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Introduction

Cone-beam computed tomography (CBCT) has been 
widely used for patient positioning guidance in radiation 
therapy (1). However, when three-dimensional (3D)-
CBCT is used to image thoracic or upper abdominal 
regions, respiratory motions produce severe artifacts on 

images, thus compromising the efficacy of 3D-CBCT in 
image-guided radiation therapy (IGRT). To address this 
issue, four-dimensional (4D)-CBCT was developed to 
produce respiratory phase-resolved volumetric images. In 
4D-CBCT, all projections are first sorted into different 
respiratory phase bins according to the breathing signal, 
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and the CBCT images are then separately reconstructed for 
each phase bin (2-4). 4D-CBCT is able to reduce motion 
artifacts and visualize the tumor trajectory; however, the 
insufficient number of projections sampled in each bin 
leads to severe noises and streaks in images reconstructed 
using the Feldkamp-Davis-Kress (FDK) (5) method. These 
artifacts, in turn, affect the accuracy of target localization. 
Thus, improving the quality of 4D-CBCT images 
reconstructed from undersampled projections is essential to 
ensuring the precision of radiation therapy delivery.

In recent years, deep learning-based methods have 
been introduced in the medical imaging field to perform 
tasks ranging from segmentation (6) and classification (7) 
to image augmentation (8) and restoration (9). Several 
works have focused on using deep learning methods to 
augment 4D-CBCT images by improving the image quality  
itself (10) or by improving the reconstruction algorithm (11).  
Recently, we developed a deep learning method to augment 
the quality of 4D-CBCT reconstructed using an iterative 
method (12). However, these deep learning methods 
were all trained using data from a group of patients, and 
thus displayed suboptimal performance when applied 
to individual patients (13). To address this issue, the 
present study sought to build a patient-specific network 
model by optimizing the model based on an individual 
patient’s information through transfer learning to enhance 
the abilities of deep learning to augment the quality of 
4D-CBCT.

Transfer learning is a machine learning technique 
whereby a model trained on one task is repurposed to 
complete a second related task (14). In a classic deep 
learning scenario, when training a model for a specific task, 
the network needs to be fed labeled data in the domain that 
the task requires (15). Conversely, when applying a model 
to some other tasks that use data from a different domain, 
the network needs to be retrained using newly labeled 
data from that domain (16,17). Conveniently, under the 
transfer learning method, if the new data domain is related 
to the original data domain, much less data from the new 
data domain need to be used to retrain the model. This is 
because the knowledge acquired from the old model can 
be transferred to the new model for a related task, thus 
reducing the amount of data needed to gain new knowledge 
from a new data domain (18-20).

To conduct transfer learning, the most commonly used 
method is to fine-tune the entire network of a previously 
trained model using data from a new domain. All the 
network layers are included in the fine-tuning process to 

improve the network performance for the second specific 
task (21). This whole-layer fine-tuning method uses the 
parameters from the previous network as starting points 
and refines all these parameters in the new training process. 
Notably, the learning rate of the network is reduced, as the 
model is able to take advantage of the stored knowledge of 
the previous network, and the new network is prevented 
from overfitting to the limited new training data. However, 
the training time is prolonged due to the lower learning rate. 
To improve the efficiency of the whole-layer fine-tuning 
method, the layer-freezing method was proposed. When 
a new task is closely related to a previous task, parameters 
in some of the layers barely change during the transfer-
learning training process, as these layers have already been 
adequately trained to extract the corresponding features (22).  
Consequently, only the layers that are responsible for 
extracting patterns specific to the new data set need to be 
retrained by the new data. Thus, the layer-freezing method 
freezes the layers that barely change to significantly reduce 
the training time for transfer learning and the frequency 
of overfitting in the transfer learning process. However, it 
should be noted that the frozen layers cannot be updated via 
transfer learning and thus cannot be improved further.

Given the advantages of transfer learning, we sought 
to explore the feasibility of transferring a general deep 
learning network trained using group data to a patient-
specific network retrained using an individual patient’s 
data. The deep learning network used in our study was a 
standard U-Net model, which has been shown to be capable 
of producing satisfactory results in the medical imaging 
field (23). The proposed method was evaluated in terms 
of its ability to augment CBCT reconstructed using both 
digitally reconstructed radiography (DRR) data and real 
projection data. The results were compared to the original 
deep-learning results both qualitatively and quantitatively 
to evaluate any improvements in the augmented under-
sampled CBCT image quality due to transfer learning.

