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Background: Inter-individual variability is an inherent and ineradicable feature of group-level brain atlases 
that undermines their reliability for clinical and other applications. To date, there have been no reports 
quantifying inter-individual variability in brain atlases. 
Methods: In the present study, we compared inter-individual variability in nine brain atlases by task-based 
functional magnetic resonance imaging (MRI) mapping of motor and temporal lobe language regions in both 
cerebral hemispheres. We analyzed complete motor and language task-based fMRI and T1 data for 893 young, 
healthy subjects in the Human Connectome Project database. Euclidean distances (EDs) between hotspots in 
specific brain regions were calculated from task-based fMRI and brain atlas data. General linear model parameters 
were used to investigate the influence of different brain atlases on signal extraction. Finally, the inter-individual 
variability of ED and extracted signals and interdependence of relevant indicators were statistically evaluated. 
Results: We found that inter-individual variability of ED varied across the nine brain atlases (P<0.0001 
for motor regions and P<0.0001 for language regions). There was no correlation between parcel number 
and inter-individual variability in left to right (LtoR; P=0.7959 for motor regions and P=0.2002 for language 
regions) and right to left (RtoL; P=0.7654 for motor regions and P=0.3544 for language regions) ED; 
however, LtoR (P≤0.0001) and RtoL (P≤0.0001) inter-individual variability differed according to brain 
region: the LtoR (P=0.0008) and RtoL (P=0.0004) inter-individual variability was greater for the right hand 
than for the left hand, the LtoR (P=0.0019) and RtoL (P=0.0179) inter-individual variability was greater for 
the right language than for the left language, but there was no such difference between the right foot and left 
foot (LtoR, P=0.2469 and RtoL, P=0.6140). Inter-individual variability in one motor region was positively 
correlated with mean values in the other three motor regions (left hand, P=0.0145; left foot, P=0.0103; 
right hand, P=0.1318; right foot, P=0.3785). Inter-individual variability in language region was positively 
correlated with mean values in the four motor regions (left language, P=0.0422; right language, P=0.0514). 
Signal extraction for LtoR (P<0.0001) and RtoL (P<0.0001) varied across the nine brain atlases, which also 
showed differences in inter-individual variability. 
Conclusions: These results underscore the importance of quantitatively assessing the inter-individual 
variability of a brain atlas prior to use, and demonstrate that mapping motor regions by task-based fMRI is 
an effective method for quantitatively assessing the inter-individual variability in a brain atlas.
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Introduction

Human brain atlases, which represent the spatial and 
functional parcellation of the brain, are critical for 
visualizing the brain’s functional organization (1,2). A 
major challenge for neuroscience research is to delineate 
the hundreds of different brain regions based on functional 
and anatomical criteria. In the last few decades, features 
extracted by structural and functional magnetic resonance 
imaging (MRI) of different brain regions have been used 
to accurately segment the human brain (3-5), producing 
databases of reliable brain parcellations (6). Parcellations 
based on structural MRI which is acquired on a none-
ultra-high field scanner (3T and below) are clinically 
useful as they demarcate physical regions of individual 
brains, but have low resolution; on the other hand, those 
based on functional (f)MRI which is acquired on a none-
ultra-high field scanner (3T and below) are more precise 
but are difficult to apply to individual assessments (7-11). 
Therefore, many studies have employed group-average 
brain atlases such the Anatomical Automatic Labeling atlas 
to analyze the brain at the group level (11). However, inter-
individual variability in fMRI-based parcellations limit their 
clinical utility—for example, for pre-surgical functional 
localization (12).

The temporal signal-to-noise ratio (SNR) for the blood 
oxygenation level-dependent (BOLD) signals is relatively 
low, so features extracted from fMRI that are obtained in a 
short time interval (<30 min) cannot be used to accurately 
segment individual human brains (13,14). To overcome 
this problem, individual data have been used to verify 
group-level centralized trends that include individual 
information (15). Although a large number of datasets are 
used to reduce inter-individual variability, unique features 
in each brain are overlooked in group-level analyses 
(16,17).

