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Background: Prostate tumor volume correlates with critical components of cancer staging such as Gleason 
score (GS) grade, predicted disease progression, and metastasis. Therefore, non-invasive tumor volume 
measurement may elevate clinical management. Radiology assessments of multi-parametric MRI (MP-MRI) 
commonly visually examine individual images to determine possible tumor presence. This study combines 
registered MP-MRI into a single image that display normal tissue and possible lesions. This study tests and 
exploits the vector nature of spatially registered MP-MRI by using supervised target detection algorithms 
(STDA) and color display and psychovisual analysis (CIELAB) to non-invasively estimate prostate tumor 
volume.
Methods: MRI, including T1, T2, diffusion [apparent diffusion coefficient (ADC)], dynamic contrast 
enhanced (DCE) images, were resampled, rescaled, translated, and stitched to form spatially registered 
Multi-parametric cubes. The multi-parametric or multi-spectral signatures (7-component or T1, T2, 
ADC, etc.) that characterize the prostate tumors were inserted into target detection algorithms with 
conical decision surfaces (adaptive cosine estimator, ACE). Various detection thresholds were applied to 
discriminate tumor from normal tissue. In addition, tumor appeared as yellow in color images that were 
created by assigning red to washout from DCE, green to high B from diffusion, and blue to autonomous 
diffusion image. The yellow voxels in the three-channel hypercube were visually identified by a reader and 
recording voxels that exceed a threshold in the b* component of the CIELAB algorithm. The number of 
reported tumor voxels were converted to volume based on spatial resolution and slice separation. The tumor 
volume measurements were quantitatively validated by comparing the tumor volume computations to the 
pathologist’s assessment of the histology of sectioned whole mount prostates from 26 consecutive patients 
with prostate adenocarcinoma who underwent radical prostatectomy. This study analyzed tumors exceeding 
1 cc and that also took up contrast material (18 patients).
Results: High correlation coefficients for tumor volume measurements using supervised target detection 
and color analysis vs. histology from wholemount prostatectomy were computed (R=0.83 and 0.91, 
respectively). A linear fit for tumor volume measurements using for supervised target detection and color 
analysis vs. tumor measurements from radical prostatectomy (after correcting for shrinkage from the radical 
prostatectomy) results in a slope of 1.02 and 3.02, respectively. A polynomial fit for the color analysis to the 
histology found (R=0.95). Voxels exceeding a threshold in the b* part of the CIELAB algorithm yielded 
correlation coefficients (0.71, 0.80) offsets (0.01 cc, −0.63 cc) and slopes (1.99, 0.89) against the wholemount 
prostatectomy and color analysis, respectively. 
Conclusions: Supervised target detection and color display and analysis applied to registered MP-MRI 
non-invasively estimates prostate tumor volumes >1 cc and displaying angiogenesis.
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Introduction

Prostate cancer (PCa) in men is the most common non-
cutaneous malignancy and the second leading cause of cancer-
related death in the United States (1). Studies show that 
prostate tumor volume correlates with Gleason score (GS) 
grade, stage, disease progression and predicting biochemical-
free survival after radical prostatectomy, probability of 
vascular invasion, involvement of seminal vesicles, and 
distant metastasis (2-6). For example, small tumors (<0.5 cm3)  
displaying no evidence of tumor aggressivity are considered 
to be clinically insignificant, and such tumors are often 
grouped within low risk or very low risk PCa that are 
appropriate for deferred therapy. However, metastasis 
is highly likely when tumor volume exceeds 12 cm3,  
but less likely for smaller tumor volumes (<4 cm3) (6).  
Others reported that tumor size is related to the risk of 
relapse following radical prostatectomy (7) and prostate-
specific antigen (PSA) progression (8). Autonomous and 
accurate noninvasive measurement of prostate tumor 
volume could, therefore, substantially improve PCa disease 
management.

Exploiting tumor volume measurement for PCa 
management is currently problematic. Conventional 
assays such as preoperative PSA levels and findings from 
digital rectal examination and transrectal ultrasonography 
poorly predict tumor volume (9-11). In addition, the 
quality of MRI interpretations is highly dependent on the 
skill and experience of the reader and results in widely 
varying reported accuracy of tumor volume measurements 
using MRI (12-14). Therefore, current tumor volume 
measurements that only use MR imaging and other assays 
are not currently considered sufficiently reliable for clinical 
decision making (15-18). 

