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Targeted radionuclide therapy (TRT) is recognized as 
an effective means for treating a variety of cancers (1), 
ranging from conventional 131I-radioiodine for differential 
thyroid carcinoma (DTC), 223Ra-Dichloride for bone 
metastasis of castration-resistant prostate cancer (CRPC), 
90Y microspheres for hepatic cancers, to newly EMA 
(Europe) and FDA (USA) approved 177Lu-DOTATATE 
Peptide Receptor Radionuclide Therapy (PRRT) for 
neuroendocrine tumors. Furthermore, several other 
therapeutic agents including 177Lu-PSMA for prostate 
cancers and alpha-particle emitters for treating different 
cancers are in clinical trial or are being developed and 
evaluated (2). Personalized treatment planning can ensure 
TRT efficacy while avoiding potential toxicity to critical 
organs by considering patient-specific pharmacokinetics. 
Sequential radionuclide imaging following a pre-therapy 
tracer administration can serve as a non-invasive tool 
for predicting the radiation absorbed doses delivered to 
tumor and critical organs by the therapy. In the case of 
therapies administered over multiple cycles, such as 177Lu-
DOTATATE, imaging-based dosimetry after one cycle can 
be used to predict the absorbed doses that will be delivered 
by subsequent cycles for consideration of potential dosage 
adjustment. Quantitative emission computed tomography 
(ECT), i.e., single photon emission computed tomography 
(SPECT) and positron emission tomography (PET), 
provides 3-dimensional (3D) activity distributions for 
voxel-level dosimetry, which is of increasing research and 

commercial interest in TRT (3,4). Sequential ECT images 
can be directly converted to dose-rate maps or a time 
integrated activity (TIA) map, which can then be converted 
to an absorbed dose map. 

Conventional corrections for diagnostic agents in ECT 
include uniformity, scatter, attenuation, detector response 
and sometimes partial volume effect. Depth dependent 
collimator-detector response correction is important for 
SPECT as well as correction of random coincidences for 
PET. For therapeutic radionuclides used in TRT, besides 
the conventional corrections, special attention should 
be placed on down scatter and collimator penetration 
for SPECT (5); multi-energy window selection and 
scatter correction for Bremsstrahlung imaging; prompt 
gamma emission and increased positron range for PET 
as their decay schemes are usually complex and associated 
with high energy positrons/photons emissions, even 
for their imaging surrogates. Partial volume correction 
is also important for all imaging modalities in TRT 
generally. Instead of the organ/lesion-level partial volume 
correction using recovery coefficients, the need for voxel-
level correction has been recognized and solutions are 
being investigated (6,7). With appropriate modelling, 
quantitative accuracy can reach >90% for PET (8), 
SPECT (9) and Bremsstrahlung imaging (10). Clinically, 
state-of-the-art spatial resolutions of 6–8 mm (11) or even 
<3 mm (12) for dedicated organs in SPECT, 4–6 mm in 
PET (13) have been reported. Considering the travelling 
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distance for common beta (1.5–19 mm) and alpha particles 
(0.016–0.075 mm) (14) associated with TRT agents, the 
spatial resolution and thus resolvable voxel size would need 
to be further improved to reduce the uncertainties in dose 
estimation at the voxel-level (6,15). Techniques such as 
time-of-flight PET, point spread function modelling, solid-
state detectors, digital ECT using silicon photomultiplier 
tubes with photon counting capability have demonstrated 
improved quantitative imaging performance and hold 
promise for improving TRT voxel-based dosimetry. Novel 
collimators designs are possible ways to improve SPECT 
and Bremsstrahlung imaging (16). For example, pinhole 
collimators are shown to reduce collimator penetration 
for I-123 imaging (17). However, factors such as field-of-
view and sensitivity would need to be considered when 
designing collimators as acquisition time is important 
for patient throughput in clinical TRT practice. Besides, 
respiratory motion degrades image quality particularly 
near the lung-liver interface. Therefore, it may impact 
the quantitative accuracy and dosimetric estimation for 
post-therapy 90Y PET/Bremsstrahlung imaging and pre-
therapy 99mTc-macro aggregated albumin (MAA) SPECT 
for treatment planning of microsphere radioembolization 
in hepatic cancers. Respiratory gating via external tracking 
devices (18,19) as well as fully data-driven approaches (20) 
can be used to alleviate this problem in SPECT (21) and 
PET (22). New initiatives for imaging instrumentation 
dedicated for TRT are underway (23). 