Many studies have investigated methods for accurate 
parcellation of individual brains (15,18,19). For instance, 
one study segmented a single brain based on resting-state 
functional connectivity (RSFC) fMRI data collected over 
14 h (12). The study demonstrated that accurate individual 
brain parcellations can be obtained with a large amount 
of data, in greater detail than by group-level data analysis. 
However, the data collection period was long (1 year), 
which can be useful in cases of rare neurologic disease but 
is too long for those requiring an immediate diagnosis (20),  
for which accurate group-level brain parcellations are 
more appropriate. However, although many parcellations 

are available online, there are no methods for identifying 
the one that is most suited to a particular study or 
clinical application (6). Furthermore, there have been no 
quantitative assessments of inter-individual variability in 
resting-state fMRI-based human brain atlases, which is 
required to ensure the accuracy of data interpretation.

To this end, the aim of the present study was to 
quantify the inter-individual variability in different brain 
atlases using tasked-based fMRI data from hand and foot 
motor regions and temporal lobe language regions in 
both hemispheres of healthy young subjects. Briefly, we 
compared the sites of maximal activation of six brain areas 
in Montreal Neurological Institute (MNI) space to the 
coordinates of corresponding regions in nine brain atlases. 
The Euclidean distance (ED) between tasked-based fMRI 
hotspots and functional areas in the brain atlases was 
calculated as a feature of inter-individual variability. We 
also compared the inter-individual variability in six motor 
regions and evaluated the influence of different brain atlases 
on the extraction of tasked-based fMRI general linear 
model (GLM) parameters. Based on previous findings, we 
hypothesized that (I) inter-individual variability significantly 
differed across different brain atlases for the same fMRI 
dataset, and (II) inter-individual variability significantly 
differed across different brain regions for the same fMRI 
dataset. Our findings provide insights that can guide the 
application of brain atlases in clinical and research settings.

Methods

Participants and data acquisition

We analyzed complete motor task-based fMRI and T1 data 
of 1,080 subjects from the Human Connectome Project 
(HCP) database (21) in the present study. The data were 
acquired on a 3T Skyra scanner (Siemens, Erlangen, 
Germany) using a 32-channel head coil. BOLD changes 
were examined in gradient-echo echo-planar imaging 
sequence with the following parameters: repetition time 
(TR) =720 ms; echo time (TE) =33.1 ms; flip angle =52°; 
field of view (FOV) =208×180 mm [readout (RO) × phase-
encoding (PE)]; matrix =104×90 (RO × PE); slice thickness 
=2.0 mm; 72 slices; 2.0 mm isotropic voxels; multiband 
factor =8; echo spacing =0.58 ms; and bandwidth (BW) 
=2,290 Hz/pixel. T1 data were obtained in a magnetization 
prepared rapid gradient echo sequence with the following 
parameters: TR =2,400 ms; TE =2.14 ms; TI =1,000 ms; flip 
angle =8°; FOV =224×224; voxel size =0.7 mm isotropic; 
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BW =210 (Hz/pixel); integrated parallel acquisition 
technique =2; and acquisition time =7:40 (min:s).

Details of the motor task-based fMRI data from the HCP 
database have been previously reported (22). Briefly, subjects 
were shown 3-s text cues instructing them to tap their 
fingers, squeeze their toes, or move their tongue to activate 
different motor brain regions. Ten movements for each 
motor task were executed for 12 s. Each subject participated 
in two runs of 13 motor tasks (two tasks each for tongue, 
right hand (RH), left hand (LH), right foot (RF), and left 
foot (LF); and three 15-s fixation tasks performed to obtain 
baseline measurements). Details of the language task-based 
fMRI data from the HCP database have been previously 
reported (23). Briefly, the task consists of two runs that each 
interleave 4 blocks of a story task and 4 blocks of a math 
task. Each task were executed for approximately 30 seconds, 
however, each task was designed in order that the math task 
blocks match the length of the story task blocks, with some 
additional math trials at the end of each task. The Story–
Math protocol provides a reliable method for activation 
of the temporal lobe language regions of the left (LL) and 
right (RL) hemispheres. Two runs of each sequence were 
performed (Figure 1); the activation sequences from left to 
right hemisphere and from right to left hemisphere were 
defined as LtoR and RtoL, respectively. The study were 
approved by the Joint Ethics Committee of the Chinese 
Academy of Medical Sciences and Peking Union College.

