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Background: Statistical reconstruction methods based on penalized maximum likelihood (PML) are 
being increasingly used in positron emission tomography (PET) imaging to reduce noise and improve 
image quality. Wang and Qi proposed a patch-based edge-preserving penalties algorithm that can be 
implemented in three simple steps: a maximum-likelihood expectation-maximization (MLEM) image 
update, an image smoothing step, and a pixel-by-pixel image fusion step. The pixel-by-pixel image fusion 
step, which fuses the MLEM updated image and the smoothed image, involves a trade-off between 
preserving the fine structural features of an image and suppressing noise. Particularly when reconstructing 
images from low-count data, this step cannot preserve fine structural features in detail. To better preserve 
these features and accelerate the algorithm convergence, we proposed to improve the patch-based 
regularization reconstruction method.
Methods: Our improved method involved adding a total variation (TV) regularization step following the 
MLEM image update in the patch-based algorithm. A feature refinement (FR) step was then used to extract 
the lost fine structural features from the residual image between the TV regularized image and the fused 
image based on patch regularization. These structural features would then be added back to the fused image. 
With the addition of these steps, each iteration of the image should gain more structural information. A 
brain phantom simulation experiment and a mouse study were conducted to evaluate our proposed improved 
method. Brain phantom simulation with added noise were used to determine the feasibility of the proposed 
algorithm and its acceleration of convergence. Data obtained from the mouse study were divided into event 
count sets to validate the performance of the proposed algorithm when reconstructing images from low-
count data. Five criteria were used for quantitative evaluation: signal-to-noise ratio (SNR), covariance (COV), 
contrast recovery coefficient (CRC), regional relative bias, and relative variance.
Results: The bias and variance of the phantom brain image reconstructed using the patch-based method 
were 0.421 and 5.035, respectively, and this process took 83.637 seconds. The bias and variance of the image 
reconstructed by the proposed improved method, however, were 0.396 and 4.568, respectively, and this 
process took 41.851 seconds. This demonstrates that the proposed algorithm accelerated the reconstruction 
convergence. The CRC of the phantom brain image reconstructed using the patch-based method was 
iterated 20 times and reached 0.284, compared with the proposed method, which reached 0.446. When using 
a count of 5,000 K data obtained from the mouse study, both the patch-based method and the proposed 
method reconstructed images similar to the ground truth image. The intensity of the ground truth image 
was 88.3, and it was located in the 102nd row and the 116th column. However, when the count was reduced to 
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Introduction

Different methods of iterative image reconstruction have 
become increasingly widely used in positron emission 
tomography (PET) imaging, producing promising 
results (1-5). Assuming the PET sampling data being 
investigated have a Poisson distribution, iterative statistical 
reconstruction methods can model the physical detection 
process of the scan (6). Iterative reconstruction can 
additionally use noise statistics, accurate system modeling, 
and prior knowledge of images to improve the accuracy 
of reconstruction (7). However, the maximum-likelihood 
expectation-maximization (MLEM) algorithm (8,9) used 
in the iterative reconstruction process increases noise 
when the iteration reaches a certain point. This produces 
an estimation of the image via projection by finding 
the maximum-likelihood (ML) solution. To reduce this 
increased noise and improve the quality of the image, 
statistical reconstruction methods based on the penalized 
maximum likelihood (PML) principle (10-14) have been 
used increasingly in PET imaging. The penalty function 
controls spatial smoothness in PML reconstruction. While 
the most commonly used quadratic penalty often over-
smooths sharp edges in reconstructed images, non-quadratic 
penalties preserve edges at the expense of blocky artifacts. 
Images with blocky artifacts therefore limit the use of non-
quadratic penalties in clinical settings.

Many potential  improvements  for  these image 
reconstruction methods have been explored. To suppress 
noise and improve image quality, Muller et al. (15) improved 
the MLEM Total Variation (MLEM-TV) algorithm 
by using the inverse scale space method with Bregman 
distances (15,16) that restores loss of contrast in the images. 
Yang et al. (17) designed a shift-variant quadratic penalty 

function for PML image reconstruction to improve lesion 
detectability. Karaoglanis et al. (18) explored the effect 
of low-count statistics on ordered subset expectation 
maximization regularized with median root prior (OS-
MRP-OSL) reconstructed images. Tang et al. (19) proposed 
the use of dictionary learning (DL)-based sparse signal 
representation in the formation of the prior for maximum 
a posteriori (MAP) PET image reconstruction; this 
improved bias and contrast with comparable noise. Deidda 
et al. (20) proposed a list-mode-hybrid kernel expectation-
maximization (LM-HKEM) reconstruction algorithm to 
maintain the benefits of anatomically-guided methods and 
overcome their limitations by iteratively incorporating 
synergistic information. Finally, Wang and Qi (21) have 
proposed patch-based edge-preserving penalties (In the text 
it will be called “patch-based regularization algorithm”) 
that use neighborhood patches instead of individual pixels 
in computing non-quadratic penalties. This preserves the 
sharp edges of images and reduces blocky artifacts. 