Methods

Theoretical basis

In our experiment, we want to build up a model that uses 
limited-projection CBCT images as input and output the 
augmented CBCT images. In this model, r is used to denote 
a group of patients’ CBCT images composed of pixels that 
are reconstructed from limited projections, and r* is used to 
denote the corresponding fully sampled CBCT or planning 
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CT images that can be used as the ground-truth images. 
The main goal of the deep learning method is to find an 
image restoration deep-learning network, g, that satisfies 
the condition:

( ) *|| |− |∑g i
g r rmin 	 [1]

The network, g, is trained using the paired data. 
However, the neural network trained on the group data 
is not optimized to augment individual patient’s data. To 
transfer the group-trained network, g, to a patient-specific 
network, the individual patient’s CBCT data are used for 
the transfer learning. Specifically, dataset, s, is used to 
denote a specific patient’s undersampled CBCT images with 
the corresponding ground truth, s*.

The main goal of transfer learning is to retrain the 
original network, g, into a patient-specific network that 
satisfies the condition:

( ) *|| ||−∑




g j
g s smin 	  [2]

This means that the network parameters’ optimization 
process will have the starting point, g and reach an end 
point, g . This new process, g , should be better than the 
original process, g, at augmenting data from a specific 
patient.

Network architecture

U-Net architecture (see Figure 1)  was previously 
implemented for biomedical imaging segmentation in 
Ronneberger’s work (23). It starts with a contracting path 
and is then followed by an expansive path. The contracting 
path repeatedly calls the application of two convolutions, 
each followed by a rectified linear unit (ReLU), and a max-
pooling operation for down-sampling. Each down-sampling 
operation also doubles the feature channels. Similarly, every 
step in the expansive path consists of two convolutions and a 
ReLU. The difference is that the down-sampling operations 
in the contracting path are replaced by up-sampling 
operations that reduce the feature channels by half. The 
number on the top of each layer denotes the number of 
feature channels in each layer. Additionally, concatenation 
layers are added after each up-sampling operation to 
compensate for the loss of border pixels within every 
convolution. Finally, a convolution is added to the network 
to reduce the feature channels to the desired number.

Transfer learning based on U-Net architecture

Figure 2 shows the overall workflow of the transfer learning 
scheme. The U-Net model is first trained to augment 
undersampled CBCT to match with fully sampled CBCT 

Figure 1 Schematic of the U-Net architecture (23) and the layer-freezing method; the red square indicates the layers that are retrained. 
CBCT, cone-beam computed tomography; ReLU, rectified linear unit. 
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or planning CT images using group data. The model is then 
retrained as a patient-specific model using an individual 
patient’s CT or prior CBCT data and transfer learning to 
optimize its performance for that individual. The network 
can be updated adaptively by adding the most recent day’s 
CBCT images to the training data.

The present study sought to investigate two transfer-
learning methods: the whole-network fine-tuning method 
and the layer-freezing method (see the description in the 
introduction section above). The whole-network fine-
tuning method uses new patient data to retrain all the 
layers in the network, and a lower learning rate to ensure 
that the parameter changes slowly from the starting point. 
This method changes the original knowledge stored in the 
network model by adjusting the parameters in the network 
based on the new patient data.

Similarly, the layer-freezing method starts with the 
trained model; however, it retrains only the bottom and 
final layers of the network (see Figure 1). As the contracting 

path goes deeper toward the middle of the network, the 
feature channels’ number increases, which means the 
extracted features’ size decreases. In lung imaging, the main 
clinical interest is in the bronchus and nodules, which all 
appear in images as small textures. Thus, we chose to retrain 
the six convolution layers in the bottom of the network, 
the convolution layer at the end of the network, together 
with one down-sampling, one up-sampling, and the one 
concatenating layer that is attached to the six convolution 
layers (see the layers inside the red rectangle in Figure 1). 
The parameters in the upper layers are frozen. Due to the 
lower number of parameters being retrained, the training 
time of the layer-freezing method is shorter than that of the 
whole-network fine-tuning method.

