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Introduction

Lung cancer remains the most commonly diagnosed cancer 
and the leading cause of cancer-related death worldwide, 
with an estimated 2.1 million newly diagnosed lung 

cancer cases and 1.8 million deaths in 2018 (1). Among 
these, adenocarcinoma is the most prevalent subtype. The 
routine treatment for early-stage adenocarcinoma patients 
is anatomical resection and systemic nodal dissection. 
Recently, several studies have suggested that limited 
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surgery, such as wedge resection or sublobar resection, 
is a reasonable treatment option for lung cancer patients 
without lymph node metastasis (LNM) to preserve lung 
function (2-4). Adjuvant radiotherapy and chemotherapy 
were recommended for patients with any sign of LNM (5). 
Also, the International Association for the Study of Lung 
Cancer (IASLC) suggested that clinical and pathological 
lymph node status were closely related to the 5-year survival 
rate (6). Therefore, identification of lymph node status is a 
crucial step in early-stage lung cancer and is considered a 
significant prognostic factor that can be used to determine 
the surgical plan.

Fluorine-18-fludeoxyglucose (18F-FDG) positron 
emission tomography/computed tomography (PET/
CT) can noninvasively detect the metabolic activity of 
the disease. It has become an indispensable methodology 
for the evaluation of the Tumor Node Metastasis (TNM) 
staging of lung cancers, especially in higher-risk patients 
with planned surgical treatment (7). However, studies have 
reported that the incidence of occult lymph node metastasis 
(OLM) on PET/CT was up to 12.6–26.7% (8-11). Thus, a 
novel method is needed to improve the diagnostic accuracy 
of OLM in clinical N0 (cN0) patients. It has become 
widely acknowledged that the information obtained from 
the conventional images with unaided eyes is merely a 
minor representation, while a large amount of valuable data 
remains concealed in the images (12-14).

Radiomics provides a vital complementary tool to extract 
the high-dimensional and valuable data from the images 
(15,16). With the rapid development of radiomics, many 
predictive models combining radiomics signatures with 
clinical and radiologic data have been developed to predict 
the preoperative stage and prognosis of various malignant 
tumors (14,17-19). However, to our knowledge, there is 
currently no PET/CT-based radiomics model for predicting 
OLM of lung adenocarcinoma. Thus, the purpose of the 
present study was to develop a preoperative model that 
incorporates radiomics features, clinical characteristics, and 
PET parameters to predict the OLM of cN0 solid lung 
adenocarcinoma.

Methods

Patients

Our Institutional Review Board approved this study, and 
the requirement for informed consent was waived. The 

inclusion criteria were as follows: (I) patients underwent 
surgical resection and lymphadenectomy; (II) patients were 
confirmed to have lung adenocarcinoma postoperatively 
via histopathological examination; (III) PET-CT was 
performed before surgery, with a time interval of less than 
1 month; and (IV) the lesion was diagnosed as cN0; all 
short axis of LN were less than 10 mm and the FDG uptake 
did not exceed that of normal tissue (20). The exclusion 
criteria were as follows: (I) the lesion appeared as ground-
glass opacity (GGO), including pure GGO and GGO-
predominant lesion on chest CT scans; (II) FDG uptake 
of the lesions was lower than or close to the surrounding 
normal pulmonary parenchyma; (III) patients received 
chemotherapy or radiotherapy before the PET/CT 
examination; and (IV) the lesion had distant metastasis.

The histologic classification of the tumor was defined 
according to the 2015 World Health Organization 
classification (21). The clinical and pathological staging 
of the tumor was based on the TNM Classification of 
Malignant Tumors, the eighth edition (22). Ultimately, a 
total of 370 patients were enrolled in our study between 
January 2012 and May 2019. The patients were divided 
into two groups according to the date they underwent 
PET/CT imaging. Specifically, patients examined before 
January 2018 were assigned to the training set, and patients 
examined after January 2018 was assigned to the validation 
set (18,23). Their clinical data, including age, gender, 
surgical procedure, and serum carcinoembryonic antigen 
(CEA) level, were recorded.