The MLEM image update  in  the  patch-based 
regularization algorithm restores the fine structural features 
of an image but often produces noise. The image smoothing 
step of the patch-based regularization algorithm suppresses 
noise in the image domain but may result in the loss of fine 
structural features. The pixel-by-pixel image fusion step of 
the patch-based regularization algorithm, which fuses the 
MLEM updated image and the smoothed image, involves 
a trade-off between preserving fine structural features and 
suppressing noise. The patch-based regularization algorithm 
is required to iterate more times to suppress noise and retain 
fine structure features. This method of reconstruction is 
unable to sufficiently preserve the fine structural features of 
images reconstructed from low-count data.

below 40 K, and the patch-based method was used, image quality was significantly reduced. This effect was 
not observed when the proposed method was used. When a count of 40 K was used, the image intensity was 
58.79 when iterated 100 times by the patch-based method, and it was located in the 102nd row and the 116th 
column, while the intensity when iterated 50 times by the proposed method was 63.83. This suggests that 
the proposed method improves image reconstruction from low-count data.
Conclusions: This improved method of PET image reconstruction could potentially improve the quality 
of PET images faster than other methods and also produce better reconstructions from low-count data.
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However, low-count data and fast reconstruction 
algorithms are required to obtain clear images in clinical 
diagnoses. In a recent study, we found that the MLEM-TV-
FR method suppressed noise and preserved fine structural 
features of images from low-count data (22). In order to 
accelerate the algorithm convergence, reduce the number 
of iterations, and reduce reconstruction time, in this study, 
we proposed to improve on patch-based regularization 
algorithm by adding TV regularization (23-27) following 
the MLEM image update. We then extracted the lost fine 
structural features from the residual image between the 
TV regularized image and the fused image based on patch 
regularization using a feature refinement (FR) step (28,29). 
The lost fine structural features were then added back to 
the fused image. In this way, each iterated image obtained 
more structural information. This improved reconstruction 
method accelerates the reconstructed image convergence 
and while retaining fine structural features. A brain 
phantom simulation experiment and data obtained from a 
mouse study were used to assess the performance of this 
proposed improved image reconstruction method.

The remaining sections of this paper are organized as 
follows. Method section describes penalized likelihood 
(PL) reconstruction, improved patch-based regularization 
reconstruction, and evaluation methods. The FR step is 
introduced in detail in this section. In Results section, 
details of the brain phantom simulation experiment and 
mouse study are reported and the reconstruction results and 
quantitative evaluation are also presented. The conclusions 
and discussion follow this.

Methods

This study was approved by the University of California, 
Davis, Institutional Animal Care, and Use Committee.

Penalized likelihood reconstruction

Measured emission sinogram data y is a vector where each 
element yi contains the number of counts accumulated 
in bin i during a PET scan. The measurement y can be 
assumed to be a collection of independent Poisson random 
variables due to the annihilation events (8,30). Poisson 
distribution can model iy  mean as follows:
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unknown activity distribution map x.
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and J are the number of PET measurements and image 
pixels, respectively. r is the model of random and scattered 
coincidences. PL reconstruction, therefore, estimates 
activity distribution map x by maximizing the PL function, 
which is written as follows (8,31):
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where β is a regularization parameter to balance data 
fidelity with spatial smoothness. When β = 0, the image 
reconstruction method represents the ML estimate. L(x|y) 
is the log of the likelihood function, which is written as 
follows:
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i i j i j j j i j jx y y ln g x g x= = == −∑ ∑ ∑  [4]

U(x) is a penalty term with a different method of 
calculation that suppresses image noise.

Pixel-based regularization
U(x) is the computed pixel -based as follows:
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1
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where ωjk is a weighting factor related to the distance 
between pixel j and pixel k in the neighborhood Nj, and 
ψ(t) is a penalty function with continuous second-order 
derivatives written as follows where t is an independent 
variable:
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where δ is a hyperparameter that controls the shape of 
the penalty function. This pixel-based regularization 
reconstruction algorithm is highly sensitive to δ (21).