FMRI preprocessing

Statistical Parametric Mapping (SPM)12 (London, UK) 
software package in Matlab v.2013b (MathWorks, Natick, 
MA, USA) was used to process T1 and task-based fMRI 
data. Task-based fMRI volumes of LtoR and RtoL motor 
and language task fMRI runs were realigned to the mean 
volume of each run. T1 volumes were coregistered with 
realigned task-based fMRI volumes, and all volumes were 
normalized to MNI space using the standard segmentation 
method for group-level analysis. Task-based fMRI volumes 
were smoothed using an isotropic Gaussian kernel with 
4 mm full width at half-maximum (FWHM). A larger 
FWHM improves SNR but reduces spatial resolution. The 
voxel size of our data was 2 mm × 2 mm × 2 mm; setting 
the FWHM to 2 to 3 times the voxel size is considered 
acceptable (24,25). As high spatial resolution was critical 
for our analyses, we changed the FWHM of the isotropic 
Gaussian kernel to 4 mm in SPM12. A flow diagram of 
tasked-based fMRI data preprocessing is shown in Figure 1.

Feature extraction and fMRI statistics

For single participant first-level modeling, a GLM 
design matrix was constructed based on the experimental  
design (26). Signal drift periods longer than 128 s were 
removed with a 1/128-Hz high-pass filter. Realignment 
parameters based on head movement were introduced as 
multiple regressors, and GLM parameters were estimated 
using classic approaches. Four t-contrast vectors were 
defined to generate statistical parametric maps of the LF, 
LH, RF, and RH against the fixation baseline. Two t-contrast 
vectors were defined to generate statistical parametric maps 
of the story against the math baseline. The blocked tongue 
movement task was not included in analysis due to the 
complexity of head muscles.

Subjects 1 to 50 were selected for second-level modeling. 
A one-sample t test was used to analyze group-level 
activation of six separate brain regions with a random-
effects model (voxel-level family-wise error correction 
method, P<0.05) (27). The largest activation cluster was 
selected from primitive SPM {T} mapping; the selected 
LF, RF, LH, RH, LL and RL activation regions are shown 
in Figure 2. Six binary masks were extracted from these 
clusters to negate the impact of the remaining brain data 
on the results. For each subject, the peak-level activation 
point in a mask was identified from the corresponding SPM 
{T} map. The coordinates in MNI space were recorded as 
a feature parameter of each activated region. The above 
processing steps yielded twelve feature coordinates for each 
subject representing the activated points in brain regions 
representing the LF, LH, RF, RH, LL and RL. Each brain 
region had two feature coordinates from two runs. It should 
be noted that not all twelve regions in each subject could 
be activated; data for a subject were excluded if there was 
one region that was not activated. Ultimately, data for 893 
subjects were used for further analysis. Additionally, mean 
values of parameters that were estimated by the GLM in 
first-level modeling for each subject were also calculated 
using masks selected from nine brain atlases and second-
level modeling analysis.

Atlas selection

Brain atlases can be divided into three categories according 
to the type of raw data (i.e., structural images, resting-
state (rs-)fMRI, and multi-modal images) used in their 
construction. The parcel numbers of an atlas based on 
macro-anatomical information extracted from structural 
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Figure 1 Block diagram of experimental procedures and data analysis.
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images were 60 to 150. The primary motor cortex is in the 
precentral gyrus. Brain atlases were screened based on the 
following criteria: (I) the precentral gyrus and paracentral 
lobule were segmented; and (II) central or maximum 
probabilistic coordinates of each region were reported in 

the publication or were retrievable online. Based on these 
criteria, nine brain atlases from six studies were selected for 
analysis (Table S1). Five studies involved rs-fMRI, and one 
utilized probabilistic diffusion tractography calculated from 
structural MRI, rs-fMRI, and diffusion MRI. The parcel 

https://cdn.amegroups.cn/static/public/QIMS-20-404-Supplementary.pdf
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Figure 2 Definition of mask with region of interests (ROIs) from task-based functional MRI (fMRI) LtoR runs. (A) Left foot (LF); (B) left 
hand (LH); (C) right foot (RF); (D) right hand (RH); (E) left language (LL) and right language (RL). 
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numbers of the selected atlases were 184 to 400.
It should be noted that not all brain atlases described the 

functionality of each brain region in detail. For instance, one 
study reported hand regions in the precentral gyrus of the 
left and right hemispheres at (−26, −25, 63) and (34, −19, 59)  
in MNI space, foot regions in the paracentral lobule of the 
left and right hemispheres at (−8, −38, 58), (−4, −23, 61) 
and (10, −34, 54), (5, −21, 61), and temporal lobe language 
regions of the left and right hemispheres at (−55, −3, −10) 
and (56, −12, −5), respectively, in MNI space (28). Thus, 
for the other eight atlases, regions that were closest to the 

above coordinates in precentral gyrus, paracentral lobule 
and anterior temporal lobe were selected as corresponding 
functional regions; their coordinates are presented in  
Table S1.