PET/CT image acquisition and analysis

All PET/CT examinations were performed using a hybrid 
PET/CT system (Gemini 64 TF, Philips Medical Systems, 
Best, The Netherlands). An intravenous injection of 
approximately 3.7 MBq/kg of 18F-FDG was administered 
after fasting for at least 6 hours (blood glucose levels below 
110 mL/dL). After resting for 60 minutes, the PET/CT 
scan was performed with patients in the supine position. For 
precise anatomical localization and attenuation correction, 
a low dose unenhanced CT was performed from the skull 
base to the mid-thigh with the following parameters: 
tube voltage of 120 kV, tube current of 249 mA, detector 
collimation of 64 mm × 0.625 mm, the pitch of 0.829, a tube 
rotation speed of 0.5 seconds, and reconstruction thickness 
and interval of 5.0 mm. Subsequently, PET images were 
obtained by using the three-dimensional model, and the 
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parameters were set as follows: field of view of 576 mm, a 
matrix of 144×144, slice thickness and interval of 5 mm, 
and an emission scan time of each bed position of 1.5 
minutes. PET images with CT attenuation correction were 
reconstructed using the time of the fight algorithm.

Data measurement and collection were performed on 
the Philips EBW 3.0 by two radiologists. The tumor size 
was measured at the longest diameter of the lesion on 
transverse lung window settings of the CT images (window 
width, 1,500 HU; window level, −750 HU). Volume viewer 
software was used to calculate PET parameters, and the 
tumor volumes of interest (VOIs) were automatically 
generated using the threshold standardized uptake 
value (SUV). The maximum standardized uptake value 
(SUVmax) was defined as the highest SUV voxel in the 
volume of interest (VOI). Metabolic tumor volume (MTV) 
was defined as the sum of voxels with SUV ≥40% of the 
SUVmax (24). Total lesion glycolysis (TLG) was calculated 
by using the result of MTV multiplied by the mean SUV of 
the tumor. SURmax represents the ratio of SUVmax to the 
mean SUV of descending aorta (blood SUVmean). TLGsur 
represents the ratio of TLG to blood SUVmean.

Tumor segmentation and feature extraction

Commercial software (Region Studio, Regiontec Ltd., 
Shanghai, China) was used to extract radiomics features. 
FDG-PET images were imported into the software using 
the Digital Imaging and Communications in Medicine 
(DICOM) protocol. Regions of interest (ROIs) were 
manually delineated around the tumor outline slice-by-
slice on the PET images by one radiologist (reader 1) who 
was blinded to the clinical information and pathological 
results, and segmentation of the tumor was then performed 
semi-automatically by the software. The image analysis 
pipeline was built to extract radiomics features from PET 
imaging. After 1 week, 60 cases were randomly selected 
for repeat delineation of the ROIs by reader 1 and another 
radiologist (reader 2). Both readers had 5 years of clinical 
experience in CT diagnosis. The inter- and intra-class 
correlation coefficients (ICCs) were used to assess inter- 
and intra-observer agreement of the radiomics feature. 
The intra-observer ICCs were calculated based on the 
two-time feature extraction of reader 1, and the inter-
observer ICCs were calculated based on the first-extracted 
features drawn by both readers, with ICCs greater than 0.75 
denoting a favorable agreement. The radiomics features 

included first-order features, shape features, gray level co-
occurrence matrix (GLCM) features, gray level size zone 
matrix (GLSZM) features, gray level run length matrix 
(GLRLM) features, neighbouring gray tone difference 
matrix (NGTDM) features, and gray level dependence 
matrix (GLDM) features. The specific radiomics features 
are provided in Table S1.

Radiomics feature selection and development of a radiomics 
signature

The 10-fold cross-validated least absolute shrinkage and 
selection operator (LASSO) method, which is suitable for 
the regression analysis of high-dimensional data, was used 
to select valuable radiomics features from the training 
set (18). Multivariate logistic regression analysis was 
subsequently applied to the selected radiomics features. A 
radiomics signature was calculated via a linear combination 
of finally selected features weighted by their respective 
coefficient.

Construction of the model and clinical utility

Clinical features, PET parameters, and radiomics signatures 
with statistical significance (P<0.05) in the univariate 
analysis of the training set were selected into a multivariable 
binary logistic regression analysis using backward stepwise 
selection. Next, a nomogram was constructed based on 
the multivariable binary logistic regression analysis with 
P<0.05. The model was applied to the validation dataset 
to assess accuracy. The performance of the nomogram was 
assessed in the training and validation sets by concordance-
index (C-index), and calibration curves. Analysis decision 
curve analysis (DCA) was performed by calculating the net 
benefits of joint training and validation sets under different 
threshold probabilities to evaluate the clinical effectiveness 
of the nomogram.

