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Background: Reducing the radiation tracer dose and scanning time during positron emission tomography 
(PET) imaging can reduce the cost of the tracer, reduce motion artifacts, and increase the efficiency of the 
scanner. However, the reconstructed images to be noisy. It is very important to reconstruct high-quality 
images with low-count (LC) data. Therefore, we propose a deep learning method called LCPR-Net, which 
is used for directly reconstructing full-count (FC) PET images from corresponding LC sinogram data.
Methods: Based on the framework of a generative adversarial network (GAN), we enforce a cyclic 
consistency constraint on the least-squares loss to establish a nonlinear end-to-end mapping process from 
LC sinograms to FC images. In this process, we merge a convolutional neural network (CNN) and a residual 
network for feature extraction and image reconstruction. In addition, the domain transform (DT) operation 
sends a priori information to the cycle-consistent GAN (CycleGAN) network, avoiding the need for a large 
amount of computational resources to learn this transformation.
Results: The main advantages of this method are as follows. First, the network can use LC sinogram data 
as input to directly reconstruct an FC PET image. The reconstruction speed is faster than that provided by 
model-based iterative reconstruction. Second, reconstruction based on the CycleGAN framework improves 
the quality of the reconstructed image.
Conclusions: Compared with other state-of-the-art methods, the quantitative and qualitative evaluation 
results show that the proposed method is accurate and effective for FC PET image reconstruction.
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Introduction

Positron emission tomography (PET) is one of the most 
popular medical imaging methods for screening and 
diagnosing diseases, and it can observe molecular-level 
activity in tissues by injecting specific radiotracers into the 
human body; this approach is widely used in oncology (1),  
cardiology (2) and neurology (3). PET imaging can 
provide many benefits by reducing the injection dose of 
the radiotracer and reducing the patient scan time. For 
example, reducing the dose of the injected radiotracer 
can reduce the tracer cost, and reducing the patient scan 
time can reduce motion artifacts caused by the patient’s 
physiological motion and can also improve the efficiency 
of the PET scanner. However, these characteristics can 
reduce the number of photons and increase the image 
noise. To obtain accurate PET images for diagnostic use, a 
variety of reconstruction methods have been proposed, and 
they can be roughly divided into three categories: sinogram 
filtration methods, iterative reconstruction methods and 
image postprocessing methods. Sinogram filtration involves 
filtering raw data directly before executing the standard 
filtered back-projection (FBP) algorithm. According to 
the different types of filtering methods, filters can be 
divided into penalized weighted least-squares filters (4,5), 
nonlinear smoothing filters (6), and bilateral filters (7).  
These reconstruction methods have the advantages 
of a fast reconstruction speed and low consumption 
of computational resources. However, these methods 
are greatly affected by the original data, so they have 
problems related to the loss of the image resolution and 
edge detail information. Typical iterative reconstruction 
algorithms include the maximum-likelihood expectation-
maximization (MLEM) method (8),  the improved 
version of the MLEM method (9) and the ordered 
subset expectation maximization (OSEM) method (10).  
Iterative reconstruction methods (11) usually optimize 
the objective functions that combine noise models in the 
sinogram domain and the image domain or prior knowledge 
in the image domain. According to the different prior 
knowledge sets, priors can be divided into nonlocal means 
(NLM) priors (12), dictionary learning priors (13-16),  
and total variation (TV) priors (17-20). These methods 
are widely used in actual clinical reconstruction and can 
significantly improve the image resolution, but image 
details are often lost in the reconstruction of low-count 
(LC) PET data; thus, the main disadvantage is that this 
approach requires a large amount of computational 

resources during the reconstruction process. Image 
postprocessing methods do not rely on the original data 
but perform filtering in the reconstructed image domain. 
These methods include NLM filtering methods (21,22) 
and block-matching 3D (BM3D) methods (23). However, 
the traditional postprocessing method is not suitable 
for reducing both noise and artifacts. In addition, the 
traditional methods will result in an oversmoothed noise-
reduced image.

