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Background: 3D motion-sensitized driven-equilibrium prepared rapid gradient echo (MERGE) can 
characterize carotid atherosclerotic plaque morphology and composition. The present study aimed to 
evaluate its performance by comparing it with reference images and assessing the inter-reader agreement.
Methods: Eighty-four patients were prospectively recruited and scanned with 3D MERGE. Two trained 
magnetic resonance imaging (MRI) readers measured and calculated the maximum wall thickness (WT), 
maximum vessel diameter, total vessel area, lumen area, wall area, normalized wall index, plaque volume, 
intraplaque hemorrhage (IPH) volume, and calcification volume independently. IPH, calcification, 
mixed calcification, and ulceration were identified. The intraclass correlation coefficient (ICC) with 95% 
confidence interval (CI) was used to assess the inter-reader agreement. MERGE performance was assessed 
in terms of sensitivity, specificity, positive predictive value, negative predictive value, positive likelihood 
ratio, negative likelihood ratio, kappa value (κ), and the results of the Bland-Altman analysis and compared 
with reference images.
Results: MERGE showed excellent inter-reader agreement (All ICCs >0.90). MERGE and simultaneous 
non-contrast angiography and intraplaque hemorrhage (SNAP) showed excellent agreement in detecting 
IPH (κ=0.938) and measuring IPH volume (ICC =0.995; 95% CI: 0.991–0.997). MERGE and computed 
tomography angiography (CTA) showed strong consistency in detecting calcification (κ=0.814) and mixed 
calcification (κ=0.972), and in measuring calcification volume (ICC =0.996; 95% CI: 0.993–0.997). MERGE 
and digital subtraction angiography (DSA) showed relatively strong consistency in identifying ulceration 
(κ=0.737).
Conclusions: MERGE showed excellent performance in identifying and measuring IPH and calcification 
in carotid atherosclerotic plaques. Therefore, MERGE can be a promising imaging approach in 
atherosclerotic-vulnerable plaque.
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Introduction

Carotid atherosclerosis is increasingly considered the 
leading cause of ischemic stroke (1,2). Some specific 
morphological features of symptomatic carotid plaque, 
such as plaque burden, plaque size, surface status, and 
components, are risk factors for stroke (3-6). Clinical 
studies focusing on the detection and volume assessment of 
intraplaque hemorrhage (IPH) have demonstrated a strong 
correlation between IPH and future cerebrovascular events 
(7,8). Calcification in plaque is categorized as surface, deep, 
or mixed type, and mixed calcification exists both on the 
surface and in the plaque’s deep area (9). The quantity and 
configuration of calcification may affect plaque stability 
(10,11). Irregular plaque surface, particularly ulceration, is 
a major vulnerability sign, which indicates previous plaque 
rupture (12,13).

Vulnerable atherosclerotic plaque has been studied 
extensively using a variety of imaging methods, including 
ultrasound, digital subtraction angiography (DSA), 
computed tomography angiography (CTA), and magnetic 
resonance imaging (MRI). High-resolution vessel wall MRI 
(VW-MRI) is a promising imaging tool recommended by 
the American Society of Neuroradiology to quantitatively 
measure plaque morphology and components, such 
as plaque burden, surface irregularity, and IPH (14). 
Simultaneous non-contrast angiography and intraplaque 
hemorrhage (SNAP) is a highly T1-weighted MRI sequence 
with a wide coverage of 3D isotropic inversion recovery 
and phase-sensitive reconstruction (15). IPH is readily 
detectable as a high signal on the SNAP image. The inter-
reader agreement for the manual detection of IPH on 
SNAP is remarkably strong (16,17), and the measurement 
of IPH volume on SNAP imaging is consistent with that of 
histology (16).