Statistical analysis

The analyses were performed using IBM SPSS (version 
23.0) and R software (version 3.6.1). Continuous variables 
were described as mean ± standard deviations and analyzed 
by the Mann-Whitney U test. Categorical variables, 
including sex and tumor location, were expressed as 
frequency and analyzed using the Chi-square test. The 
“glmnet” package administered LASSO binary logistic 
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regression analysis. Multivariate binary logistic regression 
analysis, nomograms, and calibration plots were performed 
with the “rms” package. The C-index calculation was 
conducted using the “Hmisc” package. DCA was performed 
using the “rmda” package. A two-sided P value <0.05 was 
considered statistically significant.

Results

Baseline characteristics

The characteristics of 370 patients (165 men, 205 women; 
mean age, 62.95±9.40 years) are shown in Table 1. A total 
of 236 patients were assigned to the training set, and 134 
patients were assigned to the validation set. There were 
no statistically significant differences in age, gender, and 
tumor location between patients with and without OLM 
in both the training and validation sets, while CEA, tumor 
size, SUVmax, MTV, TLG, SURmax, and TLGsur were 
significantly different between the two sets.

Radiomics feature selection and development of the 
radiomics signature

One hundred seven robust radiomics features were 
extracted in the present study. After removing the features 
with an ICC ≤0.75, a total of 62 stable radiomics features 
were retained for subsequent analysis. After LASSO 
logistic regression analysis (Figure 1A,B), only skewness, 
total energy, small dependence low gray-level emphasis 
(SDLGLE) and gray level non-uniformity normalized 
(GLNN) of the gray level run length matrix (GLRLM) 
features were incorporated into the radiomics signature: 
Radiomics signature =−0.995–0.398 skewness + 1.416 total 
energy + 1.119 SDLGLE − 1.519 GLNN.

The radiomics signature in patients with OLM was 
significantly higher than those without OLM in the 
training set (−1.43±0.87 vs. 0.14±2.75, P<0.0001). These 
findings were confirmed in the validation set (−1.42±1.06 vs. 
−0.35±2.74, P<0.0001).

Construction of the model and clinical utility

The results of the univariate and multivariate binary logistic 
regression analysis in the training set are shown in Table 
2. The univariate analysis showed significant differences 
between patients with and without OLM in eight parameters, 
including CEA, tumor size, SUVmax, MTV, TLG, SURmax, 

TLGsur, and the radiomics signature. The multivariate 
logistic regression analysis showed that CEA, MTV, and the 
radiomics signature were significant independent risk factors 
in the prediction of OLM. Subsequently, CEA, MTV, and 
the radiomics signature were incorporated to construct the 
nomogram (Figure 2). The prediction nomogram showed a 
C-index of 0.769 in the training set and 0.768 in the validation 
set. The calibration curve demonstrated good agreement 
between the nomogram-predicted probability of OLM 
and the actual OLM rate in the training and validation sets  
(Figure 3A,B). The decision curve showed that if the 
threshold probability of a patient was >10%, using this 
nomogram to predict OLM would provide greater benefit 
than the treat-all-patients strategy or the treat-none strategy 
(Figure 4).

Discussion

In recent years, radiomics have been widely studied as a 
noninvasive and reproducible method to extract high-
dimensional features from radiological images. Radiomics 
features can objectively describe tumor characteristics in 
terms of border, shape, texture, and spatial structure, which 
could reflect intra-tumor heterogeneity and gene-expression 
patterns (25-27). They can also help to discriminate 
different types of cancer, differentiate LNM from benign 
LN, and determine tumor treatment plans (28,29). 
Furthermore, it was reported that the predictive accuracy of 
the radiomics signature based on CT scans was favorable for 
predicting OLM in patients with lung adenocarcinoma (17).  
However, the radiomics model based on PET/CT for 
predicting OLM of lung adenocarcinoma is rarely reported. 
Thus, this study aimed to develop a PET-based radiomics 
model to predict OLM.

Based on the results of the LASSO binary logistic 
regression analysis, skewness, total energy, SDLGLE, 
and GLNN were considered the four most valuable 
features in our study. Among these, skewness and total 
energy belonged to the first-order features. The skewness 
measured the asymmetry of the distribution of values about 
the mean value. The total energy was defined as the value of 
energy feature (a measure of the magnitude of voxel values 
in the image) scaled by the volume of the voxel (in cubic 
mm). This ensured that voxels with the lowest gray values 
contributed least to energy, instead of voxels with gray level 
intensity closest to zero. SDLGLE belonged to the gray 
level dependence matrix (GLDM) features and measured 
the joint distribution of small dependence with lower gray-
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Table 1 Baseline characteristics of cN0 patients