Recently, deep learning has not only been widely and 
successfully used in computer vision tasks but also shown 
great potential in the field of medical imaging (24-29). For 
several different image modalities, deep learning-based 
reconstruction methods have been successfully applied. 
Gong et al. proposed an iterative reconstruction method (30)  
based on a U-Net model (31) to reconstruct PET images. 
Zhu et al. developed a model that uses an automated 
transform and manifold approximation to reconstruct 
magnetic resonance (MR) images (32). This model learns 
the relationship between the sensor and the image domain 
for direct image reconstruction. Häggström et al. proposed 
a direct reconstruction method for PET images (33) using 
an end-to-end direct reconstruction network: a deepened 
U-shaped encoding-decoding network.

Recently, in the field of medical imaging, methods based 
on generative adversarial networks (GANs) (34) have become 
increasingly popular (35). In the general GAN framework, a 
generator network (G) and a discriminator network (D) are 
trained simultaneously. G is trained to generate an image 
G(x) from image x close to image y, and D is trained to 
distinguish between a real image and the generated image 
G(x). Wolterink et al. used a GAN for the first time to reduce 
noise in cardiac computed tomography (CT) images (36). 
Yang et al. proposed a GAN to solve the de-aliasing problem 
for fast compressive sensing MR imaging (37).

However, there are still several major limitations 
related to deep learning-based image reconstruction 
tasks. First, when performing image reconstruction under 
the convolutional neural network (CNN) framework, to 
improve the reconstruction quality, it is necessary to extract 
many abstract features by increasing the number of layers in 
the network or constructing a complex network structure. 
Therefore, the parameters of the network will increase to 
hundreds of millions, and considering the computational 
overhead, this approach is difficult to implement in 
practical applications. Second, under the framework of the 
adversarial network, due to the degeneracy of mapping, 
the GAN will generate features that are not present in the 
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target images (38). In addition, because the model may 
encounter the problem of mode collapse when mapping all 
the inputs x to the same output image y (39-41), it is not 
advisable to optimize the adversarial objective in isolation. 
Therefore, a cycle-consistent GAN (CycleGAN) (40) was 
designed to improve the performance of the general GAN. 
In this paper, a CycleGAN is used to reconstruct full-count 
(FC) PET images from LC sinograms.

To address the aforementioned drawbacks, in this study, 
the following contributions are made. First, we propose a 
CycleGAN to directly reconstruct high-quality FC PET 
images from LC PET sinogram data. This method improves 
the prediction ability of the GAN model and can preserve 
image details without special regularization. Second, the 
domain transform (DT) operation sends a priori information 
to the CycleGAN, avoiding the use of a large amount 
of computational resources to learn this transformation. 
Third, in the network design, we added residual blocks 
and skip connections to alleviate the problem of gradient 
disappearance associated with the network depth.

This paper is organized as follows. Section 2 presents 
how to build the CycleGAN and reconstruct the LC 
sinogram for FC PET images, and the experimental details 
are provided. In section 3, we show the experimental 
results. We then discuss the limitations in section 4. Finally, 
conclusions are drawn in section 5.

Methods

Method overview

Figure 1 depicts the overall framework of the proposed 
method, including the training stage and prediction stage. 
In the training step, the FC images were used as the 
learning target of the corresponding LC sinograms. A 
CycleGAN architecture was employed to learn the mapping 
between FC images and DT images, where the DT images 
are obtained by the LC sinograms through the DT layer. 
This DT layer employs a back-projection operation that 
converts LC sinogram data into image domains (LC→DT). 
By introducing target mapping (DT images to FC images) 
and inverse mapping (FC images to DT images), the 
CycleGAN architecture treats the transformation as a 
closed loop. The network structure of the algorithm is 
described in detail in the next section.

Network architecture

Generative network
Figure 2 shows the detailed network structure of the 
generator of the proposed LC PET image reconstruction 
network (LCPR-Net) method. The generator uses a 
U-shaped network consisting of an encoding part, a 
transformation part, a decoding part, and skip connections. 

Figure 1 Schematic flow chart of the proposed LCPR-Net in the CycleGAN framework for LC sinogram data reconstruction. LCPR-Net, 
low-count positron emission tomography image reconstruction network; CycleGAN, cycle-consistent generative adversarial network. 
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Figure 2 The generator of the proposed LCPR-Net. LCPR-Net, low-count positron emission tomography image reconstruction network. 