Experiment design

A comparison of the two transfer learning methods
The dataset used in this study included 18 non-small cell 

Figure 2 Overall transfer learning workflow.
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lung cancer (NSCLC) patients’ planning 4D-CT data 
from the Cancer Imaging Archive. Each patient in the 
dataset had 5 to 7 4D-CT sets that covered their periods of 
treatment, which ranged from 25 to 35 days. To reconstruct 
the CBCT image, we used the sixth phase of the CT image 
set for each patient and simulated 360-projection data sets 
from the 3D volume. From the 360-projection data sets, we 
then used 72 (20%) projections to reconstruct the limited-
projection CBCT images using the FDK algorithm. The 
training sets for the basic U-Net model only used the first 
day’s CT image sets of 17 patients. In training the network, 
we shuffled the paired 4D-CT images and CBCT images 
and extracted 5% of the data for network validation. This 
corresponded to 2,040 slices of images for the training and 
validation data. The remaining patient’s data were used for 
transfer-learning and network-testing purposes. Written 
informed consent was obtained from the patient to publish 
the results and any accompanying images in this study.

In this study, a U-Net model was first trained with the 
group data of 17 patients. We then conducted experiments 
on the two different transfer learning methods mentioned 
above using the testing data. The first days’ 4D-CT 
images from the testing data and the corresponding 
limited-projection CBCT images were used for transfer 
learning. A basic U-Net model, a layer-freezing model, 
and a whole-network fine-tuning model were tested with 
the second day’s 4D-CBCT images reconstructed from 72 
projections.

A comparison of sequential transfer learning and all-
data transfer learning
In the sequential transfer learning experiment, the two 
trained transfer learning models from experiment were used 
as starting points for the whole-network fine-tuning method 
and layer-freezing method, respectively. The second day’s 
data were fed to the models for retraining, and the models 
were tested with the third day’s data. This process was then 
repeated with the 3rd- and 4th-day’s data and the 4th- and 
5th-day’s data.

We also compared sequential transfer learning to all-data 
transfer learning to evaluate the effects of the sequential 
transfer learning method. In the experiment, all the data 
from previous days were packed together to retrain the 
basic U-Net model. For example, to test the model with 
the 3rd-day’s data, the first-two-day’s data were fed to the 
network together for retraining. The augmented CBCT 
images from the two methods were then compared to each 
other.

Effects of projection numbers
In this study, we further lowered the projection number 
used for undersampled CBCT reconstruction. Thirty-six 
(10%) projections were extracted from the 360-projection 
dataset to reconstruct the undersampled CBCT. Both the 
undersampled DRR data reconstructed from the 36- and 
72-projection data were used to compare the effects of 
projection numbers on transfer learning. We chose the 
better method of the two transfer learning methods to 
evaluate this effect. The two models were trained using 
the basic U-Net model with 36- and 72-projection data, 
respectively. Starting with the two models, the 1st- and 
2nd-day’s patient data were used as training data for transfer 
learning. The results for both the basic U-Net model and 
transfer learning model were evaluated using the planning 
CT image as a reference to determine the difference between 
the improvements from the transfer learning methods for 
CBCT images reconstructed with different numbers of 
projections.

Real-patient data evaluation
The data set used in this study included eight breath-hold 
lung patients’ data from the Duke Clinic acquired under an 
Institutional Review Board (IRB)-approved protocol. We 
also had access to 5 to 7 days of 3D-CBCT data for each 
patient. Each patient’s 3D-CBCT data were constructed 
from data comprised of 894 full-angle projections and 
had 100 slices of image. To simulate the 4D-CBCT 
image, which has limited projections, and to compare the 
augmentation results with the DRR study, we used 89 
(10%) projections and 178 (20%) projections respectively, 
from the 894-projection dataset to reconstruct the limited-
projection CBCT images. Among the data from the eight 
patients, data from seven patients were used for training 
and validation, and the data of the remaining patient was 
used for transfer learning and testing purposes. Thus, 1,400 
slices of images were used for training, and 500 slices of 
images were used for transfer learning and testing. The 
fully sampled 3D-CBCT images were used as a reference 
to evaluate the results. Written informed consent was 
obtained from the patients to publish the results and any 
accompanying images in this study.