Patch-based regularization
In a past study, Wang and Qi (21) proposed a patch-based 
regularization algorithm insensitive to hyperparameter 
δ. The penalty term U(x) of this algorithm is written as 
follows:
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where Ej(x) is a feature vector comprising the intensity 
values of all pixels in the patch centered on pixel j. ‖Ej(x)–
Ek(x)‖α denotes the patch-based distance between pixel j and 
pixel k and is defined as follows:

( ) ( ) ( )2

1 m m

M
j k m m j ka

E x E x a x x=− = −∑  [8]

where M is the total number of pixels in a patch, jm is the m-th 
pixel in the pixel j patch, and km is the m-th pixel in the pixel 
k patch. Both pixel j and pixel k have the same geometric 
relationship with respect to their central pixels. αm is a 
positive weighting factor equal to the normalized inverse 
spatial distance between the pixel jm and pixel j where 

1 1M
m ma= =∑ .
In the patch-based regularization algorithm, the MLEM 

image update restores fine structural features, but the 
image often contains noise. The smoothing step is used 
to suppress noise in the image domain, but may result in 
loss of fine structural features. The pixel-by-pixel image 
fusion step, which fuses the MLEM updated image and the 
smoothed image, involves a trade-off between preserving 
the fine structural features of the image and suppressing 
noise.

Improved patch-based reconstruction

Patch-based regularization reconstruction requires many 
iterations to suppress noise and retain the fine structural 
features of the original image. To accelerate the algorithm 
convergence, reduce the number of iterations, and reduce 
reconstruction time, we proposed to improve this patch-
based regularization reconstruction method. We did this 
by adding TV regularization following the MLEM image 
update. An FR step was then used to extract the lost fine 
structural features from the residual image between the 
TV regularized image and the fused image based on patch 
regularization. These features were then added back to the 
fused image. With these added steps, each iteration of the 
image should gain more structural information. Using the 
sparsity of image gradient magnitude to calculate TV is one 
of the most commonly used methods.

( ) ( ) ( )2 2
, , 1, , , 1TV s t s t s t s t s tx x x x x− −= − + − +∑ α  [9]

Here, s and t are indexes of the desired tracer distribution 
map location, and α is a small constant used to maintain 
differentiability concerning image intensity. We assigned α 
a value of 10−8 in this study.

The FR step mentioned above is described by the 
following equation:

xFR = x + f ⊗ ν [10]

where xFR is the feature-refined image, x is the pixel-by-
pixel fused image, and ν is the residual image between 
the TV-based MLEM-updated image xTV and the pixel-
by-pixel fused image x. The symbol ⊗ denotes pointwise 
multiplication. f is a feature descriptor, which is defined as 
follows (28):
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where the constant C is introduced for numerical stability (C 
=1.25 × 10–6 in this study). Local statistics σp, σq, and σpq at 

pixel j are defined as ( ) ( )( )
1/2

21 
1 jp j p x j P j

N ∈
 = − − 

∑σ ,  

( ) ( )( )
1/2

21
1 jq j p dx j Q j

N ∈
 = − − 

∑σ  and ( ) ( ) ( )( ) ( ) ( )( ),?

1
1 j j

qp dj p q
x j P j x j Q j

N ∈
= − −

− ∑σ

( ) ( ) ( )( ) ( ) ( )( ),?

1
1 j j

qp dj p q
x j P j x j Q j

N ∈
= − −

− ∑σ ,  where  ( )1P
jj p x j

N ∈= ∑ ,  

( )1Q
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N ∈= ∑ , and pj and qj denote two local image 
patches with a size of N N×  centered at pixel j. These 
images patches were extracted from x and degraded image xd 
obtained by applying a 2D Gaussian filter to x, respectively. 
The parameters of the Gaussian filter function were a 
filter size of 5×5 and a standard deviation of the Gaussian 
function of 10. The nature of the proposed model structure 
descriptor involves a contrast variation component and a 
structure correlation component. The former calculates 
the reduction of contrast variation caused by the degrading 
operation, and the latter is the structural correction between 
the original image and the degraded image. The value of 
each element of the feature descriptor image f falls within 
the interval [0, 1]; a larger value is correlated with a greater 
likelihood of belonging to part of the structure. 

