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Motivation

Artificial intelligence (AI) has proven successful for the 
detection and diagnosis of pathological conditions on 
medical images. Images, such as radiographs and computed 
tomography scans in Digital Imaging and Communications 
in Medicine (DICOM) format, are used by AI to self-
learn and identify patterns that allow for the derivation 
of reasonable predictions. Even without the input of 
standard image-processing rules by medical experts, 

network algorithms can learn from raw images, and 
ultimately provide highly accurate and consistent output. 
Furthermore, AI has demonstrated the potential to assist 
radiologists in performing computer-aided analysis and 
diagnosis. For example, Stanford University published a 
convolutional neural network with 121 layers, CheXNet, 
that outperformed four radiologists after learning on a 
dataset of 112,120 frontal-view chest radiographs (Chest 
X-ray14) (1). Likewise, Li et al. (2) presented a retrospective 
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pre-clinical study that used deep convolutional neural 
networks to improve thyroid cancer diagnostic accuracy 
on sonographic images; the proposed network model 
attained a similar accuracy to the average performance of six 
radiologists but with a higher sensitivity.

Nonetheless, the high-accuracy performance model 
has a shortcoming: deep-learning solutions notoriously 
require much training data. Although many imaging 
centres own large imaging databases, many of the images 
are unlabelled, and therefore do not allow the model to 
learn. Unlabelled images must be manually annotated by a 
trained radiologist. Thus, producing a training dataset can 
be time-consuming and is a significant limiting factor in the 
development of AI solutions for medical imaging. To solve 
this problem, federated learning trains algorithms across 
multiple healthcare institutions to achieve better AI models 
through collaboration. A given algorithm gathers labelled 
patient information from various institutions to augment 
its learning base and therefore augment its ability to detect 
patients from a wide population. However, the idea of 
collaborative training has triggered concern among some 
healthcare administrators because of the possibility that 
personal information will be shared, and therefore breach 
the Data Protection Act and endanger patient privacy. 
To combat these concerns, federated learning allows an 
algorithm to learn from local data without removing that 
data from an individual site, thus upholding patients’ 
privacy and facilitating cooperation between hospitals. 

Overview of federated learning

Through federated learning, multiple organizations or 
institutions work together to solve a machine-learning 
problem under the coordination of a central server or 
service provider. Thus, a deep-learning model is maintained 
and improved upon within a central server. The model is 
trained by distributing itself to remote silo data centres, 
such as hospitals or other medical institutions, which 
allows these sites to keep their data localized. Data from 
each collaborator is never exchanged or transferred 
during training. Instead of bringing the data to the central 
server, as in conventional deep learning, the central server 
maintains a global shared model, which is disseminated 
to all institutions. Each entity subsequently maintains a 
separate model based on its own patients’ data. Thereafter, 
each centre provides feedback to the server based on its 
individually trained model—either by its weight or the 
error gradient of the model. The central server aggregates 
the feedback from all participants, and based on predefined 
criteria, updates the global model. The predefined criteria 
allow the model to evaluate the quality of the feedback and 
therefore to only incorporate that which is value-adding. 
The feedback from centres with adverse or strange results 
can thus be ignored. This process forms one round of 
federated learning, and it is iterated until the global model 
is trained. 

Figure 1 illustrates the federated learning process, and 
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Figure 1 An overview of federated learning.
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Figure 2 summarizes the learning framework procedures. 
Federated learning allows individual hospitals to benefit 
from the rich datasets of multiple non-affiliated hospitals 
without centralizing the data in one place. This practice 
overcomes critical issues such as data privacy, data security, 
data access rights, and access to heterogeneous data. Hence, 
federated learning allows multiple collaborators to build a 
robust machine-learning model using a large dataset. 

The benefits of federated learning

First, federated learning allows the central model to learn 
from a diverse and augmented set of learning samples 
obtained from multiple institutions. Patient data and images 
at any individual hospital is obtained from a specific subset 
population and is therefore unlikely to have been seen by 
or shared with other hospitals. This is particularly true of 
hospitals located in different geographic regions, where 
patient traits likely differ substantially. The gender ratios, 
age distributions, and ethnicities of the patient populations 
all tend to differ between hospitals. Likewise, a tertiary 
hospital tends to see a higher volume of difficult cases than 
a secondary hospital does. Because of these differences 
in patient populations, if an atypical patient is evaluated 
at a certain hospital, the use of a training model derived 
from that hospital’s patient database may be inadvisable, 
as the model has not had the opportunity to learn from 
atypical cases. However, a federated learning derived 
model incorporates data from multiple institutions, thereby 
increasing its external validity. Such a model would be 
much more likely to generate accurate results, even for 

what may be an atypical patient at a certain hospital. This 
type of cooperation therefore allows for the advancement of 
precision medicine. 