Evaluation methods

Visual inspection
As the main goal of transfer learning is to recover additional 
small details that are lost in traditional deep learning 
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methods, checking small textures in the augmented images 
is of great significance. In this study, we used the same 
window level for all the augmented images and ground 
truth images, which was normalized from 0 to 1. Difference 
maps were also generated between augmented images and 
ground truth images to determine which part displayed the 
most difference. Additionally, to evaluate the performance 
of transfer learning, we extracted the lung area from the 
body area using a novel method from MathWorks (24) to 
view any improvements in different parts of the body.

Quantitative evaluation
In addition to the visual inspection, we also used the peak 
signal-to-noise ratio (PSNR), which is defined as follows:

10
2

   20 log ∞ || ||
= ⋅  || − || 

MN GPSNR
T G

	 [3]

where T and G denote the reconstructed images and 
ground-truth images, respectively, M and N are the number 
of pixels for a row and a column, respectively, and the 
structure similarity index matrix (SSIM), which is defined as 
follows:

( )( )
( )( )

1 2
2 2 2 2

1 2

2 2
    T G TG

T G T G

c c
SSIM

c c
µ µ σ

µ µ σ σ
+ +

=
+ + + + 	  [4]

where μT is an average of T, 2
Gσ  is a variance of G, σTG is a 

covariance of T and G (two variables stabilize the division; 
that is ( )2

1 1  c k L=  and ( )2
2 2c k L= , L is a dynamic range 

of the pixel intensities, k1 and k2 are constants by default  
(k1 =0.01 and k2 =0.03).

Results

Layer-freezing or whole-network fine-tuning

Two methods of transfer learning were evaluated. Table 
1 summarizes the evaluation data for this study. As the 
second column of Table 1 shows, compared to the quality of 
the images produced by the U-Net model alone, transfer 
learning effectively further augmented the quality of 

images for specific patients. Figure 3 shows the augmented 
images obtained using different methods and the ground 
truth images. The third column of Figure 3 shows that the 
difference map of a basic U-Net image and ground truth 
image has a higher absolute value in the lung area than the 
difference map between the transfer learning images and 
ground truth images. Further, the difference map shows 
that the difference is more uniform. The fourth column of 
Figure 3 compares two transfer learning methods. The two 
transfer learning methods and the basic U-Net image have 
approximately the same range, and the difference between 
the two transfer learning methods is also very slight.

Figure 4 shows the extracted lung parts from the whole-
body volume that were used to compare the augmented 
image quality for lung texture. The lung evaluation data 
in Table 1 also shows that the transfer learning methods 
improved the quality of the images produced. However, it 
should be noted that the SSIM difference between the two 
methods was only 0.5%. Figure 5 shows the analysis of the 
body area (excluding the lung area). The fourth column 
in Table 1 shows that the transfer-learning method only 
produced a slight improvement in displaying the muscle 
tissue in the body area.

The results outlined above show that the performance of 
the layer-freezing method was slightly higher than that of 
the fine-tuning method. However, as the difference between 
them was less than 0.5%, these two methods were deemed 
to have approximately equal competence in re-augmenting 
image quality from a basic machine-learning image. 
Notably, the training time for the layer-freezing model 
using a common graphic card RTX2060 was approximately 
10 minutes, while fine-tuning model took four times longer 
to retrain the model, as it slows the learning rate. In light 
of these results, we used the layer-freezing method as the 
transfer-learning method in the next part of the study.

A comparison of sequential training and all-data training

Two methods for organizing training data were evaluated. 