Several 3D black-blood MRI sequences with high 
isotropic resolution, high signal-to-noise ratio, and wide 
coverage have been developed (15,18). Black-blood MRI 
using motion-sensitized driven-equilibrium prepared 
rapid gradient echo (MERGE) can provide imaging with 
improved longitudinal coverage of bilateral carotid arteries 
simultaneously in a short acquisition time (18,19). Similar to 
the previous histologically confirmed multi-contrast VW-
MRI and time-of-flight magnetic resonance angiography, 
MERGE can also provide comparable performance in 
carotid atherosclerotic plaque with good inter-reader 
reproducibility (17). MERGE has isotropic resolution and 
multiple planar reconstruction capabilities, and may yield 
a more accurate delineation of plaque surface and imaging 

of plaque components (12). However, its accuracy and 
reliability in assessing extracranial carotid atherosclerotic 
plaque have not been well studied systematically. Therefore, 
in the present study, we aimed to compare MERGE’s 
diagnostic performance with reference images (SNAP, CTA, 
and DSA) by assessing IPH, calcification, and ulceration, 
respectively.

Methods

Study design and participants

This study was approved by the Institutional Review Board 
of Huashan Hospital, Fudan University (Shanghai, China; 
No. 2013.332). Written informed consent was obtained 
from either the patient or their legal representative before 
study entry.

Between April 2019 and July 2020, patients with recent 
cerebrovascular symptoms (amaurosis fugax, transient 
ischemic attack, or suspected cerebrovascular ischemia in 
the anterior circulation within 2 weeks) and atherosclerotic 
plaque in at least 1 side of the carotid artery identified by 
ultrasound imaging (intima-media thickness ≥1.5 mm) 
were prospectively recruited. The exclusion criteria were 
as follows: (I) hemorrhagic stroke; (II) cardiogenic stroke; 
(III) cerebral tumor; (IV) history of carotid endarterectomy 
(CEA); (V) contraindication to MRI, CTA, or DSA 
examination; and (VI) dementia or coma. All patients 
underwent 3D VW-MRI and CTA examination within 
3 days before DSA. Patients who could not tolerate 
or complete all examinations were excluded. Clinical 
characteristics, including age, sex, body mass index (BMI), 
history of diabetes mellitus, hypertension, hyperlipidemia, 
alcoholism, smoking, total cholesterol, high-density 
lipoprotein cholesterol, low-density lipoprotein cholesterol, 
triglyceride, lipoprotein (a), and glucose, were collected 
from medical records.

MRI protocol

Patients were scanned within 2 weeks after the occurrence 
of cerebrovascular symptoms. A 3.0-T MR system (Ingenia; 
Philips Healthcare, The Netherlands) was used with an 
8-channel phased-array carotid artery coil (TS Imaging, 
Beijing, China) and a 20-channel phased-array head and 
neck joint coil (Philips Healthcare, the Netherlands). After 
localization, MERGE and SNAP images were obtained 
using the following parameters: sagittal orientation, 
centered on the common carotid artery (CCA) bifurcation, 
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the scan coverage comprising the C1–C7 segments of the 
bilateral internal carotid artery (ICA), and the M1–M2 
segments of the bilateral middle cerebral artery:

(I)	 3D MERGE:  echo  t ime  (TE) / repe t i t i on 
time (TR) =5.2/11.0 ms, field of view (FOV) 
=230×161×60 mm3, voxel =0.8×0.8×0.8 mm3, 
matrix size =288×200×100, number of slices =100, 
reconstruction resolution =0.4×0.4×0.4 mm3, and 
scan time =2'51;

(II)	 3 D  S N A P :  T E / T R  = 5 . 0 / 1 1 . 0  m s ,  F O V 
=230×161×60 mm3, voxel =0.8×0.8×0.8 mm3, 
matrix size =288×200×100, number of slices =100, 
reconstruction resolution =0.4×0.4×0.4 mm3, and 
scan time =4'28.

CTA imaging protocol

CTA imaging was performed in the head-first supine position 
using a 256-slice-CT scanner (iCT; Philips Healthcare, 
The Netherlands). A total of 60 mL (rate: 5 mL/s) contrast 
medium was injected into the right elbow vein. Tube 
voltage/current =120 kV/360 mA, section thickness/spacing 
=0.90/0.45 mm, and voxel =0.6×0.6×0.3 mm3.

DSA imaging protocol

All sets of DSA images were obtained using an Infinx/
VC digital angiography system (Toshiba, Tokyo, Japan) 
operated by experienced neuro-interventionalists. The 
Seldinger technique was used to obtain images of the ICA, 
including the anterior-posterior and lateral projections. A 
total of 7 mL (rate: 4 mL/s) contrast medium was injected 
into the carotid artery, and the image acquisition rate was 
3.5 frames/s. The suspicious artery was imaged by 240° 
rotation, with an image acquisition of 15 frames/s. Matrix 
size =1,024×1,024 and voxel =0.3×0.3×1.0 mm3.