The size of all the convolution kernels used is 3×3. The 
encoding part consists of six convolution-instance norm 
(IN)-leaky rectified linear unit (Leaky ReLU) (CIL) blocks 
(convolution, IN and Leaky ReLU activation functions). 
The dimension of the image is reduced by half by setting 
the step size of the convolution to 2, and the number 
of feature maps is expanded by setting the number of 
convolution kernels to 2. In the transformation part, we 
use five residual block modules to implement generator 
learning. The decoding part consists of two deconvolution-
IN-Leaky ReLU (DIL) blocks (deconvolution, IN and 
Leaky ReLU activation functions) and four CIL blocks. 
The DIL blocks consist of a deconvolution function with a 
stride of 2, the IN function, and the Leaky ReLU activation 
function. Among them, a deconvolution function with a 
stride of 2 expands the image dimension by a factor of 2 
while reducing the number of feature maps by half. The 
final layer sets the number of convolution kernels to 1 as 
the output of the network. To solve the loss of image detail 
and network training problems caused by overly deep 
convolutional layers, we introduce long skip connections 
between the encoder and decoder parts.

Discriminative network
In Figure 3, reference is made to recent successful 
applications of GANs (42). The discriminator D is 
composed of eight convolutional layers and two fully 

connected layers. Each convolutional layer is followed 
by IN and Leaky ReLU activation functions. After the 
convolutional layer, we added two dense layers. The first 
fully connected layer has 1,024 units and is followed by 
a Leaky ReLU activation function. Because we use the 
least-squares loss to measure the difference between the 
generated image and the real image, we remove the sigmoid 
activation layer, so the other fully connected layer has only 
1 unit as the output. Similar to the generator, the size of 
all the convolution kernels used is 3×3, and the number of 
convolution kernels in each layer is 32, 32, 64, 64, 128, 128, 
256, and 256.

Loss function

Adversarial loss
In the original GAN, G attempts to produce G(x), and  
D distinguishes the generated images G(x) and the target 
images y with a binary label. The loss function is defined as:

( ) ( ) ( ) ( ) ( )( )( )~ ~, log 1
data yG D x p x y p ymin max D G logD x D G y  = + −    

( ) ( ) ( ) ( ) ( )( )( )~ ~, log 1
data yG D x p x y p ymin max D G logD x D G y  = + −    

 

[1]

However, this logarithmic form makes training and 
convergence difficult, as it can cause vanishing gradient 
problems. Therefore, we apply the least-squares loss 
used in least-squares GANs (LSGANs) (43) in the 



753Quantitative Imaging in Medicine and Surgery, Vol 11, No 2 February 2021

© Quantitative Imaging in Medicine and Surgery. All rights reserved.   Quant Imaging Med Surg 2021;11(2):749-762 | http://dx.doi.org/10.21037/qims-20-66

original CycleGAN model to solve this problem. We use 
generators G and F for domain conversion between the 
DT and FC images, G: DT→FC and F: FC→DT. For the 
discriminator, the purpose of DDT is to distinguish between 
a real DT image and a synthesized fake image G(x), and 
the purpose of DFC is to distinguish between a real FC 
image and a synthesized fake image F(y). For the reference 
domain X, which is the DT image domain, the loss is 
defined by:

( ) ( ) ( )( ) ( ) ( )( )( )22

~ ~1
x yD LSGAN DT DT DTx p x y p ymin V D D x D F y  = − +      

 

( ) ( ) ( )( ) ( ) ( )( )( )22

~ ~1
x yD LSGAN DT DT DTx p x y p ymin V D D x D F y  = − +      

   

[2]

( ) ( ) ( )( )( )2

~ 1
yG LSGAN DTy p ymin V G D F y = −  

  
[3]

For the target domain Y, which is the FC image domain, 
the loss is:

( ) ( ) ( )( ) ( ) ( )( )( )22

~ ~1
y xD LSGAN FC FC FCy p y x p xmin V D D y D G x  = − +      

 

( ) ( ) ( )( ) ( ) ( )( )( )22

~ ~1
y xD LSGAN FC FC FCy p y x p xmin V D D y D G x  = − +      

   

[4]

( ) ( ) ( )( )( )2

~ 1
xG LSGAN FCx p xmin V F D G x = −  

  [5]

where G and F are generators that generate the FC image 
and DT image, respectively. DDT is the discriminator that 
distinguishes between a DT image and a synthetic DT 
image. DFC is the discriminator that distinguishes between 
an FC image and a synthetic FC image.