Characteristics
Training set (n=236) Validation set (n=134)

OLM− (n=170) OLM+ (n=66) P OLM− (n=102) OLM+ (n=32) P

Gender 0.521 0.007

Male 80 28 50 7

Female 90 38 52 25

Age, year 63.36±9.38 61.89±9.43 0.342 63.63±9.03 61.25±8.89 0.220

Location 0.561 0.645

RUL 51 22 27 6

RML 12 5 9 1

RLL 33 17 25 10

LUL 48 12 25 10

LLL 26 10 16 5

Surgical procedure

Approach 0.331 0.422

VATS 152 56 101 31

Thoracotomy 18 10 1 1

Procedure 0.555 1

Lobectomy 163 65 100 32

Sublobar resection 7 1 2 0

Pathological N stage <0.001 <0.001

N0 170 0 102 0

N1 0 34 0 12

N2 0 32 0 20

CEA, ng/mL 4.55±4.53 13.17±29.96 0.001 3.70±3.76 8.44±12.31 0.002

Tumor size, mm 21.6±7.30 28.23±10.26 <0.001 21.16±10.33 25.19±12.83 0.066

SUVmax 5.24±2.60 7.07±3.59 <0.001 4.29±2.11 7.07±3.51 <0.001

MTV 4.40±3.14 9.13±8.70 <0.001 5.54±5.86 8.17±8.97 0.037

TLG 13.52±10.84 44.10±65.79 <0.001 13.15±14.33 28.00±26.48 <0.001

SURmax 3.39±1.71 4.52±2.61 0.003 2.39±1.13 3.91±1.99 <0.001

TLGsur 8.76±7.35 30.40±53.10 <0.001 7.08±6.68 16.25±15.51 <0.001

The Mann-Whitney U test analyzed continuous variables. The Chi-square test analyzed qualitative variables. OLM+, occult lymph node 
metastasis positive; OLM−, occult lymph node metastasis negative; RUL, right upper lobe; RML, right middle lobe; RLL, right lower lobe; 
LUL, left upper lobe; LLL, left lower lobe; VATS, video-assisted thoracoscopic surgery.
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level values. GLNN of GLRLM features measured the 
similarity of gray-level intensity values in the image, where 
a lower GLNN value correlated with a greater similarity in 
intensity values. The features reflected the heterogeneity 
of the various aspects of the ROIs in the images. The 
radiomics signature constructed by these radiomics features 
was superior to a single variable and was similar to the 

multi-dimensional panels method (17,18). As an important 
radiomics predictive index, the radiomics signature in this 
study resulted in a more accurate diagnosis and helped to 
predict OLM before surgery, with a greater value indicating 
a higher likelihood of OLM.

Many studies have shown that radiomics signatures 
combined with clinical and radiological data have a better 
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Figure 1 Radiomics feature selection using the least absolute shrinkage and selection operator (LASSO) model. (A) The LASSO model 
selected the tuning parameter (λ) using 10-fold cross-validation based on minimum criteria. During the LASSO regression cross-validation 
procedure, binomial deviances were plotted as a function of log (λ). The y-axis was defined as binomial deviances. The lower x-axis indicated 
the log (λ), and numbers along the upper x-axis represented the average number of predictors. Red dots indicated average deviance values for 
each model with a given λ, and vertical bars showed the upper and lower values of the deviances. The vertical black dotted lines defined the 
optimal values of λ. The optimal λ value of 0.009 with log (λ) =−4.746 was chosen. (B) LASSO coefficient profiles (y-axis) of the 62 radiomics 
features. The picture clearly showed the LASSO selection of variables by reducing the coefficient weights of non-related features to zero.

Table 2 Results of univariate and multivariate logistic regression analysis

Variables
Univariate analysis Multivariate analysis

OR (95% CI) P OR (95% CI) P

CEA 1.075 (1.026–1.127) 0.002 1.046 (1.000–1.109) 0.048

Size 1.097 (1.057–1.139) <0.001 NA NA

SUVmax 1.465 (1.231–1.743) <0.001 NA NA

MTV 1.184 (1.102–1.271) <0.001 1.093 (1.001–1.193) 0.048

TLG 1.052 (1.029–1.075) <0.001 NA NA

SURmax 1.297 (1.124–1.496) <0.001 NA NA

TLGsur 1.066 (1.034–1.099) <0.001 NA NA

Radiomics signature 2.718 (1.865–3.963) <0.001 2.026 (1.326–3.096) 0.001

CEA, carcinoembryonic antigen; MTV, metabolic tumor volume; TLG, total lesion glycolysis; OR, odds ratio; CI, confidence interval.
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predictive value (30-34). Thus, we also studied PET/CT 
parameters and clinical data. We identified that the CEA, 
tumor size, and 18F-FDG PET/CT parameters, including 
SUVmax, MTV, TLG, SURmax, and TLGsur, were risk 
factors for OLM, which is consistent with reports from 
previous studies (9,10,20,35). Also, multivariate logistic 
regression analysis found that CEA, MTV, and the 