The feature descriptor, designed to distinguish structures 
from noise and artifacts, plays a vital role in our improved 
algorithm. As such, several scalar parameters in this 
algorithm should be carefully tuned. For example, an image 
patch size of 7 × 7 is a good choice to balance structure-
detection capacity and computational efficiency in the 
FR step. Additionally, parameter C is included to avoid 
instability when 2 2

p q+σ σ  is close to zero. C should therefore 
be assigned a small constant value (C =1.25 × 10–6 in our 
study). The added TV regularization and FR steps do 
not increase the calculation amount of the algorithm, but 
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accelerate the algorithm convergence, reduce the number of 
iterations, and reduce reconstruction time. This improved 
approach is described in Supplementary file 1.

Evaluation

Signal-to-noise ratio (SNR) was used to evaluate the noise 
reduction capability of different reconstruction algorithms 
and is defined as follows:
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2
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where x is the reconstructed image, xtrue is the true image, i 
is the i-th pixel value of the image, and n is the total number 
of pixels in the image.

Covariance (COV) was used to measure the correlation 
between the reconstructed image and the true image. This 
is defined as follows (30):
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value of reconstructed image x and true image xtrue, 
respectively. 

We quantitatively compared the mean of the tumor contrast 
recovery coefficient (CRC) and the COV of the tumor as a 
function of the iterative reconstruction process. The CRC of 
the reconstructed image is defined as follows (21):

0CRC /
T B

R
B
−

=  [14]

where R0=8 is the true contrast, T  is the mean activity of 
the tumor region, and B  is the mean activity of background 
regions.

Regional relative bias and relative variance were used 
to evaluate the reconstructed images and are defined as 
follows (32):
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where xi is the i-th pixel value of the reconstructed image, 
xtruei is the i-th pixel value of the true image, and n is the 
total number of pixels in the evaluated region.

Results

We designed a brain phantom simulation and a mouse study 
to evaluate the performance of our proposed improved 
method and compare it with the patch-based regularization 
reconstruction algorithm. These methods involved a 
patch size and neighborhood size for the patch-based 
regularization step of 3×3 pixels (21) and an image where all 
pixel values = 1 was used as the first iteration image. SNR, 
COV, CRC, regional relative bias, and relative variance 
were used to evaluate the performance of our improved 
method. 

All codes in this study were run on an HP z840 
Workstation with a 64-bit Ubuntu 16.04 operating system, 
an Intel® Xeon (R) CPU E5-2687W v4 @ 3.00 GHz × 48.

Brain phantom simulation

This study simulated a GE Discovery ST PET scanner 
in a 2D mode where each ring has 420 crystals with a 
cross-section of 6.3 × 6.3 mm2. In this experiment, a 
PET emission image was simulated using a 2D brain 
phantom, shown in Figure 1A. The computed tomography 
(CT) image shown in Figure 1B was used to generate the 
attenuation factors. The brain phantom emission image 
is shown in Figure 1A was forward projected to obtain a 
noise-free sinogram. To simulate mean random events and 
scatter events in 2D mode, a uniform background of 20% 
total true coincidences was added to the sinogram (21). 
Independent Poisson noise was then introduced. The total 
event coincidence number was 500 K.

Figure 2 shows images that were reconstructed using 
the pixel-based regularization method, the patch-based 
regularization method, and our proposed improved method 
for three different hyperparameter values: δ =0.1, 0.01, 
and 0.001. These images were reconstructed using 50 
iterations. Figure 2 shows that the pixel-based regularization 
method (Figure 2A) is sensitive to hyperparameter δ, which 
controls the shape of the penalty function, while the patch-
based regularization method (Figure 2B) and our improved 
method (Figure 2C) are relatively insensitive to changes in δ. 
However, the structural features that appear in Figures 2C, 
are clearer than that of Figure 2B, as indicated by the green 
arrows.

Figure 3 shows brain images that were reconstructed 
using the hyperparameter δ =10–9. Figure 3A shows the 
true image, Figure 3B shows the patch-based regularization 
image reconstructed with 50 iterations, Figure 3C shows the 

https://cdn.amegroups.cn/static/public/QIMS-20-19-supplementary.pdf
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Figure 1 (A) Simulated PET emission image and (B) the 
attenuation map generated from a CT image. The blue boxes in (A) 
represent the background regions. These brain images are shown 
in the same window [0, 100].