Prostate tumor’s distinguishing physiology relative to 
normal prostate tissue is manifested in its appearance in 
MRI. MR imaging methods, such as MR spectroscopic 
imaging (19) and dynamic contrast material-enhanced MR 
imaging (20-24) have been investigated for their capability 
to improve prostate tumor volume measurement. Reports 
(17,25-29) suggested that apparent diffusion coefficient 
(ADC) maps may clinically aid PCa diagnosis. 

Currently most conventional MRI and computer aided 

diagnosis (CAD) do not fully exploit the high spatial 
resolution of MRI (<1 mm in the transverse direction). 
Tumors are often considered to be single monolithic 
entities despite being heterogeneous with variable GS 
spread across the lesion. The common spatial processing 
of an image assesses the local roughness, entropy, etc. via 
feature extraction using co-occurrence matrices (greater 
than one dimension) to distinguish cancer and normal 
tissues. Texture-based imaging features in conjunction with 
machine learning-based classification have been applied for 
classifying malignant from noncancerous prostate tissues 
(30-34). The spatial processing requires analyzing an image 
over several voxels, thereby limiting analysis (such as GS) 
within a heterogeneous tumor. 

The purpose of our study was to examine three novel 
assessments to measure tumor volume by analyzing spatially 
registered parametric MRI and comparing them to surgical 
pathologic examination as the reference standard. We 
analyzed a retrospective database composed of matched 
multi-parametric MRI (MP-MRI) and pathologic findings 
in patients treated with radical prostatectomy. In the 
present study, we used this database to evaluate MP-
MR imaging accuracy in estimating PCa volume. This 
study tests and exploits the vector nature of spatially 
registered MP-MRI. Most clinical assessments of MP-MRI 
inefficiently examine each individual image to assess the 
presence of tumor. This study examines three approaches 
that fuse multiple (3 or 7) images into a single image. Target 
signatures were inserted into supervised target detection 
algorithms (STDA) (35) to non-invasively detect PCa at 
the voxel level and to measure the tumor volume. The 
tumor appearance was enhanced through colors (yellow) 
(36,37) visually identified by a reader and by also applying 
a version of the CIELAB process (38) to the multi-spectral 
hypercubes. The techniques described in the manuscript 
are general and apply for any MRI scanner that collect the 
requisite images. Comparing “blobs” between MRI and 
histology is technically difficult due to slice misregistration 
between the two modalities. The goal of this study was not 
direct detection of tumors, but to estimate tumor size. By 
computing a cumulative rather than an individual feature, 
errors due to misregistration will average out.
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Methods

Overall approach 

This study follows steps 1–6 (Figure 1) to analyze tumor 
(targets). This approach adapts procedures previously applied 
for Gleason scoring (35) and multispectral data and target 
detection for drone imagery (39,40). Each voxel is treated 
as a vector composed of MRI modality rather than a scalar 
value and can be exploited for color to highlight the tumor. 
Multispectral MRI data containing 7 components (35)  
[T1 (pre contrast), T1 (maximum contrast), T2, ADC, 
diffusion weighted image-high B (B=1,000 s/mm2), washout 
or kep from dynamic contrast enhanced (DCE)] (step 1), 
are registered by translating, scaling, and repositioning 
every MRI slice (step 2) into “cubes.” Further stitching 
spatially registered slices or cubes forms hypercubes (step 3),  
judiciously assigning red, green, blue (R, G, B) (step 4) to 
three modalities in the hypercube to enhance the tumor 
appearance as yellow after masking and displaying for the 
entire prostate. A reader and an algorithm identified the 
yellow color and assigned it to the tumor. The algorithms 
use multispectral tumor signatures (for tumor, GS) derived 
from training (steps 4, 5) in conjunction with the patient’s 
whole mount histology (ground truth) (35). 

The supervised target algorithm uses the signature 
(step 5), to detect the patient’s tumor (step 6). The 
prostate tumor measurements are compared to the “gold 
standard”, i.e., a pathology evaluation of histology of 
slices of a patient’s resected whole mount prostate. Tumor 
volume measurements used a similar approach. No image 

registration for histology and MP-MRI is needed.