Statistical tests

Inter-individual variability in each brain atlas was assessed 
by calculating the ED between brain atlas coordinates and a 
subject’s maximum activation point for each region in MNI 
space according to the following equation:

 2 2 2 ( 1...893 1...9 1...6)(i,rg) (j,rg) (i,rg) (j,rg) (i,rg) (j,rg)D = x - x + y - y + z - z i = , j = ,rg =（ ）（ ）（ ）  [1]

where x (i,rg), y (i,rg), and z (i,rg) are the coordinates of each 
subject’s maximum activation point; i is the subject number; 
x (j,rg), y (j,rg), and z (j,rg) are the atlas coordinates; j is the 
atlas number, and rg is the region. Data from two runs were 
calculated separately, yielding eight characteristic EDs for 
each subject.

The mean value of GLM parameters was also calculated 
with the equation below to assess the inter-individual 
variability of each brain atlas:

 
( , , )

( , , )
x y z

x y z mask

N

β
β ∈=

∑
 [2]

where β is the estimated GLM parameter in each mask and 
N is the number of voxels in the calculation.

We used the paired t test for data validation; two-
way analysis of variance (ANOVA) to evaluate significant 
differences in EDs and extracted GLM parameters; and 
linear regression to assess the linear interdependence of 

parcel number and EDs and of GLM parameters and ED. 
One-way ANOVA was used to evaluate differences between 
EDs of different regions. All statistical analyses were 
performed using Prism 6 software (GraphPad Inc., La Jolla, 
CA, USA).

Results

Data validation

All subjects participated in two runs of the motor and 
language task-based fMRI test; data for 893 subjects with 
all six regions activated in the two runs were available 
for analysis. That is, for each region in each subject, two 
feature coordinates were obtained. Given the low SNR of 
the BOLD signals, no significant differences were found in 
the group-level analysis of the two runs of data. The means 
and standard deviations of maximum activation coordinates 

https://cdn.amegroups.cn/static/public/QIMS-20-404-Supplementary.pdf
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Figure 3 Coordinates of subjects’ maximum activation points in the LF, LH, RF, RH, LL and RL. The symbols and error bars represent 
mean values and standard deviations, respectively, of 893 subjects.
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of the six brain regions are shown in Figure 3. A two-tailed 
paired t test showed no significant difference between the 
two runs for each of the six regions (LF, P=0.6252; LH, 
P=0.3633; RF, P=0.3731; RH, P=0.4828; LL, P=0.092 and 
RL, P=0.8119).

Inter-individual variability of ED in brain atlases

The mean EDs between brain atlas coordinates and 
subjects’ maximum activation points in four motor regions 
were calculated as the inter-individual variability of each 
atlas, and their significance was evaluated by two-way 
ANOVA (Figure 4A). The factors in the analysis were two 
runs of task-based fMRI (LtoR and RtoL) and nine brain 
atlases. The 893 subjects showed a significant interaction 
effect [SS =772.7, DF =8, MS =96.59, F(8, 16056) =13.79, 
P<0.0001]; inter-individual variability differed across the 
nine brain atlases [SS =108,631, DF =8, MS =13,579, F(8, 
16056) =1,939, P<0.0001], with no significant differences 
between the two runs of each scan [SS =9.213, DF =1, MS 
=9.213, F(1, 16056) =1.316, P=0.2514]. The mean EDs 
between brain atlas coordinates and subjects’ maximum 

activation points in two language regions were calculated 
as the inter-individual variability of each atlas, and their 
significance was evaluated by two-way ANOVA (Figure 4B).  
The factors in the analysis were two runs of task-based 
fMRI (LtoR and RtoL) and nine brain atlases. The 893 
subjects showed a significant interaction effect [SS =1,545, 
DF =8, MS =193.1, F(8, 16056) =6.444, P<0.0001]; inter-
individual variability differed across the nine brain atlases 
[SS =95,882, DF =8, MS =11,985, F(8, 16056) =399.9, 
P<0.0001], with significant differences between the two runs 
of each scan [SS =5,094, DF =1, MS =5,094, F(1, 16056) 
=170, P<0.0001]. The minimum mean EDs in four motor 
regions was gotten at Schaefer’s brain Atlas consisted of 
200 parcels (12.66±2.69 mm for LtoR, 12.85±2.79 mm for 
RtoL). The minimum mean EDs in two language regions 
was gotten at Schaefer’s brain Atlas consisted of 200 parcels 
(7.99±3.77 mm for LtoR, 7.57±3.78 mm for RtoL).