Figure 2 Image reconstruction results with 50 iterations. (A1,A2,A3) Pixel-based reconstructions; (B1,B2,B3) patch-based reconstructions; 
and (C1,C2,C3) improved reconstructions (structural features indicated by arrows). From left to right, the images were reconstructed using 
δ=0.1, 0.01, and 0.001, respectively.
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A B patch-based regularization image reconstructed with 100 
iterations, and Figure 3D shows the reconstruction result 
obtained using our improved method with 50 iterations. 
While 50 iterations were used for the images in both  
Figure 3B and 3D, the fine structural features of Figure 3D 
are much clearer than that of Figure 3B, as indicated by the 
green arrows. The sharpness of Figure 3C image is second 
only to Figure 3D, but the image in Figure 3C required 
more time reconstruction time. 

As indicated in Table 1, the reconstruction of Figure 3C  
image took 83.637 seconds, while the reconstruction of 
Figure 3D image took only 41.851 seconds. The green 
dotted-line boxes in Figure 3A are marked regions of 
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interest (ROIs). Table 1 indicates that our improved method 
yields better bias and variance performance for each ROI, as 
well as for the whole reconstructed image, than the patch-
based regularization method. Our improved method also 
took less time than the patch-based regularization method 
to reconstruct images to the same quality.

A quantitative evaluation of the reconstruction results 
in Figure 3 is shown in Figure 4. Compared with the patch-
based regularization algorithm, our improved method 
performs convergence more quickly during the image 
update process; this is shown in Figure 4A. Figure 4B 
indicates that our improved method can quickly achieve 
higher contrast recovery and covariance, and therefore 

better performance, than the patch-based regularization 
algorithm.

Mouse study

A mouse scan was performed with the approval of the 
University of California, Davis, Institutional Animal Care, 
and Use Committee. Regular scanner quality assurance (QA) 
was performed to ensure the scanner worked appropriately. 
A mouse weighing 19.4 g was injected with 21 MBq 
of 18F-fluorodeoxyglucose and positioned in an Inveon 
D-PET scanner for 15 minutes starting 30 minutes after 
administration the injection (33). Four hundred ninety-eight 

Figure 3 Image reconstruction results using the parameter δ=10–9 (structural features indicated by arrows). (A) True image; (B) patch-based 
reconstruction with 50 iterations; (C) patch-based reconstruction with 100 iterations; and (D) improved method reconstruction with 50 
iterations.
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Table 1 Statistical analysis of brain image reconstruction

Method Patch (iteration number =50) Patch (iteration number =100) Improved (iteration number =50)

Reconstruction time (s) 41.254 83.637 41.851

Bias

Whole 0.475 0.421 0.396

ROI1 0.526 0.519 0.449

ROI2 0.672 0.689 0.611

ROI3 0.877 0.764 0.760

ROI4 0.414 0.323 0.294

Variance

Whole 5.866 5.035 4.568

ROI1 9.465 9.628 7.305

ROI2 9.459 9.010 7.785

ROI3 21.300 17.015 17.000

ROI4 5.054 3.678 2.934
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million counts were acquired; counts are defined as the total 
number of events in a sinogram. The MAP method was 
implemented in the Siemens software package to reconstruct 
the mouse image. A 2D coronal image extracted as a slice in 
the Y direction was taken as the true mouse image, shown 
in Figure 5. A 2D 159 × 256 sinograms were extracted from 
this image, taking the same slice in the Y direction. The 
sinogram count was altered by changing the number of 
frames scanned. In our study, we examined sinograms with 
counts of 5,000 K, 250 K, 50 K, 40 K, and 25 K.

A sinogram with a count of 50 K was reconstructed 
using the pixel-based regularization method, the patch-

based regularization method, and our improved method 
using different hyperparameter values: δ =0.1, 0.01, 0.001, 
and 10–9. The images in Figure 6 were reconstructed using 
50 iterations. Figure 6 shows that the improved method 
was more stable with changes to hyperparameter δ than the 
patch-based regularization method. Figure 6 also shows that 
the fine structural features of the images reconstructed using 
the improved method were clearer than that reconstructed 
by patch-based regularization, as indicated by the green 
arrows.