Cycle consistency loss
In a cyclic framework, to enhance the mapping relationship, 
the cyclic consistency loss can be expressed as:

( ) ( )( ) ( )( ) 22
, )CYC x yL G F F G x x G F y y   = − + −     [6]

where F(G(x))≈x represents forward cycle consistency, 

G(F(y))≈y represents backward cycle consistency, and 2
 

denotes theL2 norm. This cycle consistency loss prevents 
the degradation of adversarial learning.

Supervised loss
In this study, we have paired data, so we can train the model 
in a supervised way and define the supervised loss function 
as:

( ) ( ) ( ), 2 , 2, )SUP x y x yL G F G x y F y x   = − + −      [7]

where G(x) is an image close to y generated by source 
image x through generator G and F(y) is an image close to x 
generated by source image y through generator F. We can 
then define the final loss by:

( ) ( ) ( ) ( )1 2, , , ,total LSGAN DT LSGAN FC CYC SUPL L D G L D F L G F L G Fλ λ= + + +

( ) ( ) ( ) ( )1 2, , , ,total LSGAN DT LSGAN FC CYC SUPL L D G L D F L G F L G Fλ λ= + + +  
[8]

where λ1 and λ2 are parameters for balancing among 
different penalties and we empirically set them both to 1.

Implementation details

In the proposed LCPR-Net, we use the Xavier initializer 
to initialize the weights of the convolutional layer (44). 
Based on the computer hardware used, the training batch 
size is set to 4. Because the batch size is small, instance 
normalization (45) is used after each convolutional layer 
instead of batch normalization. All the Leaky ReLU 
activation functions used have a slope of α=0.2. During 
the experiment, we empirically set λ1=1 and λ2=1 in the 
loss function. In the proposed network, we use the Adam 
optimizer to optimize the loss function with a learning 
rate of 0.00001, β1=0.5, and β2=0.99. All the experiments 
were performed on a PC equipped with an NVIDIA 
GeForce GTX 1080Ti GPU using the TensorFlow 
library.
Experiment and validation

Figure 3 The discriminator of the proposed method. 
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In this study, we used hospital patient data to verify the 
feasibility of the proposed method. The performance of the 
proposed LCPR-Net is quantitatively evaluated using two 
evaluation indicators: the peak signal-to-noise ratio (PSNR) 
and the mean squared error (MSE).

Simulation study
Clinical PET image data for 30 patients scanned using a 
GE Discovery PET/CT 690 machine were used in the 
study. A whole-body scan image was available for each 
patient, and each scan included 310 2D slices. We used 
data from 24 patients as the training set and data from 6 
patients as the test set. The dataset was tripled in size by 
flipping the images left and right and rotating ±10° to avoid 
overfitting problems during network training. These 2D 
slices were then projected using system matrix forward 
projection to generate corresponding noise-free sinogram 
data. To simulate real data acquisition, 20% of real events 
were added to simulate random and scattered events (46). 
To verify the performance of the proposed LCPR-Net 
for different count levels, we normalized the simulated 
sinogram data to 5 M, 500 K, and 50 K counts to represent 
different doses. Finally, independent Poisson noise was 
introduced 20 times in the sinogram data to simulate real 
noise data.

Evaluation methods
To verify the performance of the proposed LCPR-Net, 
four algorithms are used for comparison [expectation-
maximization (EM) reconstruction plus post-Gaussian 
filtering, EM reconstruction plus NLM denoising, 
a CNN and a GAN]. To ensure the fairness of the 
experiment, the network structure of the CNN is the same 
as that of the generator used in the LCPR-Net proposed 
in this paper. The network structure of the GAN is 

shown in Figure 4, where G represents the generator of 
the network and DFC represents the discriminator of the 
network. They have the same structure as G and DFC of 
the proposed LCPR-Net. Among them, the loss function 
of the CNN is the MSE loss, and the parameter is set 
to 1. The loss function of the GAN is the MSE and 
the discriminator losses, and their parameter settings 
correspond to that of the LCPR-Net and are both  
set to 1. 