Image analysis

A neuro-interventionalist with more than 15 years’ 
work experience reviewed the DSA images and recorded 
ulcerations by observing the plaque on the best projection 
at a workstation (AW4.4; GE Healthcare, BOSTON, MA, 
USA). Some cases with existing surgical indications received 
a second verification of CEA in the intervention therapy 
department. For some ambiguous cases, senior doctors’ 
ultrasound diagnosis reports were used as a reference 
for comprehensive judgment. The final recorded data 

on plaque ulceration were the reference standard for the 
present study. ITK-SNAP software v.3.6.0 (University of 
Pennsylvania, www.itksnap.org/) was used for reformatting 
the original isotropic coronal MR images to axial and 
sagittal ones. A neuroradiologist with more than 20 years’ 
work experience reviewed the SNAP and CTA images and 
performed morphological quantification as the reference 
standard. SNAP imaging was used to determine the IPH 
and to measure the IPH volume by software. Plaque 
calcification and its classification and volume measurement 
were performed using the CTA image. All MERGE images 
of carotid arteries were analyzed and measured by 2 trained 
readers with more than 5 years’ experience in plaque 
imaging. They were both blinded to each other’s findings 
and the reference images. Image quality (IQ) was evaluated 
for all MR images using a 4-point scale with the following 
classifications: IQ =1, poor quality (VW and lumen margin 
and plaque compositions not identifiable); IQ =2, adequate 
quality (the boundary of VW can be identified, but the 
compositional substructure cannot be determined); IQ =3, 
good quality (minimal motion or flow artifacts, VW, lumen 
boundary and plaque compositions can be defined); and 
IQ =4, excellent quality (no artifacts, wall architecture and 
plaque composition can be depicted clearly in detail) (20). 
Images with IQ ≤2 were excluded. 

An atherosclerotic plaque is defined as a lesion with an 
intima-media thickness >1.5 mm of the VW on reformatted 
3D MERGE axial images. The threshold of 1.5 mm was 
chosen according to the correlation between the wall 
thickness (WT) and the increased stroke risk (21,22). If 
multiple stenoses were present in a single carotid artery, the 
section with the most severe stenosis degree was studied 
for statistical analysis. The maximum WT (Max WT), 
maximum vessel diameter (Max VD), total vessel area (TVA), 
and lumen area (LA) were measured at the same cross-
section of vessel. Furthermore, the wall area (WA) and 
normalized wall index (NWI) were automatically calculated 
to evaluate the plaque burden by using the following 
formulas:

WA TVA LA= − 	 [1]

NWI  
TVA

TVA LA−
=

	
[2]

If plaques were present on both the bilateral extracranial 
carotid arteries, the carotid artery with the larger NWI 
value was regarded as the research object. The identification 
of each plaque composition was based on criteria as 
follows: IPH is identified as an obvious hyperintense 
signal on MERGE images (Figure 1), and calcification 



2747Quantitative Imaging in Medicine and Surgery, Vol 11, No 6 June 2021

© Quantitative Imaging in Medicine and Surgery. All rights reserved.   Quant Imaging Med Surg 2021;11(6):2744-2755 | http://dx.doi.org/10.21037/qims-20-869

B

C

DA

Figure 1 An example of a 71-year-old male patient who had intermittent dizziness, nausea, and weakness of both lower limbs. Bleeding 
plaque was detected in his left common carotid artery and the bilateral internal carotid artery. High signal on axial (A) and coronal (B) image 
of 3D motion-sensitized driven-equilibrium prepared rapid gradient echo showed intraplaque hemorrhage (IPH) (white arrows). Obvious 
high signal on axial (C) and coronal (D) image of 3D simultaneous non-contrast angiography and intraplaque hemorrhage showed IPH (white 
arrows).

is characterized by areas with a hypointense signal on 
MERGE images (Figure 2) (23,24). Mixed calcification 
refers to the calcification distributed on both the surface 
and deep areas of the plaque (9). Some studies have defined 
ulceration as the extended lumen into the plaque with a 
width >1 mm or depth >2 mm (25-27). Ulceration was 
observed on multi-dimensional reconstructed images  
(Figure 3). IPH or calcification volume was measured 
with ITK-SNAP software. The above morphological 
identification, measurement, and calculation were 
performed by 2 image readers independently.