The interdependence between parcel number and inter-
individual variability was evaluated by linear regression 
analysis (Figure 4C for motor regions and Figure 4D for 
language regions). There was no correlation between parcel 
number and inter-individual variability of LtoR (r=0.01021, 
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Figure 4 Inter-individual variability in euclidean distance (ED) in different brain atlases. (A) ED between brain atlas coordinates and 
subjects’ maximum activation point of four motor regions. (B) ED between brain atlas coordinates and subjects’ maximum activation 
point of two language regions. (C) Interdependence of mean ED in four motor brain regions on parcel number in the brain atlas. (D) 
Interdependence of mean ED in two language brain regions on parcel number in the brain atlas. Symbols and error bars represent mean 
values and standard deviations, respectively, of four motor regions in the 893 subjects. Linear regression lines are also shown.

F=0.07221, P=0.7959) and RtoL (r=0.01357, F=0.09629, 
P=0.7654) ED for motor regions. There was no correlation 
between parcel number and inter-individual variability 
of LtoR (r=0.2222, F=2, P=0.2002) and RtoL (r=0.1232, 
F=0.9832, P=0.3544) ED for language regions.

Inter-individual variability of ED in different brain 
regions

We next examined the inter-individual variability in 
different brain regions (Figure 5). The mean LtoR EDs and 
standard deviations of the LF (20.84±6.56), RF (17.16±2.75), 

LH (10.72±1.39), RH (19.02±3.8), LL (8.7±2.63) and RL 
(16.81±5.49) and mean RtoL EDs and standard deviations 
of the LF (20.44±5.97), RF (18.22±2.58), LH (10.16±1.35), 
RH (18.4±3.83), LL (8.56±2.9) and RL (14.7±4.78) were 
calculated. One-way ANOVA and Tukey’s multiple post-
hoc comparisons test were used to analyze the inter-
individual variability of ED in different brain regions. The 
results showed significant differences for LtoR [F=11.88, 
sum of squares (SS) =1,862, degrees of freedom (DF) 
=53, P≤0.0001] and RtoL (F=13.98, SS =1,768, DF =53, 
P≤0.0001) in different brain regions. Tukey’s test results 
indicated that LtoR (P=0.0008) and RtoL (P=0.0004) EDs 
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Figure 5 Inter-individual variability of euclidean distance (ED) in different brain regions. EDs between brain atlas coordinates and subjects’ 
maximum activation points. Symbols and error bars represent mean values and standard deviations, respectively, of EDs in each region for 
893 subjects in the nine brain atlases. *P<0.05; **P<0.01; ***P<0.001.

Figure 6 Interdependence of euclidean distance (ED) in one motor region and mean EDs in the other three motor regions, and 
interdependence of ED in language region and mean EDs in the four motor regions. Data from two runs are presented along with their 
linear regression lines.

were higher for the RH than for the LH, LtoR (P=0.0019) 
and RtoL (P=0.0179) EDs were higher for the RL than for 
the LL, whereas no difference was observed between the 
RF and LF (LtoR, P=0.2469 and RtoL, P=0.6140).

Interdependence of inter-individual variability of EDs in 
different brain regions

The interdependence between mean ED in one motor 

region and the other three motor regions was evaluated by 
linear regression analysis; the interdependence between 
mean ED in language region and four motor regions was 
also evaluated by linear regression analysis; data from the 
two runs were calculated and are presented in Figure 6. A 
positive correlation was observed between the LH and the 
other three motor regions (slope =0.23±0.085, r=0.3196, 
F=7.515, P=0.0145), between the LF and the other three 
motor regions (slope =1.80±0.62, r=0.3459, F=8.461, 
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Figure 7 Inter-individual variability of general linear model (GLM) parameter extraction in different brain regions. Symbols and error bars 
represent mean values and standard deviations, respectively, in four motor regions and two language regions in 893 subjects. RH, right hand; 
RF, right foot; LH, left hand; LF, left foot; LL, left language; RL, right language.