Supervised target detection, adaptive cosine estimator 
(ACE)

The multispectral STDA methods (35) were adapted for 
this medical application, shown in Figure 2 in two (of the 
seven) dimensions. Targets are characterized by their “target 
signature” (cyan vector in Figure 2) that is MRI modality 
dependent, extending from the background mean (normal 
tissue background displayed as magenta in Figure 2). After 
“training” or identifying the target signature within an 
image (Figure 2 cyan vector) taken from summing selected 
vectors from comparing MRI and histology assessments, 
(Figure 2 blue vector) and inserted into a STDA algorithm 
such as ACE {Eq. [1]} to classify each pixel (35,39). ACE 
uses the conical hyperspace decision surface to assess 
whether a voxel is background (large angle, small cosine) 
or target (small angle or large cosine). Mathematically, the 
ACE score at a given voxel i that has a seven-component 
vector is given by (35,39)
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where ACE is the cosine between the test pixel i and the 
signature in the “whitened space” (35), m is the background 
(normal prostate) or mean value for each of the 7 modalities, 
S is the tumor signature from the mean of N target vector-
voxels xk, summed over k target voxels, that are identified 
via MR/RP training data {Eq. [2]}, 

Figure 1 Outline and steps for supervised tumor volume measurement.

1 2 3 4 5 6



122 Mayer et al. Algo spat reg MP-MRI prostate tumor volume

© Quantitative Imaging in Medicine and Surgery. All rights reserved.   Quant Imaging Med Surg 2021;11(1):119-132 | http://dx.doi.org/10.21037/qims-20-137a

 
1

kS x
N

= ∑  [2]
 
In Eq. [1], CVM is the covariance or clutter matrix (7×7), 

and the superscripts T and −1 denote a matrix transpose and 
inversion operation, respectively. 

To generate the background statistics (m, CVM), the 
prostate image is manually outlined for all slices to generate an 
image mask and restrict computations to the prostate volume. 

The identification of the pixel depends on the detection 
threshold set by the user based on previous examined data 
that optimizes a desired feature such as correlation with 
a standard or for hyperspectral analysts a maximum false 
alarm rate or minimum detection rate. A map of candidate 
targets can then be presented to the image analyst, 
radiologist or radiation oncologist. 

Study design and population

The National Institutes of Health (NIH) prostate MRI and 
histology from wholemount prostatectomy were gathered 
from The Cancer Imaging Archive (TCIA) (41,42). This 
retrospectively designed, single institution study was 
approved by the local institutional review board, and 
was compliant with the Health Insurance Portability and 
Accountability Act of 1996. This subsequent retrospective 
analysis used the publicly available, anonymized data and 
did not require further review due to previous protections 

implemented by TCIA. A total of 26 consecutive patients 
were enrolled in the study between July 2008 and July 2009. 
Median patient age was 60 years (range, 49 to 75 years) and 
median PSA was 5.8 ng/mL (range, 2.3 to 23.7 ng/mL).  
All patients had biopsy proven adenocarcinoma of the 
prostate and median GS was 7 (range 6 to 9). In this study, 
18 patients were selected based on tumor size >1 cc and 
evidence of contrast uptake. No restrictions were placed on 
tumor location within the prostate. A robotic assisted radical 
prostatectomy was performed with a median time of 60 days 
(maximum 180 days) of imaging without any intervening 
treatment. Additional exclusion criteria were contraindications 
to MRI or inability to have an endorectal coil placed. 

Magnetic resonance imaging

The MRI collects DWI, DCE, and structural images in 
DICOM format. The pulse sequences were described 
in earlier studies (43-46). These studies (43-46) were 
performed using a combination of an endorectal coil (BPX-
30, Medrad) tuned to 127.8 MHz and a 16-channel cardiac 
coil (SENSE, Philips Medical Systems) on a 3T magnet 
(Achieva, Philips Medical Systems) without the need for 
prior bowel preparation. Standard approaches were used 
to insert the endorectal coil. The MRI protocol included 
triplanar T2W turbo spin echo, DW MRI, 3DMR point 
resolved spectroscopy, and axial pre-contrast T1-weighted 
axial 3D fast field echo DCE MRI sequences, and their 
detailed sequence parameters were defined in a prior 
study (40). The mean interval between MRI and radical 
prostatectomy was 60 days (range, 3 to 180 days).