Statistical analysis

Continuous variables are presented as mean ± standard 
deviation (SD), categorical variables as frequencies, and the 
presence or absence of plaque components was denoted as 
binary variables. For continuous variables, an agreement 
among Max WT, Max VD, TVA, LA, plaque volume, 
IPH volume, and calcification volume between 2 MR 
image readers was assessed using 2-way random intraclass 
correlation coefficient (ICC); the consistency test of WA 
and NWI calculated using formulas was summarized using 
2-way random ICC. For categorical variables, the presence 
or absence of IPH, calcification, mixed calcification, 

and ulceration, an agreement was summarized using 
1-way random ICC. Bias between 2 readers was assessed 
quantitatively by mean difference ± standard error. Mann-
Whitney U-test was used to test for significant differences 
between their results. The detection performance of IPH, 
calcification, mixed calcification, and ulceration were 
summarized by sensitivity, specificity, positive predictive 
value, negative predictive value, positive likelihood ratio, 
negative likelihood ratio, and kappa value (κ) by using 
SNAP, CTA, and DSA results as references. Bland-Altman 
analysis was used to test the measurement agreements 
between MERGE and reference images (SNAP and DSA) 
of the volume of IPH and calcification. All statistical 
analyses were performed using SPSS software version 
23.0 (SPSS IBM, Armonk, New York, USA). P<0.05 was 
considered statistically significant.

Results

Patients’ clinical characteristics

Of the 84 patients, 11 were excluded from the analysis due 
to the following reasons: inadequate image quality (IQ ≤2) 
with severe blood flow artifacts (n=1) or motion artifacts 
(n=4), one side of the ICA was completely occluded (n=3), 
and carotid arteries had dissection or dissecting aneurysm 
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Figure 2 An example of a 63-year-old male patient who had sudden numbness and fatigue in his right limb. Calcified atherosclerotic plaque 
was detected in his left common carotid artery. Low signal on axial (A) and coronal (B) image of 3D motion-sensitized driven-equilibrium 
prepared rapid gradient echo showed calcification (white arrows). Computed tomography angiography clearly showed the shape and 
distribution of calcification within plaque (C,D) (white arrows); the calcification type of his plaque was mixed.

(n=3). Of the 73 sets of MERGE images of diseased carotid 
arteries, 68 (93.15%) were graded as excellent (IQ =4). The 
demographic and clinical characteristics of the 73 patients 
are summarized in Table 1. The mean age of the patients was 
65.63±8.68 years, and 63 (86.30%) were male. Their mean 
BMI was 24.11±2.61 kg/m2. Of all patients, 47 (64.38%) 
had hypertension, and 27 (36.98%) had a smoking history.

Inter-reader agreement on 3D MERGE

All ICCs for measurements and calculations based on 
3D MERGE was ≥0.90, indicating excellent inter-reader 
reproducibility (Table 2). The ICC for the measurement 
of plaque volume reached 1.000. The ICC with the 
lowest value of 0.907 (0.856–0.941) was the detection of 
calcification. Differences between some metrics between 2 
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Figure 3 An example of an 81-year-old male patient who had severe stenosis of the left carotid artery with multiple ischemic infarcts in 
his brain. Ruptured plaque was detected in his left common carotid artery. Plaque surface defect on the curved multi-planar reconstruction 
image along the lumen (A) and axial image (B) of 3D motion-sensitized driven-equilibrium prepared rapid gradient echo was ulceration (white 
arrows). Ultrasound image showed a small plaque defect (C), and the blood flow within the ulceration was relatively disordered (D). Small 
niche displayed by digital subtraction angiography was plaque ulceration (E) (white arrows). 

readers, such as the measurements of Max WT, Max VD, 
TVA, LA, and plaque volume, were significant (P<0.05). 