Usually patients are imaged at multiple time points for 
TRT dosimetry to obtain the time activity curves (TAC) 
for critical organs and tumors. Accurate alignment between 
these sequential images is of much importance for 3D 
dosimetry (24). Multiple research groups have performed 
voxel-level spatial alignment for dosimetry (25,26). Our 
group at University of Macau has demonstrated that voxel-
based non-rigid registration from sequential SPECT is 
feasible to enhance the 3D absorbed dose estimations and 
cumulative dose volume histograms (27). The integrated 
CT or MRI images can be used to further improve the 
precision of sequential ECT image registration and 
segmentation (28), while registration between ECT and 
CT/MRI at the same time point is also important to avoid 
errors from misaligned attenuation maps and volumes-
of-interest defined on the anatomical image that are 
applied to ECT images (29). Repeated CT scans paired 
with the corresponding sequential ECTs are nevertheless 

not in routine practice due to the concern of increased 
radiation exposure and a single CT is usually acquired. 
Some groups rely on SPECT/CT at a single time point 
coupled with planar whole body imaging to estimate  
pharmacokinetics (30). If multiple SPECT/CTs are 
performed, the CT exposure can be minimized by reducing 
the tube current substantially at all but one imaging time 
points, or by the “virtual CT” method proposed by our 
group (31). On the other hand, 90Y microsphere imaging is a 
relatively simplified TRT application as only 1 imaging time 
point is generally needed. The microspheres are assumed 
to be trapped in the microcapillaries with only physical 
decay afterwards, thus multi-time point imaging and 
registration are not performed. Furthermore, because 90Y 
is an almost pure beta emitter, reasonably accurate voxel-
based dosimetry can be performed assuming local energy 
deposition without the need to consider photon-transport. 
However, imaging of 90Y is complex as it relies on SPECT 
imaging of Bremsstrahlung photons and PET imaging of 
annihilated photons from a very low positron branching 
ratio. Specialized reconstruction methods including 
methods based on Monte Carlo simulations (10,32,33) and 
neural networks (34,35) have been proposed to address the 
challenges of 90Y imaging. The use of PET/MR could be 
beneficial for the radioembolization application particularly 
due to the superior soft tissue contrast provided by MR for 
tumor segmentation in the liver (36). Automatic and reliable 
segmentation methods would be desirable to alleviate the 
processing time and inter/intra operator inconsistency (37) 
especially for applications with many organs of interest and 
multiple imaging sessions.

Curve fitting is usually used to obtain the TACs 
from multiple time point imaging data and is generally 
considered to be more accurate than numerical integration 
for estimating TIA. Mono- or multi-exponential models 
are typically employed depending on number of imaging 
time points and the tracer pharmacokinetics, while best 
fit can be obtained from certain criteria testing and 
minimizing the errors as compared to the measurements 
(38,39). Recently proposed approaches for approximating 
TIA based on single time point 177Lu-PSMA (40),  
177Lu-DOTATATE (41) and 90Y-DOTATOC (42) imaging 
data would greatly enhance the clinical feasibility of 
personalized dosimetry considering limited reimbursement, 
patient compliance and clinical resources. However, 
selection of an optimal imaging time point for different 
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organs of interest, tumors and tracers is critical and this 
method may not be suitable for outlier patients with unique 
pharmacokinetics. 