We also examined the effects that sinograms with 
different counts had on these reconstruction algorithms 
when using the same hyperparameter value of δ =10–9, as 
shown in Figure 7. From left to right, the images were 
reconstructed from sinograms with counts of 5,000 K, 
250 K, 40 K, and 25 K, respectively. From top to bottom, 
these images were reconstructed using the MLEM method 
with 50 iterations, the patch-based regularization method 
with 50 iterations, the patch-based regularization method 
with 100 iterations, and our improved method with  
50 iterations. Noise is present in the images reconstructed 
using MLEM even when the count is 5,000 K, as shown 
in the first row and first column of Figure 7. Additionally, 
the noise increased as the count decreased (see the first 
row of Figure 7). The fine structural features seen in the 
images reconstructed using the patch-based method and 
our improved method, shown in the first column of Figure 7, 
are very similar. This indicates that both of these methods 
can preserve the fine structural features of an image when 
the count was 5,000 K. When the count was 250 K, some 
structural features in the images reconstructed using the 
patch-based regularization method are somewhat blurred, 

Figure 4 Evaluation of brain image reconstruction shown in Figure 3. (A). SNR as a function of the total number of iterations; and (B) 
tumor contrast recovery plotted against COV curves for the patch-based regularization method and the improved method. These curves 
show the results obtained with 20 iterations.
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Figure 6 Images of the scanned mouse are reconstructed with 50 iterations. The sinograms have a count of 50 K. (A1,A2,A3,A4) Pixel-based 
reconstruction; (B1,B2,B3,B4) patch-based reconstruction; and (C1,C2,C3,C4) improved reconstruction. From left to right, these images 
are reconstructed using hyperparameter values of δ=0.1, 0.01, 0.001, and 10–9.
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Figure 7 Images of the scanned mouse reconstructed using a hyperparameter value of δ=10–9. From left to right, the sinograms used to 
reconstruct these images had counts of 5000 K, 250 K, 40 K, and 25 K. From top to bottom, these images were reconstructed by the MLEM 
method with 50 iterations, the patch-based regularization method with 50 iterations, the patch-based regularization method with 100 
iterations, and the improved method with 50 iterations.
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while the fine structural features in the images reconstructed 
using our improved method remain clear, as indicated by 
the green arrows in the second column of Figure 7. When 
the count is 40 K or 25 K, the images reconstructed by 
patch-based regularization are very blurred, mainly when 
the count is 25 K. However, the fine structural features of 
the image reconstructed using our improved method remain 
visible when the count is 25 K, as indicated by the green 
arrows.

For quantitative comparison, we plotted intensity profiles 
along the horizontal green dotted line indicated in Figure 7 
(see Figure 8). The intensity profiles in Figure 8 show that 
the MLEM method produced noisy results and, as the count 
decreased, the intensity of the image became more random, 
deviating further from the true value. However, the patch-
based regularization method with 50 iterations, the patch-
based regularization method with 100 iterations, and our 
improved method with 50 iterations produced results that 
were close to the true value with a count of 5000 K. When a 
count of 250 K was used, our improved method performed 
better than the patch-based regularization method, and 
particularly better than the patch-based regularization 
method with 50 iterations, as shown in Figure 8B. When 

the count was 40 K or 25 K, the results of the patch-based 
regularization method with 100 iterations were better than 
the results obtained using the patch-based regularization 
method with 50 iterations. In comparison, the results of our 
improved method with 50 iterations were much better than 
the results obtained using the patch-based regularization 
method with 100 iterations. This is shown in Figure 8C,D, 
respectively. 

Theoretically, the dotted lines in green (the patch-based 
regularization method with 50 iterations) and blue (the 
patch-based regularization method with 100 iterations) near 
the high intensity spot (approximately pixel index 125) in 
Figure 8 should decrease as count decreases. However, these 
are higher in the 25 K panel than the 40 K panel. This is 
due to the blurring of large hotspots in images reconstructed 
using the patch-based method. This further illustrates that 
the performance of the patch-based method is relatively 
poor with low-count data. We added another blue line 
in Figure 7 to further determine whether image intensity 
changed with count. The quantitative results are shown 
in Figure 9, which indicates that, as count decreased, the 
intensity of the reconstructed images gradually decreased. 
However, at low counts, the images reconstructed using 

Figure 8 Intensity profiles along the horizontal green dotted line (located on the 86th row of the image) shown in Figure 7.
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our improved method were better than that reconstructed 
by the patch-based method. The improved method with 50 
iterations further reduced reconstruction time by half than 
the patch-based regularization method with 100 iterations, 
as shown in Table 2.

Table 3 lists the green dotted-line boxes indicate the bias 
and variance values of the ROIs of images reconstructed 
from sinograms with counts of 40 K. The ROIs in Figure 7.  
As Table 3 shows, our improved method yielded better bias 
and variance performance for each ROI and the whole 
reconstructed image, than the patch-based regularization 
method.