Quantitative analysis
To evaluate the performance of the proposed LCPR-Net, we 
use three evaluation indicators to verify the reconstruction 
results. The first indicator is the structural similarity index 
(SSIM) (47), which is used for visual image quality assessment 
and takes into account the overall structure of the image. The 
value of this index ranges from 0–1, and the higher the value 
is, the closer the image structure is to that of the real image. 
We use the PSNR as the second metric, where higher values 
indicate better image quality:

( )

2

10
2

1

10 1 n
i ii

maxPSNR log
x y

n =

 
 

=  
 −
 ∑

 

[9]

The third evaluation metric is the relative root mean 
square error (rRMSE), where lower values indicate better 
image quality:

( )2

1

1 n
i ii

x y
nrRMSE

y
=

−
=

∑

 

[10]

where xi and yi are the pixel values of the reconstructed 
image and the real image, respectively, n is the number of 
pixel values of the image, y is the average pixel value of the 
real image and max represents the maximum value of the 
image pixels.

Figure 4 Schematic flow chart of the GAN framework for LC sinogram data reconstruction. GAN, generative adversarial network; LC, 
low-count. 
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Results

Figure 5 shows the convergence of the loss curve of the 
training set and the validation set during the training 
process of the LCPR-Net. When the network training 
process reaches 150 epochs, the loss curve of the verification 
set no longer decreases, so to avoid network overfitting, we 
stop training.

In this study, we discuss the reconstruction performance 
of the proposed LCPR-Net based on LC sinogram data. 
We compare the results of EM reconstruction plus post-

Gaussian filtering, EM reconstruction plus NLM denoising, 
CNN reconstruction and GAN reconstruction with the 
results of the proposed LCPR-Net. In addition, the PSNR, 
SSIM and rRMSE are used for the quantitative evaluation 
of the images. We selected three representative slices, and 
the reconstruction results using different methods are 
shown in Figure 6. All the reconstructed images are for  
500 K counts. The first column is the real image. The 
second, third, fourth, fifth and last columns are the results 
generated by the EM algorithm plus post-Gaussian 
filtering, the EM algorithm plus NLM denoising, the 
CNN, the GAN, and the proposed LCPR-Net. As 
indicated by the red arrow, the image reconstructed by 
using LCPR-Net is closest to the real image, and it is 
worth noting that because the GAN optimizes the objective 
functions individually, it generates features that do not 
appear in the target image. Additionally, the LCPR-Net 
cyclically optimizes the objective function to avoid this 
problem. To further verify the performance of the LCPR-
Net, we calculated the PSNR, SSIM and rRMSE for the 
methods shown in Figure 6 and listed the results in Table 
1. We can see that at 500 K counts, the PSNR and SSIM 
values of the image reconstructed by the LCPR-Net 
are the highest and the rRMSE value is the smallest. In 
addition, Figure 7 shows the profiles of the reconstructed 
images using different methods along the red line of the 
three positions shown in slices one, two and three in  
Figure 6. The images reconstructed by our LCPR-Net are 

Figure 5 The convergence curve of the loss curve between 
the reconstructed image and the real image. The loss curve of 
the training set is shown in blue, and the loss curve of the test 
set is shown in red. The test set loss curve stops decreasing at 
approximately 150 epochs.
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Figure 6 Three slices of one patient reconstructed for 500 K counts using the different methods. 
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Table 1 Quantitative evaluation of the different methods for the different slices in Figure 7

Methods
Slice one Slice two Slice three

PSNR SSIM rRMSE PSNR SSIM rRMSE PSNR SSIM rRMSE

EM + Gaussian filter 31.185 0.896 0.349 29 0.899 0.552 35.561 0.95 0.477

EM + NLM 34.883 0.926 0.228 36 0.929 0.268 39.737 0.96 0.295

CNN 35.86 0.937 0.204 36 0.949 0.231 38.085 0.952 0.357

GAN 36.048 0.939 0.196 34 0.934 0.324 37.074 0.928 0.401

LCPR-Net 36.864 0.947 0.181 36 0.958 0.223 41.823 0.966 0.232

PSNR, peak signal-to-noise ratio; SSIM, structural similarity index; rRMSE, relative root mean square error; EM, expectation-maximization; 
NLM, nonlocal means; CNN, convolutional neural network; GAN, generative adversarial network; LCPR-Net, low-count positron emission 
tomography image reconstruction network. 
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Figure 7 Profiles of the three positions along the red lines in Figure 6.

closer to the reference images than those reconstructed by 
the other methods.