The gold standard for converting TIA maps to voxel-
level absorbed dose maps (or activity maps to dose-
rate maps) is based on Monte Carlo simulations (MCS)  
(43-45) with inputs of TIA (or activity) maps and CT-
based density maps. The long computational time impedes 
its implementation in the clinic. An efficient alternate is to 
use dose point kernel (DPK)/voxel-S-value (VSV) method 
for dose conversion. This method is based on kernels of 
different voxel sizes, isotopes and media generated by MCS 
while many of them are tabulated in the literature (46). 
Its accuracy is shown to be comparable to full MCS in 
soft tissues generally, but substantial deviations have been 
shown at the lung-liver interface for 90Y microspheres (47) 
or lungs for 177Lu applications (48), even when tissues-
specific kernels were assigned (49). New dose kernels 
to address the tissue heterogeneity problem are being  
developed (50). Lately, deep learning methods have been 
proposed to generate 3D absorbed dose maps or dose rate 
maps directly from TIA or activity maps with high accuracy 
and speed, using convolutional neural network (CNN) 
(51,52) or deep neural network (DNN) (53). Although the 
training process based on ECT/CT images paired with 
their MCS generated absorbed dose maps for specific TRT 
agents can be time consuming, this process is performed 
only one time in general. Prior to clinical use of these new 
methods, sufficient data are required for the training/testing 
process to establish generalizability.   

There are other exciting ongoing developments in TRT 
dosimetry. While dosimetry is currently mostly performed 
on beta and gamma emitters, alpha particles hold promise 
for TRT due to their high linear energy transfer (LET) 
for killing cancer cells in a short range while sparing 
normal tissues. Microdosimetry is more suitable for 
alpha particles and is being investigated by several groups 
(54,55), yet its standard imaging protocols are to be  
established (56). Besides, as precise voxel-based dosimetry 
would require a dedicated physicist or research personnel 
which may not be available in many clinics, a robust 
one-stop internal dosimetry software package for image 
registration, segmentation, curve fitting, dose conversion 
and 3D dose analysis such as isodose contours and dose 
volume histograms would be paramount for practical 
clinical implementation of TRT dosimetry. Various research 

(57-63) and commercial (64-66) internal dosimetry software 
is now available, with enhanced functions being developed. 
Figure 1 shows an example of voxel-level dosimetry based 
on multiple SPECT/CT imaging sessions for a patient 
undergoing 177Lu-DOTATATE PRRT using the Dose 
Planning Method (DPM) Monte Carlo software (67). Some 
programs (62,63) are integrated with models to estimate 
radiobiologic dose-metrics such as biological effective dose 
(BED) and equivalent uniform dose (EUD), although the 
values of model parameters, such as lesion/normal-tissue 
radiosensitivity, are not yet well established. Besides, as 
voxel-based calculation for aforementioned dosimetric 
operations, e.g., registration, curve fitting and segmentation 
can be computational demanding, deep learning or  
GPU-based computation can be feasible options to 
accelerate the voxel-based dose estimation process. After 
all, development and testing of new dosimetric methods 
require access to clinical patient images. Currently, 
University of Michigan is establishing a data-sharing 
repository of anonymized patient PET/CT and SPECT/
CT imaging datasets for various therapeutic agents (68). 
Access to such data is expected to facilitate research in 
TRT dosimetry and multi-institutional collaborations 
among researchers or even clinicians since post-therapy 
imaging data are still not typically acquired at most 
clinics.  

Albeit there have been ongoing debates regarding 
the necessities of personalized (69) and voxel-based  
dosimetry (70), most agree that one-dose-fits-all is 
not the best way to treat patients as dose escalation or 
reduction is necessary for efficacious and safe treatment 
of some patients. Voxel-based method provides more 
accurate and complete dosimetric information such as 
heterogeneous absorbed dose distribution within the same 
organ as compared to the conventional mean absorbed 
dose method. This information is particularly useful for 
organs with substructures such as cortex and medulla in 
kidneys. With standardized dosimetric methodologies, 
reliable software, advance imaging technologies more 
available to reduce the dosimetric uncertainties and 
demand on clinical resources, voxel-based dosimetry is 
becoming feasible for routine clinical practice in various 
TRT applications. More systematic studies are warranted 
to demonstrate the absorbed dose-effect relationships and 
potential improvement in clinical outcome for “confident” 
personalized voxel-based dosimetry. 
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Figure 1 Sample dose volume histograms (DVHs) and lesion absorbed dose map corresponding to a patient imaged at 4 time points after 
cycle 1 of standard (7.4 GBq) 177Lu DOTATATE PRRT. SPECT/CT images at each time point were input to a Monte Carlo dosimetry 
code and the corresponding dose-rate maps were integrated to derive the absorbed dose map (67). Mean absorbed doses were: lesion 22 Gy, 
R kidney 2.5 Gy, L kidney 2.6 Gy.
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