P=0.0103) and between the LL and the four motor regions 
(slope =0.48±0.22, r=0.2334, F=4.873, P=0.0422). There 
was also a non-significant positive correlation between the 
RH and the other three motor regions (slope =0.47±0.29, 
r=0.1362, F=2.522, P=0.1318), between the RF and the 
other three motor regions (slope =0.18±0.20, r=0.04878, 
F=0.8206, P=0.3785) and between the RL and the four 
motor regions (slope =0.69±0.33, r=0.217, F=4.434, 
P=0.0514).

Inter-individual variability of GLM parameter extraction 
in brain atlases

One way to use the brain atlas is to extract GLM 
parameters from tasked-based fMRI statistical parametric 
maps with a region of interest (ROI) as a mask. The mean 
GLM parameters extracted from the relevant mask (LF, 
LH, RF, RH, LL and RL) of eight brain atlases and second-
level modeling analysis are shown in Figure 7. In a previous 
study, the ROI that was applied to functional areas of the 
model was spheroid (Powell, 2011). As we were unable to 
obtain the true shapes of functional regions, the data from 
this earlier work were not used here. Two-way ANOVA was 
used to investigate the influence of different brain atlases 
on parameter extraction; the factors were the nine different 
brain atlases and six relevant masks. The results revealed a 

significant interaction effect of the 893 subjects for LtoR 
[SS =10,088, DF =40, MS =252.2, F(40, 48,168) =216.5, 
P<0.0001] and RtoL [SS =8,365, DF =40, MS =209.1, F(40, 
48,168) =180.7, P<0.0001]. Signal extraction differed for 
LtoR [SS =6,642, DF =8, MS =830.3, F(8, 48,168) =712.7, 
P<0.0001] and RtoL (SS =4,911, DF =8, MS =613.8, F(8, 
48,168) =530.4, P<0.0001) across the nine brain atlases, 
and differed between the four different masks for LtoR [SS 
=5,655, DF =5, MS =1,131, F(5, 48,168) =970.9, P<0.0001] 
and RtoL [SS =9,007, DF =5, MS =1,801, F(5, 48,168) 
=1,557, P<0.0001]. The maximum mean GLM parameters 
extracted from the four motor region masks was gotten at 
Schaefer’s brain Atlas consisted of 200 parcels (2.078±0.15 
for LtoR, 2±0.14 for RtoL). The maximum mean GLM 
parameters extracted from the two language region masks 
was gotten at Schaefer’s brain Atlas consisted of 200 parcels 
(1.91±0.4 for LtoR, 2.01±0.3 for RtoL).

Interdependence of extracted GLM parameters and ED

The interdependence of mean ED and extracted mean 
GLM parameters of each region are shown in Figure 8. 
Data were collected from two runs in eight brain atlases. 
The interdependence of extracted GLM parameters and 
EDs was evaluated by linear regression analysis. A negative 
correlation was found between extracted GLM parameters 
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Figure 8 Interdependence of euclidean distance (ED) on extracted general linear model (GLM) parameters. Symbols and error bars 
represent mean values and standard deviations, respectively, for 893 subjects. Linear regression lines are also shown. LF, left foot; RF, right 
foot; LH, left hand; RH, right hand; LL, left language; RL, right language.

and EDs for LF (slope =−0.1048±0.01367, r=0.8076, 
F=58.76, P<0.0001), RF (slope =−0.1127±0.03348, r=0.4474, 
F=11.34, P=0.0046), LH (slope =−0.2893±0.04670, 
r = 0 . 7 3 2 7 ,  F = 3 8 . 3 7 ,  P < 0 . 0 0 0 1 ) ,  R H  ( s l o p e 
=−0.1843±0.01496, r=0.9156, F=151.8, P<0.0001), LL (slope 
=−0.1364±0.01657, r=0.8288, F=67.78, P<0.0001)and RL 
(slope =−0.08767±0.01201, r=0.7919, F=53.27, P<0.0001).