To compare the performance of LCPR-Net at different 
counts, we selected one of the slices to analyze the 
reconstructed images for 5 M, 500 K, and 50 K counts. 
Figure 8 shows the reconstructed images of selected slices 
for different counts and with different methods. To compare 
the image details, we enlarged the region of interest (ROI) 
in Figure 8, as shown in Figures 9,10. These images are 
located in the corresponding red boxes in Figure 8. We find 
that for 50 K and 500 K counts, the reconstruction results 
of the three deep learning methods are significantly better 
than those of the traditional EM algorithm plus Gaussian 
filtering and the EM algorithm plus NLM denoising, and 
the proposed LCPR-Net outperforms the CNN and GAN 
in image detail retention. In the case of the 5 M counts, the 
results of our method are slightly better than those of the 
other two methods. The PSNR, SSIM and rRMSE of the 
whole image are listed in Table 2, and two red rectangular 
regions in Figure 8 are presented in Tables 3,4. As shown 

in Tables 2,3,4, the proposed LCPR-Net method has the 
highest PSNR and SSIM values and the smallest rRMSE 
value. Figure 11 shows the profile of the slice in Figure 8 
for 500 K and 5 M counts using three different methods 
to reconstruct the image at three positions along the red 
line in Figure 8 for 500 K and 5 M counts. We can see that 
the images reconstructed by LCPR-Net are closer to the 
reference images, which indicates that LCPR-Net achieves 
a better reconstruction performance in the case of LC 
sinogram data than the other state-of-the-art methods.

Discussion

In this work, we proposed LCPR-Net, which uses a 
CycleGAN to reconstruct high-quality FC PET images 
from LC PET sinograms. Although the traditional 
GAN provides excellent performance for reconstructed  
images (48), there are still two important shortcomings of 
this approach. First, due to the degradation of the mapping 
process, the GAN method will generate features that are 
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Figure 9 The first zoomed-in ROI is marked by the red rectangle in Figure 8. ROI, region of interest. 
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Table 2 Quantitative evaluation of the results of the different methods from Figure 8 for 50 K, 500 K, and 5 M counts

Methods
50 K 500 K 5 M

PSNR SSIM rRMSE PSNR SSIM rRMSE PSNR SSIM rRMSE

EM + Gaussian filter 27.81 0.686 0.515 31 0.896 0.349 37.726 0.967 0.232

EM + NLM 27.756 0.727 0.518 35 0.926 0.228 36.112 0.97 0.198

CNN 28.506 0.852 0.475 36 0.937 0.204 38.462 0.961 0.151

GAN 28.409 0.843 0.481 36 0.939 0.196 39.163 0.968 0.124

LCPR-Net 28.778 0.847 0.461 37 0.947 0.181 39.905 0.974 0.118

PSNR, peak signal-to-noise ratio; SSIM, structural similarity index; rRMSE, relative root mean square error; EM, expectation-maximization; 
NLM, nonlocal means; CNN, convolutional neural network; GAN, generative adversarial network; LCPR-Net, low-count positron emission 
tomography image reconstruction network. 

Reference EM + filter EM + NLM CNN GAN LCPR-Net

5 
M

50
0 

K
50

 K

Figure 10 The second zoomed-in ROI is marked by the red rectangle in Figure 8. ROI, region of interest.

not present in the target images (41). Second, the model 
will collapse due to optimizing the adversarial objectives 
individually (38). To solve these problems, a CycleGAN 
is designed to constrain the generator by introducing 
an inverse transform in a cyclic manner. The results 
indicate that the CycleGAN performs better in LC PET 
reconstruction problems than GANs.

Through an analysis of the above experimental results, 
the images reconstructed by the two deep learning methods 

for 500 K and 50 K counts are significantly better than the 
images obtained by traditional iterative reconstruction. The 
reconstructed image for the 5 M count is visually similar 
to that based on traditional iterative reconstruction, but 
the quantitative analysis results indicate that the proposed 
method yielded higher PSNR and SSIM values and smaller 
rRMSE values. In addition, due to the cyclic consistency 
introduced by the proposed LCPR-Net, compared with 
GAN reconstruction, LCPR-Net eliminates the potential 
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Figure 11 Profiles of the two positions along the red lines in Figure 8.