Table 1 Numerical analysis of layer-freezing and fine-tuning image comparison

Transfer learning methods Whole volume Lung area Body area (excluding lung area)

Layer-freezing SSIM: 0.958; PSNR: 38.42 SSIM: 0.940; PSNR:37.28 SSIM: 0.964; PSNR: 38.89

Whole-layer fine-tuning SSIM: 0.956; PSNR: 38.06 SSIM: 0.936; PSNR: 36.99 SSIM: 0.962; PSNR: 38.06

Basic U-Net SSIM: 0.924; PSNR: 33.77 SSIM: 0.839; PSNR: 34.87 SSIM: 0.954; PSNR: 35.45

PSNR, peak signal-to-noise ratio; SSIM, structure similarity index matrix.
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Figure 3 Comparison between transfer learning images, basic U-Net images, and ground-truth images. The arrows indicate the part that 
has most difference in the comparison.
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Figure 4 Lung extraction images. The arrows indicate the part that has most difference in the comparison.
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Figure 5 Body images (excluding lung area). The arrows indicate the part that has most difference in the comparison.
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In the first sequential training method, the first-4-day’s 
data were separated based on days. Each data set comprised 
120 slices of limited projection CBCT images that had 
been paired with ground truth CT images. In the second 
all-data training method, all the data from the first 4 days 
were packed into one package containing 480 slices of two-
dimensional (2D) CT-CBCT image pairs.

Figure 6 shows the results of the sequential and non-
sequential image comparison for the day 5 images. The 
images from day 5 were selected, as to use the model to 
predict the data on the 5th day and later. In addition to 
the day 5 data evaluation, we also conducted a numerical 
evaluation for the data for the 3rd and the 4th days (see 
Table 2, Figure 7).

As the data in Table 2 shows, the augmentation of images 
as a result of all-data training was slightly higher than 
that for sequential training. In addition, all-data training 

was much easier to perform, as the first-4-day’s data were 
packed together to train the model, and thus there was 
no need to feed the model data on a day-by-day basis. In 
addition to comparing the data across the different days, we 
also examined the augmentation effect and found that this 
effect did not increase as the amounts of a patient’s specific 
data increased (see Table 2).

The effect of the number of projections

The previous images used for augmentation were 
reconstructed using 20% of the full number of projections. 
The total projection numbers were then set to 10% of the 
full number of projections to examine how the number of 
projections affects data augmentation.

Figure 8 shows a comparison of augmented CBCT using 
10% projection number and ground truth images. The 

Figure 6 Comparison between sequential and non-sequential transfer learning for day 5 images.
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SSIMs were 0.9306 and 0.9161 and the PSNRs are 35.65 
and 34.65 for the transfer-learning and U-Net images, 
respectively. These evaluation data appear to indicate that 
when the projection number is very small, the machine 
learning method is not able to recover details as well as it 
can for an image that has more projections. Notably, the 
transfer learning method’s ability to recover details was also 
affected. However, the lung texture in the transfer learning 
images is of a slightly higher quality than that in the images 
that were augmented using the basic U-Net model.

Real-projection data

In the previous section, the model analyses were all based 
on DRR images. In this section, the model is applied to the 
real projection data. The origin data were reconstructed 
using 179 (of 894) projections, a figure that represents 20% 

of the full number of projections.
Table 3 displays the numerical evaluation data. The first 

two rows of Table 3 summarize the evaluation data for the 
178 projection images, and shows that the quality of the 
augmented image was slightly lower than of the DRR 
image; however, this was anticipated due to the noise in 
the real projection CBCT image. As the difference map in 
Figure 9A shows, the major improvement of the transfer-
learning method was that it made the value in the image 
more comparable to the ground truth image; that is, it made 
the difference more uniform, especially in the bone areas 
with the most noise.

Further, as the structure-by-structure evaluation revealed, 
the improvement to the body area was more obvious in the 
difference map than it was in the DRR evaluation. However, 
the difference map for the lung area was not as obvious. 
Indeed, as can be seen, while the uniformity is better, no 

Figure 7 Analysis results for sequential and non-sequential transfer learning images. PSNR, peak signal-to-noise ratio; SSIM, structure 
similarity index matrix.

Table 2 Numerical analysis of sequential and non-sequential transfer learning images

Transfer learning methods Day 3 Day 4 Day 5

Sequential freezing SSIM: 0.956; PSNR: 38.38 SSIM: 0.941; PSNR: 35.47 SSIM: 0.950; PSNR: 37.14

All-data freezing SSIM: 0.957; PSNR: 38.33 SSIM: 0.946; PSNR: 35.64 SSIM: 0.950; PSNR: 37.47

Sequential tuning SSIM: 0.950; PSNR: 37.86 SSIM: 0.945; PSNR: 35.97 SSIM: 0.950; PSNR: 37.19