Agreement of IPH between 3D MERGE and 3D SNAP

In the SNAP images, 23 of 73 (31.51%) plaques were 
found to have IPH, and the 2 readers each identified 25 and  
24 plaques with IPH. They each had 2 and 1 false-positive 
results for a specificity of 96% and 98%, respectively. Their 
sensitivity values were 100%. Kappa test between MERGE 
and SNAP showed strong consistency (κ=0.938, P<0.001) 
(Table 3). Bland-Altman plots of IPH volume measurement 
between MERGE and SNAP suggested that the mean 
difference was 0.48 mm3, and no significant bias was 
observed (Figure 4). IPH volume measurements obtained 
using MERGE and SNAP had a good agreement (ICC 
=0.995, 95% CI: 0.991–0.997).

Agreement of calcification between 3D MERGE and CTA

Of the 73 plaques, 47 (64.38%) had calcification on CTA 

Table 1 Clinical characteristics of the study cohort

Characteristics Participants (n=73)

Age, years 65.00 (60.00, 72.50)

Males, n (%) 63 (86.30)

BMI, kg/m2 23.88 (22.17, 26.09)

Medical history, n (%)

Diabetes mellitus 20 (27.39)

Hypertension 47 (64.38)

Hyperlipidemia 6 (8.22)

Alcoholism 14 (19.17)

Smoking 27 (36.98)

Laboratory examination, mmol/L

Total cholesterol 3.72 (2.98, 4.15)

HDL cholesterol 1.06 (0.92, 1.15)

LDL cholesterol 2.10 (1.73, 2.64)

Triglyceride 1.45 (1.04, 1.88)

Lipoprotein (a) 38.50 (13.00, 161.00)

Glucose 5.80 (5.20, 7.40)

Data are presented as n (%) or median (p25, p75). BMI, body mass 
index; HDL, high density lipoprotein; LDL, low density lipoprotein.
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images, while 30 of 47 had mixed calcification. The 2 
readers each identified 51 and 50 plaques with calcification, 
and 29 and 27 mixed calcifications, respectively. Kappa 
test showed that the detected calcification and mixed 
calcification between MERGE and CTA had very strong 
consistency (κ=0.814, 0.972, P<0.001) (Table 3). The Bland–

Altman plots of calcification volume measurement between 
MERGE and CTA suggested that the mean difference was 
0.71 mm3, and no significant bias was observed (Figure 4).  
The calcification volume measurements obtained using 
MERGE and CTA had a good agreement (ICC =0.996, 
95% CI: 0.993–0.997).

Table 2 Inter-reader agreement for 73 plaques on 3D MERGE images

Variables ICC 95% CI Reader 1† Reader 2† Mean difference ± 
standard error

P value‡

Plaque morphology

Max WT 0.992 0.987–0.995 4.76±1.29 4.80±1.33 −0.04±0.02 <0.001

Max VD 0.990 0.985–0.994 9.74±1.74 9.84±1.72 0.10±0.03 <0.001

TVA 0.999 0.999–1.000 75.07±25.00 75.30±25.09 0.23±0.09 0.001

LA 0.999 0.999–1.000 19.13±18.09 19.25±18.05 −0.12±0.07 0.047

WA 0.999 0.999–0.999 55.97±16.50 56.05±16.54 −0.08±0.12 0.093

NWI 0.998 0.997–0.999 0.77±0.14 0.77±0.14 0.00±0.00 0.848

Plaque volume 1.000 1.000–1.000 797.27±812.95 799.09±815.53 −1.82±0.55 <0.001

Presence of plaque composition

IPH 0.970 0.952–0.981 0.34±0.48 0.33±0.47 0.01±0.01 0.317

CA 0.907 0.856–0.941 0.68±0.47 0.67±0.47 0.01±0.02 0.561

Mixed CA 0.943 0.911–0.964 0.40±0.49 0.37±0.49 0.03±0.02 0.156

UL 0.924 0.882–0.952 0.23±0.43 0.23±0.43 0.00±0.02 1.000

Measurement of plaque composition

IPH volume 0.999 0.999–0.999 136.49±529.06 135.48±518.96 −2.03±2.59 0.828

CA volume 0.999 0.998–0.999 85.18±163.83 85.52±164.05 0.68±0.98 0.240
†, data are presented as mean ± standard deviation. ‡, for comparison of mean difference to 0. CA, calcification; CI, confidence interval; 
ICC, intraclass correlation coefficient; IPH, intraplaque hemorrhage; LA, lumen area; Max WT, maximum wall thickness; Max VD, maximum 
vessel diameter; MERGE, motion-sensitized driven-equilibrium prepared rapid gradient echo; NWI, normalized wall index; SE, standard 
error; TVA, total vessel area; UL, ulceration; WA, wall area.