Whole mount prostatectomy and histology

3D models of each prostate (44,45) were generated by 
segmenting the prostate capsule on in vivo triplane T2W 
MRI, fusion of the binary objects, and surface extracting from 
high resolution 3D surfaces. Each mold was designed using 
commercially available 3D computer aided design software 
and the design incorporated the deformation of the endorectal 
coil. A 3D printer (Dimension Elite 3D printer, Stratasys, 
Inc.) deposited styrene to fabricate each mold. Following 
robotic radical prostatectomy, the specimen was fixed in 
formalin for 2 to 24 hours at room temperature, and the 
specimen was placed in the customized 3D mold and sliced in 
axial 6 mm sections. After robotic prostatectomy, the rostate 
were placed in room temperature formalin for 24–48 hours, 
sectioned, embedded in paraffin, fixed again, and stained with 

Figure 2 Two-dimensional schematic shows ACE detection, 
background, target signature (blue), false alarms (inside cone), 
decision surface (cone), missed detection (outside cone). Cyan 
vector is target signature. ACE, adaptive cosine estimator.
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hematoxylin-eosin for histopathologic evaluation. Whole 
mount histopathology NIH patient specimens were sectioned 
in the customized mold for histopathology and mapped for 
individual tumor foci, dimensions and GS independently 
assessed by 2 experienced pathologists blinded to MRI. 
Sectioning of the gross specimen in the molds corresponded 
to the axial plane of the MRI sections.

Image processing, pre-analysis

This study exploits tumor physiology to help distinguish 
lesions from normal tissues by analyzing the DCE. DCE 
are time series images that follow the evolution of contrast 
material over several hundred seconds following its injection 
and uptake in the tissues. Prostate tumors are often highly 
vascularized. The vasculature is porous to material and the 
contrast material enters the small extravascular space (but 
not the cells). Therefore, prostate tumors can fill and empty 
MRI contrast material quickly relative to normal prostate 
organ. A simple two compartment model (47,48) describes 
the tracer concentration in the tissue that supplies and 
empties through the tumor vasculature and used to create 
the washout or kep image.

The MRI images were digitally resampled (35) to 1 mm  
resolution in the transverse direction and 6 mm in the 
superior-inferior direction based on patient’s table position, 
scaled, translated, resliced and spatially registered at 
the pixel level. Rigid registration is applied between the 
structural, diffusion, and DCE due to the short time 
intervals between scans (<20 minutes). The multiple axial 
cubes in three dimensions were “mosaicked” together by 
sequentially stitching them together into a narrow three-
dimensional image. In this way, the four dimensions (three-
dimensional body volume plus the fourth dimension 
composed of MRI modalities) are compressed into three 
dimensions using the mosaicked cubes.

Tumor volume measurements, coloring

Measuring the tumor volume is a critical component for 
assessing the patient’s condition and for helping to guide 
treatment decisions (2-8). Color displays (36) (left side of 
Figure 3) delineate the tumor. The images are normalized by 
setting minimum and maximum to the mean −3× standard 
deviation and mean +3× standard deviation, respectively. 
The color display can be generated by assigning red, green, 
and blue channels to the grey scale images of the washout or 
kep, DWI, and ADC images respectively. Tumors (denoted by 

arrows) can appear as yellow (or bright) due to exhibiting high 
vascularization (high kep, high red), low diffusion (high for high 
B-DWI, green, and low ADC, low blue). The number of pixels 
inside the brighter or yellow portion of RGB images or Region 
of Interest can be generated from standard image processing 
(see darkened or red area inside the contoured image). In 
addition, a matching tumor is delineated by a pathologist (see 
Figure 3 for before and after outlined histology images). A 
comparison of tumor areas in each slice can be made between 
the MRI and the histology images after accounting for 
different spatial resolutions for the two sets of images. 

In Figure 3, the spatial resolution is 1 mm per pixel 
for the registered MRI image set and 47 pixels per mm 
or 1,200 dots per inch for the histology images (scaling 
of 47×47=2,209). Figure 3 shows tumor areas contain 239 
and 323,196 pixels (scales to 145 pixels using 1/2,209) in 
the MRI and histology images, respectively. The displayed 
images in Figure 3 are scaled for the reader’s convenience. 
The histology images were stained with hematoxylin-
eosin. To convert to tumor volume, both sets of images are 
matched to a slice thickness of 6 mm. 

Histologic sectioning of wholemount prostatectomy 
shrinks the prostate and tumor volume (17,49,50). The 
tissues shrink by 15% (49) and the computed histology-
based tumor volume is corrected accordingly.