All-data tuning SSIM: 0.954; PSNR: 37.96 SSIM: 0.944; PSNR: 35.58 SSIM: 0.943; PSNR: 36.83

Basic U-Net SSIM: 0.922; PSNR: 33.62 SSIM: 0.936; PSNR: 34.75 SSIM: 0.892; PSNR: 32.06

PSNR, peak signal-to-noise ratio; SSIM, structure similarity index matrix.
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Table 3 Numerical analysis for the real projection data

Augmentation data and methods Whole volume Lung area Body area (excluding the lung area)

Transfer learning for the 20%-projection data SSIM: 0.894; PSNR: 34.52 SSIM: 0.857; PSNR: 35.03 SSIM: 0.909; PSNR: 34.33

Basic U-Net for the 20%-projection data SSIM: 0.866; PSNR: 32.11 SSIM: 0.793; PSNR: 33.86 SSIM: 0.896; PSNR: 31.57

Transfer learning for 10%-projection data SSIM: 0.879; PSNR: 33.96 SSIM: 0.839; PSNR: 33.98 SSIM: 0.896; PSNR: 33.95

Basic U-Net for 10%-projection data SSIM: 0.833; PSNR: 30.98 SSIM: 0.738; PSNR: 31.61 SSIM: 0.870; PSNR: 30.76

PSNR, peak signal-to-noise ratio; SSIM, structure similarity index matrix.

Figure 8 CBCT image augmentation using 10% projection numbers. The arrows indicate the part that has most difference in the 
comparison. CBCT, cone-beam computed tomography.
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0.02

0
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extra lung-texture details were recovered. Notably, the data 
evaluation yielded good results; the SSIM for the lung area 
in the transfer-learning image was 0.8574, and the SSIM for 
U-Net image was 0.7927. This represents an improvement 
of over 6%, which also supports the findings for the DRR 
evaluation parts.

The last two rows of Table 3 display the evaluation data 
for the 89-projection data. These results support the effect 
found in relation to projection numbers. Specifically, they 
indicate that the lower the projection numbers are, the 
lower the augmented image’s quality will be. However, 
while the SSIM for the 89-projection transfer learning 
images was still lower than that for the 179-projection 

transfer-learning images, the augmentation effect was better 
for the 89-projection images than for the 179-projection 
images.

Discussion

Improving the quality of 4D-CBCT images is crucial for 
achieving the high-precision 4D image guidance demanded 
by stereotactic body radiation therapy (SBRT). Previous 
deep learning methods developed to augment CBCT 
images have used a group-trained model; however, this 
type of model is suboptimal for individual patients. In this 
study, a transfer learning procedure was established to 
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Figure 9 The comparison between augmented cone-beam CT images using different methods and the corresponding ground truth images. 
(A) Comparison of the 179 real-projection CBCT images; (B) 89 real-projection CBCT images comparison. The arrows indicate the part 
that has most difference in the comparison. CBCT, cone-beam computed tomography.
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build a patient-specific model for 4D-CBCT image quality 
augmentation to optimize the performance of the model 
for individual patients. The model takes advantage of a 
specific patient’s prior information (gathered from planning 
CT images) or prior CBCT images to modify the general 
restoration patterns learned from various patients’ data into 

a specific restoration pattern for that patient. The proposed 
transfer learning method also demonstrated superior 
performance in recovering small lung textures, such as those 
of the bronchus and blood vessels, and in eliminating noise 
to make image values more accurate than those obtained 
by traditional deep learning methods. If high-quality 
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4D-CBCT images can be produced for specific patients, the 
inter- or intra-fraction localization in SBRT can be more 
accurate, which in turn should lead to more precisive dose 
delivery.

The SSIM measurement is a metric widely used to 
evaluate image quality in the medical imaging field. 
However, as it uses a uniform pooling method, the SSIM 
is highly affected by the variance in regions of high-
pixel values and less affected by regions of low-pixel 
values (25) To address this limitation, we calculated the 
SSIM separately for the lung area (a region that has a low 
average pixel value) and the body area excluding the lung 
area (a region that has a high average pixel value) for the 
quantitative analysis. The analysis showed that the transfer-
learning method produces a major improvement in the 
SSIM for the lung area; however, the improvement in 
the body area (excluding the lung area) is limited. This is 
because with a SSIM higher than 0.95, the augmentation of 
the body area using the U-Net model is already satisfactory. 
Conversely, the augmentation achieved by the use of the 
group-based U-Net model for the lung area is suboptimal 
due to the complexity of the lung structure and variations 
among patients. The transfer-learning method was capable 
of recovering more detailed anatomical structures than 
those recovered by in U-Net augmentation and indeed, 
could recover areas that were lost in U-Net augmentation.