Table 3 Diagnostic consistency and performance of 3D MERGE on plaque features

Features κ P value Sensitivity Specificity PPV NPV PLR NLR

IPH 0.938 <0. 01 1.000 (0.822–1.000) 0.960 (0.851–0.993) 0.920 (0.725–0.986) 1.000 (0.908–1.000) 25.00 0.00

CA 0.814 <0. 01 0.979 (0.873–0.999) 0.808 (0.600–0.927) 0.902 (0.778–0.963) 0.955 (0.751–0.998) 5.10 0.03

Mixed CA 0.972 <0.01 0.967 (0.809–0.998) 1.000 (0.898–1.000) 1.000 (0.854–1.000) 0.977 (0.865–0.999) – 0.03

UL 0.737 <0.01 0.778 (0.519–0.926) 0.945 (0.839–0.986) 0.824 (0.558–0.953) 0.929 (0.819–0.977) 14.15 0.23

Only the comparison between MR reader 1 and reference were listed because of the strong inter-reader agreement with MR reader 2. 
Numbers in parentheses are 95% confidence intervals. CA, calcification; IPH, intraplaque hemorrhage; κ, kappa value; MERGE, motion-
sensitized driven-equilibrium prepared rapid gradient echo; MR, magnetic resonance; NLR, negative likelihood ratio; NPV, negative 
predictive value; PLR, positive likelihood ratio; PPV, positive predictive value; UL, ulceration.
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Agreement of ulceration between 3D MERGE and DSA

In the DSA images, 18 of 73 plaques (24.66%) were found 
to have ulcerations. Of these, 6 cases were confirmed by 
the CEA, and 3 cases were confirmed with a combination 
of CEA and ultrasound diagnostic reports. Both MR 
image readers identified 17 plaques containing ulcerations. 
The sensitivity values were 77.78% and 83.33%, and the 
specificity values were 94.55% and 96.36%, respectively. 
Kappa test showed a relatively strong agreement for the 
detection of ulceration between MERGE and DSA (κ=0.737, 
P<0.001) (Table 3).

Discussion

We compared MERGE performance and references in 
assessing symptomatic carotid plaques and confirmed the 
accuracy of MERGE in both morphological measurement 
and plaque component identification. The present study 
showed the usefulness of MERGE as a reliable and accurate 
modality for atherosclerotic plaque imaging.

MERGE showed good inter-observer reproducibility 
in identifying plaque components and measuring 
morphological parameters (17,28,29). Slow and stagnant 
blood flow is eliminated by dephasing the flow spins within 
each voxel (30). Wei et al. revealed a good inter-reader 
agreement to identify calcification based on multi-contrast 
imaging with κ=0.66 (17), but this result was not as good 

as ours. It may be because calcification is manifested as an 
obvious low signal, but the human eye is more sensitive 
to high signals, which leads to differences in personal 
subjective vision. Zhao et al. obtained κ=0.95 (0.84–0.99) 
for ulceration identification (29), which was better than 
our result. The observation of ulceration was affected by 
varying reconstruction habits and doctors’ experiences. The 
systematic differences in Max WT, Max VD, TVA, LA, 
and plaque volume might be due to the non-circular lumen 
shape, irregular shape of plaque, and different measurement 
habits in our study. Some systematic differences in diameter 
measurements, particularly for large-size vessel segments 
in other studies were noted (31). Nevertheless, these slight 
differences had no significant effect on the accuracy of 
diagnosis.