CIELAB computation

The CIELab is a color space defined by the International 
Commission on Illumination (CIE) in 1976 (37,38). 
The unique goal of the L*a*b* model is to be ‘device-
independent’. The colors should not depend on the device 
they are displayed. It expresses color as three values: L*, 
a*, and b*. The nonlinear relations between red, green, 
and blue components and L*, a*, and b* are intended to 
mimic the nonlinear response of the eye and derived from 
psychovisual studies. The b* axis is of particular interest 
in this study and represents the opposing blue-yellow 
component, with blue in the negative direction and yellow 
in the positive direction. 

The calculation proceeds in two stages. All negative 
values are masked and the RGB are normalized after 
removing the lowest 2.5% and highest 2.5% values. The 
R, G, and B are normalized and assigned to X, Y, and Z, 
respectively, without admixing. It is observed that admixing 
(non-identity transform matrix) degrades (not shown) the 
performance for this particular application. The CIEXYZ 
tristimulus values for Xn, Yn, and Zn of the reference white 
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point are 96.42, 100, and 82.52, respectively, based on the 
illuminant D50. The b* is given in Eq. [3] as (37,38)

* 200*
n n

Y Zb f f
Y Z
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In this study, “yellow” b* >0 and tumor is defined as 
b* >1 standard deviation to help filter out background or 
normal tissue.
Tumor volume measurements, supervised target detection

Figure 4 summarizes the procedure for estimating the tumor 
volume using the STDA. The voxels identified as seeds for 
the spectral signature are found by identifying the yellow in 
the RGB image. The 7-dimensional spectra from the 2 to 5 
voxels are averaged to form a single 7-dimensional signature 
S {Eq. [2]}. The small number of pixels were chosen within 
the heterogeneous tumor for maximal contrast uptake and 
minimal diffusion and averaged to reduce temporal noise. 
The 7 components for ACE were inherited from a GS study 
(35) that used a relatively high number of components but 
also provided diverse information about the tumor and helped 
assess the tumor through high discrimination. The normal 
prostate is contoured using the spatially registered hypercube 
to help generate a mask for determining the mean (m) and 
covariance matrix (CVM) of the normal prostate. The ACE 
score {Eq. [1]} is computed for each voxel in the hypercube 
using the signature, mean, and covariance. A threshold is 
applied to the ACE map with tumor exceeding the threshold 
and normal tissue assigned to ACE scores residing below the 

Figure 3 RGB (red = washout, green = DWI-Hi B, blue = ADC) and histology of Patient #11. Tumor denoted by arrows, displayed as 
yellow in RGB images and outlined by pathologist. Red areas denote tumor (MRI =239, histology =323,196 s, rescaled to 145 pixels). The 
B from CIELAB is displayed along with pixels [99] that exceed one standard deviation. Displayed mages are scaled for reader’s convenience. 

The histology images were stained with hematoxylin-eosin.

Tumor

Tumor

239
pixels

CIELAB_B

CIELAB_ B:
> 1 Stand
Deviation,
99 pixels

323,196 pixels
(Scale to MRI:
145 pixels)

Tumor

HIstology

Red: Washout, kep
Green: DWI-Hi B
Blue: ADC



125Quantitative Imaging in Medicine and Surgery, Vol 11, No 1 January 2021

© Quantitative Imaging in Medicine and Surgery. All rights reserved.   Quant Imaging Med Surg 2021;11(1):119-132 | http://dx.doi.org/10.21037/qims-20-137a

threshold. ACE scores range from –1.0 to 1.0. The chosen 
thresholds in this study varied from 0.40 to 0.85 in 0.05 
increments. The number of tumor voxels are converted to 
volume using the MRI spatial resolution (1 mm × 1 mm) and 
slice thickness (6 mm) to compute the single voxel volume 
(0.006 cm3). The MR-derived volume is matched against the 
histology determined volume (see above).

Results

Tumor volumes were computed by applying color and 
STDA (following procedures described in the “Methods” 
section) to MP-MRI of 18 of the 26 TCIA archived 
patients. The analysis was confined to tumors that 
exceeded 1 cc in size as measured from the wholemount 
prostatectomy. Seven tumors were excluded due to size 
falling below the threshold. One tumor was excluded due to 
no apparent contrast material uptake as determined through 
DCE. No restrictions were applied to the analysis regarding 

location of the tumor in the prostate. Two of the tumors 
were very large (12 cc, 20 cc).

The analysis is summarized by intercomparing among the 
three different types of tumor volume measurements, i.e., 
color analysis vs. histology of wholemount prostatectomy 
and supervised target detection vs. histology of wholemount 
prostatectomy.