The PSNR is another metric commonly used to evaluate 
images. The range of PSNR is 0 to infinity, and a higher 
PSNR indicates a higher level of similarity between the 
evaluated image and the ground truth image. In our study, 
the PSNR measurement served as a secondary verification 
tool for the SSIM measurement.

The comparison of two transfer learning methods yielded 
similar results in terms of image quality augmentation but 
showed a large difference in terms of training times. All 
the transfer learning training processes were conducted 
in Python with a Keras framework, and were performed 
with a standard graphic card, RTX2060 (6GB VRAM). 
When the transfer learning training data comprised 1-day’s 
patient CBCT images (120 slices), the training time took 
10 seconds per epoch for the layer-freezing method and 
28 seconds per epoch for the whole-network fine-tuning 
method. The training epoch number was set to 100 for 
each method; however, no further drop in loss occurred 
after the 50th epoch for the layer-freezing method or after 
the 80th epoch for the fine-tuning method. Thus, the total 
training time was around 500 seconds for the layer-freezing 
method and 2,200 seconds for the fine-tuning method. 

The time efficiency of the layer-freezing method could be 
significant should the procedure be applied in a clinic to 
treat individual patients. Once the two transfer-learning 
models were trained, the testing time for augmenting the 
undersampled 4D-CBCT images were both approximately 
5 seconds; thus, both methods would be very practical in 
clinical applications.

The performance of the sequential training and all-data 
training was comparable. Thus, the sequence of incorporating 
patient-specific data in the training data did not have a major 
effect on the accuracy of the patient-specific model. The 
study of the effect of the number of projections showed that 
the capability of transfer-learning augmentation is limited 
for CBCT images reconstructed from a very low number of 
projections, as the potential of augmentation is limited by 
the quality of the input image. Notably, the transfer-learning 
model cannot recover anatomical details that have already 
been lost in the input image.

In the real projection data study, the performance of 
transfer learning was slightly degraded due to the noises 
and artifacts in the fully sampled CBCT images, which were 
used as the ground truth images. However, the transfer-
learning model performed better in relation to 10% 
projection CBCT images for real projection data than it did 
for DRR data. This might have been because the transfer 
learning model is better at eliminating noise and streak 
in the real CBCT images than is the basic U-Net model. 
The differences map between the U-Net images and layer-
freezing images in Figure 9B shows that most differences 
were from the edge area of the lung and the area around 
bones where there is a deal of noise.

In terms of the clinical implementation of the transfer-
learning method, a U-Net model should first be trained 
using a patient database with fully sampled CBCT images. 
Limited projections CBCT images should be reconstructed 
by extracting limited projections from the fully sampled 
CBCT images, and the fully sampled CBCT images should 
be used as ground truth images for training. Next, for 
every incoming new patient, fully sampled CBCT images 
should be acquired for the first 2 or 3 days of treatments. 
These fully sampled CBCT images should then be used 
as the training data for the transfer learning model. The 
trained U-Net model should then be retrained into patient-
specific models for individual patients based on the transfer 
learning method. Finally, for the remaining treatment for 
each individual patient, only limited projections need to be 
acquired of the CBCT scans, and the reconstructed images 
should be augmented using the patient-specific model.
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Conclusions

In conclusion, the results of the present study showed that 
the proposed transfer learning method can augment the 
image quality of under-sampled 3D/4D-CBCT images 
by building a patient-specific model. Compared to images 
produced using the traditional group-based deep-learning 
model, the patient-specific model further enhanced the 
anatomical details and reduced noise and artifacts in the 
images. The technique could also be used to reduce imaging 
dose or to improve localization accuracy using 3D/4D-
CBCT images, which could be highly valuable in SBRT 
treatments.
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