radiomics signature were independent risk predictors for 
OLM. Numerous studies had reported that serum CEA 
level was associated with the pathological stage, rate of 
LNM, and prognosis of cancer (8,31,36,37). Also, Miao  
et al. found that CEA was an independent risk factor for 
LNM in adenocarcinoma (8). Our study also demonstrated 
that CEA was an independent risk predictor for OLM, 

Figure 2 The nomogram incorporated with CEA, MTV, and radiomics signature (Radscore) was developed in the training set for the 
prediction of OLM. CEA, carcinoembryonic antigen; MTV, metabolic tumor volume; OLM, occult lymph node metastasis.
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which was consistent with the findings of Miao et al. MTV 
was a composite parameter reflecting both tumor metabolic 
activity and tumor volume, and was significantly associated 
with OLM in patients. Previous studies reported that 
MTV had a better predictive performance than other PET 
parameters and might be a possible indicator for sublobar 
resection in clinically node-negative lung cancer (9,24). 
However, it is always difficult to identify OLM from benign 
LN by conventional methods, and using a sole parameter 
to differentiate malignant from benign LN remains 
challenging. Thus, the present study developed a PET/CT-
based nomogram model incorporating CEA, MTV, and 
the radiomics signature to predict OLM in patients of cN0 
solid lung adenocarcinoma, and demonstrated adequate 
discrimination in the training set (C-index, 0.769) and the 
validation set (C-index, 0.768).

A nomogram is a statistical model that can calculate 
the numerical probability of a patient by integrating 
mult iple  var iables  and provides  an intuit ive  and 
convenient method for doctors to clinically diagnose 
OLM as well as fulfilling the drive towards personalized  
medicine (38). Moreover, it is more concise and effective 
than other methods in the prediction of the LN metastasis 

in lung adenocarcinomas (39,40). Another advantage of the 
nomogram is its noninvasiveness and repeatability, thereby 
allowing for routine application. In this study, a PET/CT-
based nomogram model was developed and demonstrated 
high diagnostic accuracy. The C-index, calibration curve, 
and DCA indicated that the nomogram shows good 
clinical utility. Given that our nomogram has favorable 
discrimination and clinical utility, it might facilitate the 
individualized prediction of OLM and precise individualized 
medical treatment.

A further advantage of this study is that only solid lung 
adenocarcinoma patients were enrolled. This is because 
patients with different histological types would influence 
the size, metabolic parameters of the primary tumor, among 
many others (24). For example, SUVmax of squamous cell 
carcinoma is higher than adenocarcinoma in general (41). 
Therefore, a combined analysis of these histological types 
is not logical, especially in a PET study. The ground glass 
nodules of lung adenocarcinoma manifested most frequently 
as lepidic predominant growth patterns microscopically and 
generally considered as without LNM (8,42), which can 
affect the incidence of OLM. Therefore, only solid lung 
adenocarcinoma patients were enrolled in the present study, 
thus allowing us to avoid such problems.

However, although the results were encouraging, our 
study still had several limitations. Firstly, this was a single-
center retrospective study, which means that it has potential 
data selection bias. Secondly, the number of patients with 
OLM was much lower than the number of patients with 
negative LNM, which may affect the P value in comparative 
analysis. Consequently, more prospective and large-samples 
studies are needed to determine these predictive factors 
and confirm the accuracy of the nomogram for predicting 
OLM. Finally, the pathological stage and CT features of the 
tumor were not included in the present study, which may 
have affected the results.

Conclusions

In our study, the diagnostic PET/CT-based radiomics 
nomogram, including CEA, MTV, and the radiomics 
signature, was developed to predict the OLM in cN0 
solid lung adenocarcinoma. The nomogram demonstrated 
adequate predictive accuracy and clinical net benefit and 
was conveniently used to facilitate the individualized 
preoperative prediction of OLM in cN0 solid lung 
adenocarcinoma.
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