Table 3 Quantitative evaluation of the results of the different methods from Figure 9 for 50 K, 500 K, and 5 M counts

Methods
50 K 500 K 5 M

PSNR SSIM rRMSE PSNR SSIM rRMSE PSNR SSIM rRMSE

EM + Gaussian filter 21.028 0.593 0.276 23 0.882 0.231 26.309 0.954 0.15

EM + NLM 20.165 0.651 0.304 28 0.895 0.127 27.131 0.932 0.137

CNN 21.924 0.786 0.249 30 0.926 0.104 30.595 0.938 0.092

GAN 22.233 0.818 0.258 28 0.914 0.118 32.945 0.959 0.07

LCPR-Net 25.873 0.819 0.234 30 0.934 0.099 33.303 0.963 0.067

PSNR, peak signal-to-noise ratio; SSIM, structural similarity index; rRMSE, relative root mean square error; EM, expectation-maximization; 
NLM, nonlocal means; CNN, convolutional neural network; GAN, generative adversarial network; LCPR-Net, low-count positron emission 
tomography image reconstruction network. 

Table 4 Quantitative evaluation of the results of the different methods from Figure 10 for 50 K, 500 K, and 5 M counts

Methods
50 K 500 K 5 M

PSNR SSIM rRMSE PSNR SSIM rRMSE PSNR SSIM rRMSE

MLEM + filter 18.639 0.816 0.281 22 0.923 0.22 25.137 0.977 0.153

MLEM + NLM 19.99 0.811 0.277 25 0.929 0.151 27.853 0.969 0.112

CNN 17.539 0.841 0.367 27 0.956 0.12 30.034 0.982 0.087

GAN 19.916 0.877 0.279 28 0.963 0.114 30.679 0.983 0.068

LCPR-Net 21.956 0.887 0.224 29 0.965 0.102 32.203 0.986 0.061

PSNR, peak signal-to-noise ratio; SSIM, structural similarity index; rRMSE, relative root mean square error; MLEM, maximum-likelihood 
expectation-maximization; NLM, nonlocal means; CNN, convolutional neural network; GAN, generative adversarial network; LCPR-Net, 
low-count positron emission tomography image reconstruction network. 

risk that the network may yield features that are not present 
in the target images due to the degeneracy of the mapping 
process. In the quantitative results, LCPR-Net has higher 
PSNR and SSIM values than the GANs.

The proposed LCPR-Net has the following main 
advantages. First, an LC PET sinogram is directly 
reconstructed to obtain an FC PET image. Second, 
reconstructing images under the CycleGAN framework 
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yields better results than reconstruction based on separately 
optimized GANs. Third, compared with the traditional 
model-based iterative reconstruction approach, the 
reconstruction time of the proposed method is faster 
without the use of a system matrix.

This work still has some limitations. First, because 
the training data are simulation data, actual clinical data 
cannot be fully simulated. This problem can be alleviated 
by using a complete Monte Carlo simulation model [such 
as the Geant4 application for tomographic emission 
(GATE)], which can provide highly accurate sinogram data. 
Second, we were unable to reconstruct a real PET image 
due to the lack of real scan data, but we reconstructed 
the LC sinogram data of simulated clinical patients and 
obtained good results. Third, the proposed LCPR-Net is 
based on the reconstruction of 2D space, which lacks the 
characteristics of spatial data. Therefore, our future work 
will consider the reconstruction of 3D sinogram data. Our 
method back-projects a large number of sinograms into one 
single 3D back-projected image, so we have fewer issues 
with memory than conventional fully 3D reconstruction 
methods that operate on the fully 3D set of sinograms. 
Finally, although the proposed method outperforms other 
state-of-the-art methods, the reconstructed image still 
differs slightly from the real image.

Conclusions

We proposed a cycle-consistent least-squares regression 
adversarial training framework for reconstructing PET 
images from LC sinogram data. This approach can 
provide doctors with high-quality PET images and reduce 
the injected radiotracer dose and scanning time. The 
quantitative experimental results indicate that the proposed 
LCPR-Net outperforms the traditional EM algorithm 
with Gaussian postfiltering method and the GAN-based 
reconstruction method.
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