Second, the deployment of AI models requires periodic 
training and updating to remain current. This requirement 
may place an undue burden on radiologists, who must 
continually label a sufficient volume of studies necessary to 
retrain the model. At certain times when patient volume 
peaks, it may be difficult or even impossible for radiologists 
to produce enough annotated labels. However, because 
peak volume season may differ across hospitals, federated 
learning mitigates this issue, allowing radiologists at less 
busy hospitals to annotate studies while their counterparts 
at busier hospitals are too busy to do so. In this way, all users 
can download and use the most up to date model year round.

Third, the federated learning framework brings about 
auto-scaling at almost no additional cost. When new hospitals 
participate, they bring more data and more computational 
resources. As the loop continues to run, an ever-enlarging 
dataset is fed to the model, while all computations continue 
to be made by the end-user. The global model is updated 
after users have trained their individual models, requiring 
minimal resources to aggregate models and thus making 
deployment much more economical. 

Application of federated learning

The concept of federated learning is a new and popular 
research topic and is being widely explored in healthcare. 
Numerous reports have demonstrated proof of concept 
with respect to federated learning applied to real-world 
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Figure 2 Summary of one complete round of federated learning.
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medical imaging. In 2018, Intel worked with the Centre 
for Biomedical Image Computing and Analytics, at the 
University of Pennsylvania, to evaluate the use of federated 
learning for brain-image segmentation (3). The publicly 
available dataset from the brain tumour segmentation 
(BraTS) challenge 2018 was used (4-7). The data were a 
collection of multi-institutional, multi-model magnetic 
resonance imaging (MRI) brain scans from patients with 
gliomas. Each of the abnormal findings on the MRI scans 
was manually annotated by as many as four radiologists 
using three distinct labels that corresponded to either 
peritumoral edematous/invaded tissue, non-enhancing/
solid, necrotic/cystic tumour core, or enhancing tumour. 
The authors chose the U-Net deep convolutional neural 
networks model for the task, while deploying the server-
client federated learning algorithm for the system 
environment to train and perform model validation. 
Multiple hypothetical institutions were created to simulate 
independent, separate clients. Data were subsequently split 
and tested in two ways. The first split evenly distributed 
and randomly allocated data to each client; the second 
split assigned the data to the institutions from which they 
were initially collected. During implementation, multiple 
clients received the current version of the model from the 
central server. The server selected a few suitable models 
from individual clients and updated the central model 
using federated aggregation. This update, in theory, allows 
the central model to increase performance and accuracy, 
thereby allowing clients that receive the updated model 
from the server in the next round to perform better. In the 
end, the BraTS experiments revealed that the performance 
scores of the federated semantic segmentation models on 
the brain MRI scans were similar to those derived from 
models that trained on the complete dataset. 

In similar research, Nvidia Corporation worked with 
King’s College London and presented their work at 
the Medical Image Computing and Computer Assisted 
Intervention Society (MICCAI 2019) conference. 
Federated learning training was performed on Nvidia 
Clara Train SDK (8). Using the BraTS 2018 dataset, they 
attempted to apply the differential-privacy technique to 
protect patient data under a federated learning setup. This 
technique encodes the data of each patient before sharing 
the information with other clients. Complex mathematical 
algorithms are employed to prevent reverse engineering 
and restoration of the original dataset. Ultimately, Nvidia 
was able to achieve comparable segmentation performance 
using the federated learning model without directly sharing 

institutional data. 
In the above experiments, clients were endowed with a 

small dataset that simulated real-life healthcare scenarios, 
where there is never enough labelled data. However, with 
federated learning, members of the participating community 
can obtain performance that is akin to training with a 
large dataset. Therefore, federated learning offers a way to 
bypass the problem of not having sufficient labelled data to 
deploy top-level machine-learning solutions, through the 
combined effort of various medical institutions. Thus, a 
well-performing model can be generated that offers strong 
external validity based on large datasets without worrying 
about data protection. 