Conclusions

This study shows that our proposed method improves on 
the patch-based regularization method for PET image 
reconstruction. The original patch-based regularization 
algorithm comprises three steps: an MLEM image update, 
an image smoothing step, and a pixel-by-pixel image fusion 
step. Two further key steps were introduced in our improved 
approach. One was TV regularization, which was executed 
following the MLEM update. This was done to suppress 
the noise generated by the MLEM update to facilitate the 
FR step. The FR step involved extracting the fine structural 

features of the image. This was performed following the 
MLEM update and TV regularization to restore fine 
structural features to the residual image between the TV-
regularized MLEM-updated image and the pixel-by-pixel 
fused image. We tested our improved method by designing 
a brain phantom simulation experiment and a mouse 
study, and these results demonstrate that our improved 
method performs better and takes less time to reconstruct 
images than the patch-based regularization method. The 
advantage in using our improved method becomes more 
obvious when reconstructing PET images from low-count 
data. In conclusion, our improved method can reduce 
image reconstruction time and improve the quality of PET 
images. Our method also produces better reconstructions of 
PET images from low-count data.

Discussion

While the improved method tested in this study has been 
verified by 2D reconstruction, it has not been tested 
using 3D reconstruction. Reconstruction of 3D images 
takes a large amount of data, which greatly increases the 
calculation burden. Additionally, 3D reconstruction requires 
consideration of attenuation and scatter correction, which is 
relatively complicated; we intend to pursue further research 

Figure 9 Intensity profiles along the horizontal blue line (located on the 102nd row of the image) indicated in Figure 7.
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in this area in the future. Another reason we only used 2D 
reconstruction to verify our reconstruction method was that, 
in most cases, 3D reconstruction requires graphics processing 
unit (GPU) technology, which was not available to us.

Parameter δ was used to control the shape of the 
penalty function. This parameter does not depend on 
2D reconstruction, 3D reconstruction, or what regions 
are being scanned. As the pixel-based method is sensitive 
to δ, its value must be selected carefully when using this 
method. However, the patch-based method and our 
improved method were not sensitive to δ (see Figures 2 
and 6). Using the patch-based method and the improved 
method to reconstruct image, relatively small δ values are 
generally selected, being approximately one-thousandth 
below the value of the image mean, such as 10–3, 10–6, or 
10–9. Parameter α is a small constant used to maintain 
differentiability concerning image intensities that can be 
set as any small value and it is not dependent on the object 
being imaged. This parameter can take the same value no 
matter what object, for example, digital brain phantoms, 
mice, or human structures, is being imaged. Additionally, 
the value of α can remain constant for both whole body (WB) 
PET imaging and the imaging of individual structures. 

FR is a feature extraction operation performed in the 

image domain and is not dependent on the object being 
imaged. FR operates in the same manner for both WB PET 
imaging and the imaging of individual structures. Parameter 
C is a constant introduced for numerical stability and is also 
not dependent on the object being imaged. Whether WB 
PET imaging or individual body structure imaging is being 
performed, the value of C does not need to change.
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Supplementary file 1 The pseudocode for the improved method

1: Initialization: 𝑥𝑥𝑥𝑥0 = 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜;
2: For 𝒏𝒏𝒏𝒏=1 to MaxIter (maximum iteration number, it is 50 in this work) do:
3: MLEM image update from sinogram 𝒚𝒚𝒚𝒚:

𝑥𝑥𝑥𝑥�𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑛𝑛𝑛𝑛+1 = 𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛

𝑆𝑆𝑆𝑆
𝐺𝐺𝐺𝐺𝑇𝑇𝑇𝑇 𝑦𝑦𝑦𝑦

𝑦𝑦𝑦𝑦𝑛𝑛𝑛𝑛

in which 𝑦𝑦𝑦𝑦𝑛𝑛𝑛𝑛 is the expected projection calculated by (2);
4: Image smoothing:

𝑥𝑥𝑥𝑥�𝑗𝑗𝑗𝑗,𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅
𝑛𝑛𝑛𝑛+1 = 1

2𝜔𝜔𝜔𝜔𝑗𝑗𝑗𝑗
𝑛𝑛𝑛𝑛 ∑ 𝜔𝜔𝜔𝜔𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗(𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛)�𝑥𝑥𝑥𝑥𝑗𝑗𝑗𝑗𝑛𝑛𝑛𝑛 + 𝑥𝑥𝑥𝑥𝑗𝑗𝑗𝑗𝑛𝑛𝑛𝑛�𝑗𝑗𝑗𝑗∈ℵ𝑗𝑗𝑗𝑗

in which, ℵ𝑗𝑗𝑗𝑗  represents the neighborhood of the pixel 𝑗𝑗𝑗𝑗, the weight 

𝜔𝜔𝜔𝜔𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗(𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛) = ∑ 𝑎𝑎𝑎𝑎𝑚𝑚𝑚𝑚𝜔𝜔𝜔𝜔𝑗𝑗𝑗𝑗𝑚𝑚𝑚𝑚,𝑗𝑗𝑗𝑗𝑚𝑚𝑚𝑚
𝜓𝜓𝜓𝜓 (𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛)𝑀𝑀𝑀𝑀