The comparison of tumor volume measurements that 
compared supervised target detection with color analysis 
and pathology of wholemount prostatectomy depends on 
the threshold for supervised target detection. As noted, 
this study analyzed the performance of supervised target 
detection that included 10 different thresholds (0.40 to 
0.85 in 0.05 increments). Determination of how well a 
given measurement estimates the tumor volume provides 
a metric for assessing a given technique. A summary of the 
performance is displayed in Figures 5,6 and Table 1. 

Figure 5A  plots the computed linear correlation 
coefficient between the ACE supervised tumor volume 

Figure 4 Overview of supervised target detection procedures to measure tumor volume.
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measurements (with a fixed detection threshold =0.70) 
against the pathology assessment from wholemount 
prostatectomy. The linear correlation coefficient between 
ACE supervised target volume measurement for threshold 

=0.70 and wholemount prostatectomy is 0.83. The fitted 
slope is 1.02 and offset is −1.30 cc. Removing the largest and 
second largest tumors in this analysis results in a computed 
correlation coefficient of 0.415 and 0.912, respectively.

Figure 5B plots the correlation coefficients between 
the ACE supervised tumor volume measurement and 
tumor volume measurements and pathology assessment 
from wholemount prostatectomy versus ACE detection 
thresholds. The maximum correlation coefficient at 
threshold =0.70 is denoted by an arrow.

Figure 5C plots the fitted slopes between the ACE 
supervised tumor volume measurement and tumor volume 
measurements and pathology assessment from wholemount 
prostatectomy versus ACE detection thresholds. The 
fitted slope for threshold =0.70 is denoted by an arrow and 
intersects the unit slope.

Figure 6 plots the data and a linear fit between the 
color-based tumor volume estimates against the pathology 
assessment from wholemount prostatectomy (red line). The 
correlation coefficient from a linear fit and wholemount 
prostatectomy is 0.91. The fitted slope is 3.02 and offset 
is −1.40 cc. A polynomial fit of order 2 was applied 
between color-based tumor volume estimates against the 
pathology assessment from wholemount prostatectomy 
(dashed blue line). The correlation coefficient from a 

Figure 5 Quantitative comparison of tumor measurements derived from ACE and histology. (A) Plots the computed linear correlation 
coefficient between the ACE supervised tumor volume measurements (with a fixed detection threshold =0.70) against the pathology 
assessment from wholemount prostatectomy. The linear correlation coefficient between ACE supervised target volume measurement for 
threshold =0.70 and wholemount prostatectomy is 0.83. The fitted slope is 1.02 and offset is −1.30 cc. Removing the largest and second 
largest tumors in this analysis results in a computed correlation coefficient of 0.415 and 0.912, respectively. (B) Plots the correlation 
coefficients between the ACE supervised tumor volume measurement and tumor volume measurements and pathology assessment from 
wholemount prostatectomy versus ACE detection thresholds. The maximum correlation coefficient at threshold =0.70 is denoted by an 
arrow. (C) Plots the fitted slopes between the ACE supervised tumor volume measurement and tumor volume measurements and pathology 
assessment from wholemount prostatectomy versus ACE detection thresholds. The fitted slope for threshold =0.70 is denoted by an arrow 
and intersects the fitted slope =1. ACE, adaptive cosine estimator.

Figure 6 Plots the histology derived tumor volume (after 
shrink correction) against tumor volume from manual color 
determination. The linear (red) and quadratic (dashed blue) fits 
and correlation coefficients between histology and manual color 
tumor volume determination are also shown.
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Figure 7 Plots comparing tumor volume measurements using CIELAB B component with histology and color. (A) Plots the data and a 
linear fit between tumor volume derived from the pathology assessment from wholemount prostatectomy against the B component of the 
CIELAB B component estimate (red line). (B) Plots the data and a linear fit between tumor volume derived from the color assessment 
against the B component of the CIELAB B component estimate (red line). CIELAB, color display and psychovisual analysis.

Table 1 Summary of tumor volume measurements

Quantitative comparison of tumor volume measurements Fitted intercept (cc) Fitted slope Correlation coefficient (R)

Linear fit, histology vs. ACE 1.3 1.02 0.83

Linear fit, histology vs. color −1.4 3.02 0.91

Polynomial fit, histology vs. color 1.45 NA 0.95

Linear fit color vs. CIELAB 0.01 0.89 0.80

Linear fit histology vs. CIELAB −0.63 1.99 0.71

ACE, adaptive cosine estimator; CIELAB, color display and psychovisual analysis.
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polynomial fit tumor volume measurements using manual 
color assessments and wholemount prostatectomy is 0.95. 
Removing the largest and second largest tumors in this 
analysis results in a computed correlation coefficient of 0.795 
and 0.892, respectively. 