Discussion

The present study evaluated the inter-individual variability 
in nine brain atlases using motor regions and temporal lobe 
language regions mapped by task-based fMRI. Our findings 
were as follows: (I) inter-individual variability in signal 
extraction and ED differed across nine brain atlases; (II) 
compared to the RH, ED was lower for the LH, compared 
to the RL, ED was lower for the LL whereas no difference 
was observed between the LF and RF; (III) mean EDs in 
one motor region were positively correlated with those 
in the other three motor regions, mean EDs in language 
region were positively correlated with those in the four 
motor regions, although only those of LH, LF and LL 
were significant; and (IV) extracted GLM parameters were 
negatively correlated with EDs in all six regions.

Brain atlases describe distinct functional regions and 
large-scale connectivity networks (1, 2, and 4). All image-

based atlases generated to date have been established based 
on imaging labels that depict brain tissue characteristics (6). 
The images are collected from dozens or even hundreds 
of subjects; a brain atlas that is generated from this dataset 
only reflects group-level results of these subjects whereas 
individual variability could exist for others. Therefore, it is 
important to use a brain atlas with minimal variability for 
research or pre-surgical planning.

The two main techniques that have been used to map 
the human motor cortex are tasked-based fMRI and 
neuronavigated transcranial magnetic stimulation (29-31). 
Some studies have demonstrated that the former is more 
useful than the latter for mapping the hand, foot, and other 
body parts (29). However, despite being broadly applicable, 
non-invasive, and able to localize neural activity associated 
with a specific task on a millimeter scale, tasked-based fMRI 
is limited by low SNR and time resolution (32). System 
noise, head movements, and cardiac cycles also affect the 
quality of acquired signals (33). In the present study, we 
analyzed motor task-based fMRI data from the HCP. All 
of the data were collected using standard and rigorous 
experimental procedures and the data quality has been 
verified by numerous studies. Additionally, head movement 
parameters were introduced in multiple regressors to reduce 
their impact while data from subjects with non-activated 
brain regions were excluded.
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Rs-fMRI is the main source of data for constructing 
image-based brain atlases (6) .  Many studies have 
demonstrated that the organization of rs-fMRI and 
activation mode of task-based fMRI have group-level 
consistency (16,17,20), and rs-fMRI data tracking task-
based fMRI activation at the individual level have also been 
reported (34). Recent studies have shown that some task-
based fMRI activation corresponds to data in rs-fMRI-
based brain atlases, especially for movement tasks (20,22,35). 
Mapping motor regions for quantitative assessment of 
inter-individual variability in rs-fMRI-based atlases takes 
into account the correlation between task-based fMRI and 
rs-fMRI and has the advantages of simplicity in terms of 
experimental procedure and data processing.

Inter-individual variability is a major problem for the 
application of brain atlases. Although detailed brain atlases 
have been developed for individual subjects based on 
cumulative rs-fMRI data collected over a long term (12),  
in many instances, patients cannot tolerate such long 
periods. Thus, group-level brain atlases are still very useful 
and quantification of their inter-individual variability is 
important. For example, brain atlas was frequently applied 
in segmenting fMRI data using regions of interest, and 
then obtaining respective time series of each region of 
interest by averaging the fMRI time series across all voxels 
in the region of interest. Generally, these time series were 
used to calculate the effective brain connectivity between 
different regions of interest (36,37). Our results revealed 
significant inter-individual variability in signal extraction 
and EDs in nine brain atlases. Therefore, applying same 
region from different brain atlas to segment fMRI data 
may affect the next-step calculation results because of 
different inter-individual variability in different brain 
atlases. As there was no correlation between ED and parcel 
number the latter cannot be used as a sole criterion for 
selecting a brain atlas. All subjects included in our analysis 
were right-handed, which could account for the greater 
inter-individual variability of the RH compared to the 
LH. Thus, for a given functional area in the left or right 
hemisphere, higher activation is associated with increased 
inter-individual variability. Most importantly, we found a 
positive correlation between the inter-individual variability 
in one region and that in the other three regions, although 
the biological basis of this observation is unclear. We used 
motor and language task-based fMRI data to estimate inter-
individual variability in different brain regions and applied 
GLMs to the data analysis. A design matrix depicting the 

nature of the experiment was used to estimate the GLM 
parameters, which reflected the correlations between voxel 
BOLD signals and the experimental design; the more 
relevant the brain area, the larger the estimated GLM 
parameters (17) and the farther away from the relevant 
brain area, the smaller the estimated GLM parameters (20). 
This explains why the extracted GLM parameters were 
negatively correlated with the ED.

