64 (17.2) 25 (21.6) 6 (21.4) 19 (21.6)

Absent 383 (82.9) 75 (83.3) 308 (2.8) 91 (78.4) 22 (78.6) 69 (78.4)

Pulmonary fibrosis, n (%) 0.406 0.921

Present 41 (8.9) 10 (11.1) 31 (8.3) 20 (17.2) 5 (17.9) 15 (17.0)

Absent 421 (91.1) 80 (88.9) 341 (91.7) 96 (82.8) 23 (82.1) 73 (83.0)

Calcification, n (%) 0.912 0.967

Present 11 (2.4) 2 (2.2) 9 (2.4) 4 (3.4) 1 (3.6) 3 (3.4)

Absent 451 (97.6) 88 (97.8) 363 (97.6) 112 (96.6) 27 (96.4) 85 (96.6)

Distribution within the lobe: center, the nodule entirely located within the inner two-thirds of the lung; peripheral, a portion of the nodule 
residing in the outer third of the lung. STAS, spread through air space; LUL, left upper lobe; LLL, left lower lobe; RUL, right upper lobe; 
RML, right middle lobe; RLL, right lower lobe.
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BA

Figure 3 A 80-year-old man with STAS-negative lung adenocarcinoma. (A) Axial CT image (width, 1,500 HU; level, −600 HU) showing a 
ground-glass nodule of the right upper lobe (long arrow). (B) Photomicrograph (hematoxylin-eosin stain, magnification ×200) showing clean 
alveolar spaces (arrowheads) adjacent to the boundary (dashed line) of the tumor (star).

BA

Figure 2 A 39-year-old man with STAS positive lung adenocarcinoma. (A) Axial CT image (width, 1,500 HU; level, −600 HU) showing 
a solid nodule of the right upper lobe (arrow). (B) Photomicrograph (hematoxylin-eosin stain, magnification ×200) showing detached 
micropapillary clusters of tumor cells (arrowheads) in alveolus beyond the edge (dashed line) of the primary tumor (star).

patients underwent lobectomy, the association between 
STAS and tumor recurrence and overall patient survival 
was not observed (5). Therefore, preoperative knowledge of 
STAS status is essential for surgeons to choose the optimal 
operative type. STAS is a histopathological finding which 

can only be discerned after operation. Before the operation, 
the surgeons cannot obtain information about the STAS 
status of lung nodules.

Several studies, including our previous research, 
attempted to investigate the association between CT 
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features and STAS status or to predict STAS status using 
CT-based radiomics machine learning model (9-12). de 
Margerie-Mellon and colleagues noticed that size and 
a high proportion of solid components were associated 
with STAS (9). Using CT imaging features to develop 
a multivariable prediction model, Kim et al. found that 
the percentage of solid components was an independent 
predictor of STAS, which could achieve a sensitivity of 
89.2% and a specificity of 60.3% when the cutoff value 
was set at 90% (11). Due to the low prevalence of STAS 
in early stage lung adenocarcinomas, both studies selected 
STAS-negative nodules with matched age, gender, and 
smoking status for analysis. Therefore, selection bias was 
introduced. In the present study, age was found to be an 
independent risk factor, and young patients tended to have 
STAS positive tumors. In the study performed by Toyokawa 
et al., presence of notch and the absence of GGO were 
demonstrated to be independent risk factors for the STAS 
phenomenon. Although Toyokawa et al. proved that the 
ratio of the solid components at four levels was different 
between STAS-positive and -negative tumors, they did not 
quantify the solid components in the multivariate analysis. 
Therefore, they might have exaggerated the contribution 
of these nodule types. In this study, the univariate analysis 

showed that both the nodule type and the ratio of the 
solid components were associated with STAS status, while 
multivariate analysis revealed that only the ratio of solid 
components was the risk factor. Nodule type and the 
ratio of solid components were related to the variables, 
and the ratio of solid components could quantify the sub-
solid nodules. Our previous study showed that the median, 
maximum, age, maximum 3D diameter, and size-zone non-
uniformity normalized scale were listed as the top five critical 
radiomics features with a random forest machine learning 
model, which obtained an AUC of 0.75 (12). Our study is 
the first to develop and validate a model to predict STAS on 
CT characteristics. Three variables, which consisted of age, 
maximum diameter, and the ratio of solid components, were 
selected to develop an optimal model using the leveraging 
automated parameter tuning R package, ‘bestglm’. The two 
CT characteristics included in the model were concordant 
with what had been reported by de Margerie-Mellon and 
Kim. Nodules with larger size and more solid components 
tended to be STAS positive. Adding age, our model 
performed as well as the radiomics model.

Furthermore, we added an external test cohort, which 
was unseen by the model. Although the only moderate 
performance was obtained in the test cohort, it reflected the 
model’s ability to predict STAS in the real world. Therefore, 
our study addressed not only the association between CT 
characteristics and STAS status of lung adenocarcinomas, 
but the possibility to harness perceptible CT characteristics 
to predict STAS, which allows it to be a routinely available 
modality in the real world and manages to eliminate the 
need for time-consuming segmentation. 

There are some limitations to this study. First, STAS is a 
histopathological finding, and so we could only enroll those 
patients who had operation to resect tumors. The nodules 
tended to be large, and had more solid components or a 
greater likelihood of being malignant at visual interpretation. 
Therefore, selection bias might have been introduced. 
Second, only 19.5% nodules in the center I cohort and 
24.1% nodules in the center II cohort were STAS positive. 
This imbalanced data could have decreased the accuracy of 
the model. Augmentation or down-sampling was conducted 
to improve the model’s performance and prevent overfitting. 
Third, the lack of follow-up prevented us from evaluating the 
effects of STAS on patients’ prognosis. 

In conclusion, at univariate analysis, several CT 
characteristics were associated with the STAS status of lung 
adenocarcinomas. Age, maximum diameter, and the ratio of 
solid components were selected by the ‘bestglm’ package in 
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Figure 4 ROC curve of a CT-based logistic regression machine 
learning model for predicting STAS in lung adenocarcinoma in 
the validation cohort and the external test cohort. ROC, receiver 
operating characteristic; STAS, spread through air space.
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R to develop an optimal model for predicting STAS status. 
The model showed good diagnostic performance in both 
the internal validation cohort and the external test cohort, 
which demonstrated that routine visual interpretation of 
CT images could be useful for preoperative assessment of 
STAS status for lung adenocarcinomas.
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