Figure 7A plots the data and a linear fit between tumor 
volume derived from the pathology assessment from 
wholemount prostatectomy against the b* component of 
the CIELAB formulation (red line) after applying Eq. [3] 
to the masked hypercubes. To avoid counting background 
voxels, voxels exceeding one standard deviation above the 
minimum yellow value (0) were counted as yellow. The 
correlation coefficient from a linear fit and wholemount 
prostatectomy is 0.71. The fitted slope is 1.99 and offset is 
−0.63 cc. Removing the largest and second largest tumors in 
this analysis results in a computed correlation coefficient of 
0.606 and 0.920, respectively.

Figure 7B plots the data and a linear fit between tumor 
volume derived from the color assessment against the b* 

component of the CIELAB formulation (red line) after 
applying Eq. [3] to the masked hypercubes. Only voxels 
exceeding one standard deviation above the minimum 
yellow value (0) were counted as yellow. The correlation 
coefficient from a linear fit and wholemount prostatectomy 
is 0.80. The fitted slope is 0.89 and offset is 0.01 cc. 
Removing the largest and second largest tumors in this 
analysis results in a computed correlation coefficient of 0.687 
and 0.887, respectively.

Table 1 summarizes the tumor volume measurements using 
supervised tumor volume measurements and color analysis. 
The table displays the slope and intercepts from linear fitting 
for the ACE supervised tumor measurement and color tumor 
volume analysis and correlation coefficients.

Discussion

This study tested tumor volume estimators, specifically a 
semi-autonomous ACE supervised target detection and 
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highlighting and quantitatively analyzing the appearance of 
tumors using a color. Both methods used spatially registered 
MP-MRI. This study applied color (3-component) and 
supervised target detection (7-component) to estimate 
prostate tumor volume. This study compared the MP-
MRI derived tumor volume measurements to tumor 
volume measurements derived from pathology evaluation 
of wholemount prostatectomy. This study found that MP-
MRI derived techniques correlate with the pathology 
analysis of wholemount prostatectomy (R>0.7). This study 
examined tumors that exceeded 1 cc in size, displayed 
contrast material uptake, but no restrictions were placed on 
tumor location within the prostate. 

Pathology analysis of histologic samples derived from 
wholemount prostatectomy is designated as the “gold 
standard” for determining prostate tumor volume in this 
study. Generating the freely suspended histology slides 
requires resecting, slicing, staining etc. the prostate. Such 
manipulations may deform, shrink, distort, and perturb 
the prostate’s geometry and result in tissue loss relative to 
an MR imaged prostate. The in vivo MR imaged prostate 
is pressed by other organs and soft tissue and supported 
against a gravitational field. As noted in the “Methods” 
section, did not distort, rotate, twist, and register etc. the 
MRI to the histology slides. This study, like earlier work 
(43-46,49), assumed that the distortion in the histology 
slides did not affect the tumor volume except for the 
shrinkage determined from other studies (49). Measures 
of agreement such as DICE separability (51,52), receiver 
operator curves (ROC) (53), and Hausdorff distances (54) 
require voxel level registration between the “gold standard” 
and test samples to match the positions and locations 
of tumors. Therefore, these metrics are not suitable 
nor applicable in the present study. Instead, correlation 
coefficient compares tumor volumes (not tumor edges, 
positions) and do not require voxel-level registration.

These MP-MRI based measurements used the dynamic 
contrast enhancement images to detect contrast flow and 
uptake within a tumor. Tumors are heterogeneous with 
regions that are highly vascularized and that are detected 
with DCE. The highly vascularized portion of the tumor may 
occupy a portion of the tumor. Most of the tumor volume 
is composed of non-vascularized tumor such as hypoxic and 
necrotic regions. Therefore, the detected tumor volumes 
using the techniques described in this study should yield 
estimates that are lower than the tumor volumes derived from 
wholemount prostatectomy as confirmed in the negative 
bias of the Bland Altman plot for uncorrected ACE (not 
shown) and the color-based polynomial fit (Figure 6). The 