This study had several limitations. Firstly, only motor 
and language task-based fMRI data were analyzed. 
Correlation analyses of inter-individual variability between 
motor and other brain regions such as visual areas or 
Broca’s area would be more convincing. Secondly, the data 
were collected from young, healthy subjects and it remains 
to be seen whether the same trends are present in elderly or 
impaired individuals such as stroke patients who are unable 
to complete the assigned task.

Conclusions

The results presented here demonstrate that inter-
individual variability exists in different brain atlases 
constructed from the same dataset as well as in different 
brain regions. Determining the inter-individual variability 
of a brain atlas—for instance, by task-based fMRI mapping 
of motor regions—is essential before it can be considered 
as reliable and used in clinical and research settings. 
Along the same lines, brain atlas with less inter-individual 
variability which was quantitative assessed by present 
method should be applied in future study. Finally, the 
Schaefer’s brain Atlas which is consisted of 200 parcels was 
recommended for motor task and temporal lobe language 
task as studied.
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Table S1 The information of brain Atlas and functional regions which is selected in present research

literature 
and years

Brain 
coverage

Method
Original 

data format
Parcel 

number

Coordinates in MNI space (mm)

Right hand Left hand Right foot Left foot Left language Right language 

X Y Z X Y Z X Y Z X Y Z X Y Z X Y Z

Power  
et al. 2011

Cerebrum Rs-fMRI Volume 264 −20.7 −31.3 60.9 42.1 −20.2 54.6 −6.90 −20.59 65.21 2.40 −27.94 60.15 −56.00 −13.00 −10.00 58.00 −16.00 7.00 

Shen  
et al. 2013

Brain Rs-fMRI Volume 184 −24.2 −28.8 63.8 37.4 −25.4 57.4 −7.07 −37.12 64.43 8.08 −22.96 48.85 −50.50 0.90 −20.20 52.50 −2.70 −9.70 

278 −22.2 −27.8 62.7 35.4 −27.6 60.6 −5.05 −26.67 61.72 9.09 −31.15 47.33 −56.60 −11.80 −12.60 55.60 −17.30 −4.60 

Joliot  
et al. 2015

Cerebrum Rs-fMRI Volume 384 −23.0 −29.0 64.0 37.0 −20.0 60.0 −10.00 −29.00 65.00 11.00 −27.00 66.00 −55.00 −7.00 −13.00 47.00 −7.00 −2.00 

Fan  
et al. 2016 

Cerebral 
cortex and 
subcortical 
structures

PDT Volume 246 −26.0 −25.0 63.0 34.0 −19.0 59.0 −6.00 −30.50 59.50 7.50 −27.50 57.50 −55.00 −3.00 −10.00 56.00 −12.00 −5.00 

Gordon  
et al. 2016

Cerebral 
cortex

Rs-fMRI Surface and 
volume

333 −20.5 −24.9 64.5 38.1 −22.4 60.3 −5.00 −28.20 60.40 4.80 −27.10 64.80 −54.40 −1.40 −0.70 57.10 −17.00 −2.60 

Schaefer 
et al. 2018

Cerebral 
cortex

Rs-fMRI Surface and 
volume

200 −32.0 −22.0 64.0 33.0 −21.0 65.0 −5.00 −29.00 67.00 6.00 −23.00 69.00 −56.00 −6.00 −12.00 54.00 −6.00 −10.00 

300 −31.0 −29.0 62.0 37.0 −20.0 64.0 −4.00 −25.00 67.00 5.00 −23.00 65.00 −56.00 −8.00 −6.00 52.00 −10.00 2.00 

400 −32.0 −29.0 63.0 37.0 −20.0 64.0 −4.00 −25.00 56.00 4.00 −25.00 58.00 −56.00 −8.00 −14.00 62.00 −18.00 0.00 

RtoL Data t-fMRI Volume −39.5 −19.8 61.7 38.3 −18.1 60.6 −5.0 −25.90 74.90 6.80 −26.10 74.80 −51.80 −10.70 −13.40 53.10 −4.00 −9.10 

LtoR Data t-fMRI Volume −39.7 −19.3 58.4 39.7 −18.7 62.4 −7.6 −28.3 75.10 5.10 −24.20 76.70 −53.80 −9.70 −16.00 55.50 −2.00 −12.10 
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