To the best of our knowledge, the present study is the 
first attempt to validate MERGE-based IPH detection and 
volume measurement in symptomatic carotid plaque using 
SNAP imaging as a reference. IPH shows a high signal 
on T1-weighted sequences due to the short T1 relaxation 
of methemoglobin with super para-magnetism (15,32). 
Compared with the magnetization prepared rapid gradient 
echo (33), SNAP is more sensitive to IPH and can provide 
higher IPH-plaque contrast (Figure 1). Previous studies 
have reported the strong agreement between the high 
signal detected on conventional MRI and histologically 
confirmed IPH (34), but with a systematic underestimation 
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of IPH area using histology as the gold standard (24); 
therefore, SNAP might exhibit higher sensitivity in 
detecting small IPH lesions in plaque. Qiao et al. found 
moderate agreement between T1 mapping cardiovascular 
MR and histology in detecting IPH and excellent 
agreement in measuring the area of IPH (ICC =0.816, 95% 
CI: 0.679–0.894) with a systematic overestimation (35).  
Our research demonstrated that MERGE and SNAP 
show similar performance in detecting IPH. The high 
signal provides an excellent contrast to yield an accurate 
delineation of the IPH within the plaque. With its low 
false-negative rate, MERGE could be useful for screening 
carotid vulnerable plaque. IPH is a dynamic process (36).  
VW-MRI, as a non-invasive imaging method that 
outweighs histological examination in many cases. 
MERGE can achieve similar detection sensitivity and 
volume measurement accuracy of IPH as SNAP does, and 
it has the potential to monitor the natural history of IPH 
with the half scanning time of the latter sequence.

CTA can display and accurately measure the size, shape, 
and distribution of calcification (Figure 2). In contrast, 
MERGE does not require contrast agents and exhibits 
wide coverage, and the improved spatial resolution of 0.4 
mm results in improved visualization for the detection of 
small calcifications that would otherwise remain undetected 
due to partial volume averaging (18). Calcification can be 
delineated clearly, and mixed calcification can be detected 
as low signal distributed both on the surface and in the 
plaque's deep area (Figure 2). The location distribution of 
calcification may affect the regularity of the plaque surface, 
which may further influence plaque vulnerability (12).  
Through the accurate assessment of calcification in 
plaque by MERGE, the underlying mechanism behind 
the relationship between mixed calcification and irregular 
plaque surface is yet to be revealed.

The diagnostic accuracy of non-invasive imaging 
is usually assessed using DSA as a reference standard. 
However, the disadvantages of DSA, including the 
possibility of neurological complications in 0.5–1% of 
patients (37), have prompted researchers to consider non-
invasive methods as an alternative to DSA. The suboptimal 
performance of DSA in detecting ulceration of symptomatic 
plaque has been previously reported (38-40). VW-MRI 
has high sensitivity, high specificity, and good agreement 
with DSA for detecting ulceration (29,31). In our study, the 
plaque ulcerations of some patients were validated by DSA 
and by histological examination after CEA. We did not 
perform histological examination for patients who had no 

surgical indications to comply with the ethical principles, but 
we determined the presence or absence of plaque ulcerations 
comprehensively through ultrasound and DSA diagnoses 
(Figure 3). 

Given that MERGE images can be reconstructed using 
a curved multi-planar reformation algorithm along the 
lumen or any orientation without tissue distortion, it can 
directly display the precise details of plaque ulceration  
(Figure 3) (29). However, the doctor’s manual reconstruction 
may potentially introduce subjective bias. The false-
negative cases of missed small ulcerations were attributed 
to the limited spatial resolution; calcification adjacent 
to the lumen may obscure the lumen surface, resulting 
in the misidentification of false-positive cases (23).  
It has been reported that bright-blood sequences are 
highly accurate in detecting ulceration (41); therefore, the 
combination of bright-blood and black-blood technique 
may serve as an alternative imaging approach to DSA in 
identifying plaque ulceration.

The present study has several limitations. First, the 
morphology and composition of plaque were observed by 
SNAP, CTA, and DSA as reference images, which were less 
accurate than a histological gold standard. Although these 
previously proposed techniques are histologically validated, 
further histological data are essential to evaluate MERGE's 
reliability and stability for future work. Second, the target 
plaque was located either at the CCA bifurcation or at the 
initial ICA segment, which may cause a certain degree of 
analysis bias. 

Conclusions

3D MERGE showed good performance in identifying 
and measuring IPH and calcification in carotid plaques 
and performed well in the detection of plaque ulceration. 
It may be a promising alternative imaging approach for 
histological examination in some clinical studies of carotid 
atherosclerotic plaques. 
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