𝑚𝑚𝑚𝑚=1 , here, the curvature 𝜔𝜔𝜔𝜔𝜓𝜓𝜓𝜓(𝑡𝑡𝑡𝑡) ≜ 𝜓𝜓𝜓𝜓(𝑡𝑡𝑡𝑡)
𝑡𝑡𝑡𝑡

is 

nonincreasing for t ≥ 0, and 0 < 𝜔𝜔𝜔𝜔𝜓𝜓𝜓𝜓(0) < +∞;
5: Pixel-by-pixel image fusion:

𝑥𝑥𝑥𝑥𝑗𝑗𝑗𝑗𝑛𝑛𝑛𝑛+1 =
2𝑥𝑥𝑥𝑥�𝑗𝑗𝑗𝑗,𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀

𝑛𝑛𝑛𝑛+1

��1−𝛽𝛽𝛽𝛽𝑗𝑗𝑗𝑗
𝑛𝑛𝑛𝑛𝑥𝑥𝑥𝑥�𝑗𝑗𝑗𝑗,𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅

𝑛𝑛𝑛𝑛+1 �
2
+4𝛽𝛽𝛽𝛽𝑗𝑗𝑗𝑗

𝑛𝑛𝑛𝑛𝑥𝑥𝑥𝑥�𝑗𝑗𝑗𝑗,𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀
𝑛𝑛𝑛𝑛+1 +�1−𝛽𝛽𝛽𝛽𝑗𝑗𝑗𝑗

𝑛𝑛𝑛𝑛𝑥𝑥𝑥𝑥�𝑗𝑗𝑗𝑗,𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅
𝑛𝑛𝑛𝑛+1 �

in which 𝛽𝛽𝛽𝛽𝑗𝑗𝑗𝑗𝑛𝑛𝑛𝑛 =
𝛽𝛽𝛽𝛽𝜔𝜔𝜔𝜔𝑗𝑗𝑗𝑗

𝑛𝑛𝑛𝑛

𝑅𝑅𝑅𝑅𝑗𝑗𝑗𝑗
, here, 𝑔𝑔𝑔𝑔𝑗𝑗𝑗𝑗 = ∑ 𝑔𝑔𝑔𝑔𝑖𝑖𝑖𝑖𝑗𝑗𝑗𝑗

𝑛𝑛𝑛𝑛𝑖𝑖𝑖𝑖
𝑖𝑖𝑖𝑖=1 ; (In our work, the smoothing 

regularization parameter β = 2−5)
6: TV minimization:

𝑥𝑥𝑥𝑥𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑛𝑛𝑛𝑛+1 = 𝑥𝑥𝑥𝑥𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑛𝑛𝑛𝑛+1 − 𝛽𝛽𝛽𝛽𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 × ∇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇(𝑥𝑥𝑥𝑥𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑛𝑛𝑛𝑛+1 )

where ∇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇(𝑥𝑥𝑥𝑥𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑛𝑛𝑛𝑛+1 ) represents the gradient of 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇(𝑥𝑥𝑥𝑥𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑛𝑛𝑛𝑛+1 ) , and 𝛽𝛽𝛽𝛽𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇
represents the gradient step-size (in this work, 𝛽𝛽𝛽𝛽𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 = 0.001);

7: FR step:
𝑥𝑥𝑥𝑥𝐹𝐹𝐹𝐹𝑅𝑅𝑅𝑅𝑛𝑛𝑛𝑛+1 = 𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛+1 + 𝑓𝑓𝑓𝑓𝑛𝑛𝑛𝑛+1⨂𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛+1

in which 𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛+1 = 𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛+1 − 𝑥𝑥𝑥𝑥𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑛𝑛𝑛𝑛+1 and 𝑓𝑓𝑓𝑓𝑛𝑛𝑛𝑛+1 is calculated by (11);
8: Update:

𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛+1 = 𝑥𝑥𝑥𝑥𝐹𝐹𝐹𝐹𝑅𝑅𝑅𝑅𝑛𝑛𝑛𝑛+1;

9: End for
10: Return The image estimate 𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛+1.
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