linear fitted slope (Figure 6) of roughly 3 for tumor volume 
estimation from color analysis relative to wholemount 
prostatectomy suggests that, on average, the color analysis 
yields estimates roughly one-third of the total tumor volume. 
The factor of 3 agrees with an earlier (55) determination of 
tumor volume using MRI. The better fits from polynomial 
functions also implies that the disparity in vascularized 
regions relative to the total tumor volumes increases due to 
the tumor outgrowing its nutritionally supporting system 
resulting in increasing hypoxia and necrosis. The green 
areas attached to the yellow volumes are regions of low 
vascularity and low diffusion and are associated with the 
tumor. Similarly, thresholding of the b* part of CIELAB 
was correlated with the yellow display as well as pathology 
assessment of wholemount prostatectomy (Figure 7A,B). The 
linear fitted slope (Figure 7A) of roughly 2 for tumor volume 
estimation from CIELAB analysis relative to wholemount 
prostatectomy suggests that, on average, the color analysis 
yields estimates roughly half of the total tumor volume. 

ACE yielded lower correlation coefficients relative to 
the color and CIELAB approaches for predicting tumor 
volume. The highly selective target signature was chosen 
in to be regions of high contrast uptake and low diffusion. 
ACE uses more components (7) than color approaches (3) 
and further elevates the discrimination between highly 
vascularized and non-vascularized and possibly necrotic 
regions within the tumor. The tumor volume includes 
highly heterogenous regions and some that may not be 
counted in the ACE tumor volume estimate.

Most of the studied tumor volumes were small (<3 cc) 
resulting in possible spurious high correlation coefficients 
due to distortion by the larger tumors. A limitation of this 
study is the dominance of small tumors. Excluding larger 
tumors in the analysis reduces the correlation coefficient 
between the tumor volume measurements, although the 
reprocessed correlation coefficient remains significant. 
Including the large tumor shows that the approach can be 
possibly extended to especially aggressive tumors. 

The optimal ACE detection threshold value of 0.70 was 
chosen due to the highest observed correlation coefficient 
(Figure 5B) and the closeness of fitted slope to 1 (Figure 
5C). The peak in correlation coefficients (Figure 5B) is 
large and flat for higher ACE thresholds. Therefore, ACE 
thresholds greater than 0.60 maybe more useful and deserve 
examination in future studies.

Other studies (20-25) relied on experienced radiologists 
to delineate putative tumors in the MRI. Visually 
discriminating the border between tumor from normal 
tissue using MRI is often difficult and subjective. Tumor 
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volume determination by different radiologists often 
lead to significant differences. Digital tumor volume 
assessment and elevating the appearance of the tumors 
may lead to more consistent and objective staging and 
thus more reliably inform treatment options and clinical 
and treatment decisions for patients. Employing and 
thresholding the b* component of CIELAB may further 
guide the radiologist in objectively finding the yellow (in 
this scheme) or putative tumor.

This study focused on tumors that display uptake of 
contrast material. Many clinics do not inject contrast in 
their patients in order to simplify the scanning process and 
because not all tumors uptake contrast. Future research 
efforts can examine the efficacy of MP-MRI tumor 
volume estimators that do not include DCE. Adding other 
modalities, such as textures, may also be incorporated 
into the MP-MRI hypercube for tumor display and tumor 
volume estimation. Currently, this study expended effort in 
algorithm development for spatially registering the MRI and 
generating hypercubes. Future developments, automation, 
and improvements should reduce the construction time. 
Actual computations such as ACE, CIELAB, etc., are quick 
using standard, readily available computer technology. 

In addition, a large tumor (>5 cc) can occupy a relatively 
large portion of prostate organ and perturb the image statistics 
that characterize the background (normal prostate) for ACE 
calculations. Such cases may require masking for a smaller 
section of the normal prostate. There are a significant number 
of pixels (much more than the number of components) in the 
normal prostate subsection to achieve accurate statistics and 
avoid rank degeneracy for the covariance matrix.

Conclusions

Supervised target detection derived from security and 
defense applications and color display and analysis that are 
applied to registered MP-MRI, can non-invasively estimate 
prostate tumor volumes. Color (and CIELAB) analysis 
generates tumor volumes that are 3 (and 2) times lower than 
the tumor volume derived from histology of wholemount 
prostatectomy, in accord with earlier MRI results that 
uses different methodology. Non-invasive tumor volume 
measurements may improve clinical decision making, 
elevate patient care and reduce discomfort and side effects.
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