Challenges of federated learning

The first challenge of performing federated learning 
successfully is weights updating. This challenge is faced 
during the training phase, when the deep-learning model 
for medical-imaging analysis uses backpropagation for 
optimization. In federated learning, the central server 
must aggregate the weights from various hospitals during 
backpropagation, and the model-aggregation policy can 
directly affect model performance: an efficient and high-
performance strategy for the updating of weights is crucial 
for the implementation of federated learning.

A potential solution for addressing weights updating 
is to use federated averaging, as proposed by McMahan  
et al. (9). Using this strategy, the central server incorporates 
the average weights of all selected models following each 
iteration to create the central model. As such, all site-
specific models are weighted equally, regardless of the fact 
that some are likely superior to others. Weaker site-specific 
models may result from poor data quality, lack of target 
patients, or annotation errors made by an inexperienced 
radiologist. Thus, feedback from some hospitals should 
ideally be weighted less than feedback from other hospitals. 
Federated averaging can in this way obscure the effects of 
important features and is therefore not an ideal solution to 
weighting. A suitable solution to the problem of weighting 
is a persistent challenge that deserves further study.

The second challenge of performing federated learning 
is the equitable allocation of grant funding. When multiple 
hospitals collaborate, larger hospitals tend to generate 
more images, have more-experienced radiologists doing the 
labelling, and have better training infrastructure. Ideally, 
these collaborators contribute more to joint learning 
and produce a higher quality dataset for better training 
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feedback. However, doing so is costly, so it is natural for 
larger hospitals to expect greater research-grant funding. 
Some may argue though, that research funds should be 
apportioned according to the value of training feedback, 
with top value-adding contributors receiving more. A 
problem with this approach is that determining the value of 
contributions is difficult and should not be solely based on 
the size of datasets. For example, a hospital may produce 
ten times more images than another, but the diversity of 
its images may be low. In such a scenario, it offers little 
value in training the model to recognize various pathologic 
conditions. Furthermore, it is unclear how best to qualify 
the judgement of radiologists when labelling images, 
especially for semantic segmentation. Hence, algorithms 
are needed to better appraise the contributions made by 
individual hospitals and thus to more objectively allocate 
funding. 

The third challenge lies in the practical application 
of federated learning. Hardware, operating systems, and 
network conditions differ across sites, which means that 
learning algorithms must run on different platforms. This 
poses a challenge to the implementation of federated 
learning. For example, graphics processing units may differ 
across hospitals, which results in differences in speed of 
training and asynchronous weights updating. Moreover, 
since algorithms are running remotely, central data 
scientists have no direct control over or may not understand 
individual institution specifics. This can make optimization 
and debugging difficult and complex.

The fourth challenge arises from differences in image 
acquisition protocols and labelling methodologies across 
institutions. Such differences may lead to the generation 
of a site specific model that does not fit other sites well 
and therefore may contribute poorly or even negatively 
to the central model. Such differences may also hold 
important implications in weighting across sites. This 
can be overcome by proactively agreeing upon and 
implementing certain processing and labeling standards 
across all involved institutions. The difficulties of achieving 
such standardization can be reduced by using the same 
natural language processing (NLP) algorithms to process 
radiologist reports. This is the current practice adopted 
by many institutions in preparing their data for training 
models.

Conclusions

To conclude, it is extremely difficult for individual sites that 

have small labelled datasets to build their own AI models 
for patient diagnosis. This is because the scope of patients 
that the model is based upon is typically quite limited, 
which in turn considerably limits the external validity of the 
model. With federated learning, this barrier is eliminated. 
Through collaboration, multiple institutions can pool their 
data to train a global model that offers greater accuracy 
over a larger spectrum of patients. In this collaborative 
effort, there is no direct data sharing, as federated learning 
prioritizes the privacy of patient data. Instead, the process 
of federated aggregating permits the generation of a central 
model based on recurrent updates from individual sites. 
Federated learning offers easy scalability, flexible training 
scheduling, and large training datasets through multi-site 
collaborations, all essential conditions to the successful 
deployment of an AI solution. However, important 
challenges remain and must be addressed before federated 
learning is optimally able to build AI models. Further, 
because of the novelty of federated learning in medical 
imaging AI, this topic has the potential to inspire and attract 
researchers, whose work will be necessary to advance the 
field forward. 
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