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Background: This study aimed to determine the impact of including radiomics analysis of non-tumorous 
bone region of interest in improving the performance of pathological response prediction to chemotherapy 
in high-grade osteosarcomas (HOS), compared to radiomics analysis of tumor region alone.
Methods: This retrospective study included 157 patients diagnosed with HOS between November 2013 
and November 2017 (age range, 5–44 years; mean age, 16.99 ±7.42 years), in which 69 and 88 patients were 
diagnosed as pathological good response (pGR) and non-pGR, respectively. Radiomics features were extracted 
from tumor and non-tumorous bone regions based on diagnostic CT images. Pathological response classifiers 
were developed and validated via leave-one-out cross validation (LOOCV) and independent validation methods 
by using the area under the receiver operating characteristic curve (AUC) value as the figure of merit. 
Results: Using the LOOCV, the classifiers combining features from tumor and non-tumorous regions showed 
better prediction performance than those from tumor region alone (AUC, 0.8207±0.0043 vs. 0.7799±0.0044). The 
combined classifier also showed better performance than the tumor feature-based classifier in both training and 
validation datasets [training dataset: 0.791, 95% confidence interval (CI), 0.706–0.860 vs. 0.766, 95% CI, 0.679–
0.840; validation dataset: 0.816, 95% CI, 0.662–0.920 vs. 0.766, 95% CI, 0.606–0.885]. 
Conclusions: Radiomics analysis of combined tumor and non-tumorous bone features showed improved 
performance of pathological response prediction to chemotherapy in HOS compared to that of tumor 
features alone. Moreover, the proposed classifier had the potential to predict pathological response to 
chemotherapy for HOS patients.
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Introduction

Osteosarcoma is the most common primary malignant 
bone tumor originated from the primitive bone-forming 
mesenchymal cells (1). When diagnosed, around 90% 
of osteosarcoma patients are classified as high-grade 
osteosarcoma (HOS) (2). Preoperative neoadjuvant 
chemotherapy combined with definitive surgical resection, 
as the standard treatment option, has significantly 
improved the five-year survival rate from less than 20% 
to more than 60% (3). Unfortunately, there still remains a 
considerable amount of osteosarcoma patients that might 
not benefit from chemotherapy, especially those with poor 
histologic responses from chemotherapy (4,5). Therefore, 
accurate pre-treatment pathological response prediction 
to chemotherapy in patients with HOS is essential in 
determining the best treatment option. If poor response 
could be predicted, it might be helpful for modifying 
treatment regimen for chemotherapy and/or surgery (6,7).

Radiomics analysis based on medical images has 
been used to predict outcomes of osteosarcoma treated 
with chemotherapy in previous studies (8-10). Song 
et al. found that tumor texture features of baseline 
18F-fluorodeoxyglucose uptake measured by positron 
emission tomography (PET) images could predict 
pathological response to chemotherapy in patients with 
localized osteosarcoma of the extremities (10). Davis 
et al. reported that the percentage change of maximum 
standardized uptake during treatment could be used 
as metabolic predictors of pathological response in 
osteosarcoma (9). Wu et al. illustrated that the percentage 
change of maximum standardized uptake during treatment 
could be used as metabolic predictors of pathological 
response in osteosarcoma (11). Our previous study 
demonstrated that delta CT imaging features could be 
used for individualized pathologic response evaluation after 
chemotherapy in osteosarcoma (12). These findings showed 
that imaging features extracted from tumors have the 
potential to predict chemotherapy outcomes. 

Several previous studies suggested that texture features 
from normal parenchymal structures of solid tumors 
could reflect the biologic factors associated with tumor 
development, which could be interpreted by the important 
role of normal parenchymal stromal cells in tumor 
formation and development (13-15). Sala et al. demonstrated 
that parenchymal texture features could be used to evaluate 
or predict the stage and subtype in breast cancer (16). 
Li et al. found that combining quantitative radiomics 

features from tumors with contralateral parenchyma 
characterizations can improve the diagnostic accuracy for 
breast cancer (17). The idea of combined features for breast 
cancer intrigued our present study of looking into the 
correlation between non-tumorous bone characteristics and 
tumor development in osteosarcoma. 

This study was developed with a hypothesis that the 
combination of imaging features extracted from non-
tumorous bone region and tumor region on diagnostic CT 
images could improve the accuracy of pathological response 
prediction to chemotherapy. Quantitative CT imaging 
features from both tumor and non-tumorous bone regions 
were extracted and analyzed. The prediction performance 
of pathological response classifiers developed based on the 
combination features was assessed and compared with the 
classifiers developed based on the tumor features alone. 

Methods 

Patient data set

This retrospective study was approved by the Institutional 
Research Ethics Board. Patient informed consent was 
waived for the study. All medical images and baseline 
characteristics were obtained from the Second Affiliated 
Hospital, Zhejiang University School of Medicine 
(Zhejiang, China) between November 2013 and November 
2017. 

The focus of the study was on HOS in extremities, 
considering that large tumor size can impact the accuracy 
of non-tumorous bone region delineation. Patients’ 
inclusion criteria are: (I) patients were diagnosed as HOS 
in extremities; (II) patients underwent diagnostic CT scans 
before chemotherapy; (III) patients underwent surgical 
resections after chemotherapy; (IV) patients had confirmed 
pathological response to chemotherapy by pathological 
examinat ion;  (V)  pat ients  had complete basel ine 
characteristics and histologic information. The baseline 
characteristics were obtained from the Electronic Medical 
Record System (EMRS), including age, gender, and location 
of primary tumor, tumor stage, pathologic subtype, any 
pulmonary metastasis, and type of chemotherapy regimens. 
The flowchart of patient exclusion criteria was presented in 
Figure 1. 

The baseline characteristics of patients with pathological 
good response (pGR) and non-pGR were described in Table 
1. A total of 157 patients with HOS were involved in this 
study, 69 of whom showed pGR to chemotherapy and 88 
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Figure 1 Flowchart showing the number of patients with high-grade osteosarcoma in the extremities used in this study.

Patient data set used in this study, 
N=157

Patients diagnosed as osteosarcoma in
the extremities between November 2013

to November 2017, N=254

Case excluded due to the diagnosis of low-
grade osteosarcoma, N=23

Case excluded due to incomplete neoadjuvant
chemotherapy before surgery, N=19

Case excluded due to incomplete 
pre-treatment standard CT scan, and post-
chemotherapy tumor necrosis rate data, N=28

Case excluded due uncertain in tumor and
normal bone structure segmentation, N=27

showed non-pGR. Specifically, tumor volumes for patients 
with pGR ranged from 15.53 to 372.70 cm3 (mean ± standard 
deviation, 134.82±84.45 cm3), and 7.02 to 1,142.96 cm3 
(173.57±160.13 cm3) for patients with non-pGR. Patient 
dataset was stratified to the training dataset and independent 
validation dataset randomly at a ratio of 3:1.

CT image acquisition

All images were acquired on five CT scanners, including a 
16 multi-slice CT (MSCT) (Siemens Sensation 16, Siemens 
Medical Systems, Erlangen, Germany), a 64-MSCT (Philips 
Brilliance 64, Philips Medical Systems, Cleveland, USA), a 
128-MSCT (Definition Flash, Siemens Medical Systems), a 
160-MSCT (Volume Zoom, Siemens Medical Systems) and 
a 320-MSCT (Aquilion ONE, Toshiba Medical Systems, 
Otawara, Japan). All CT scan parameters were as follows: tube 
voltage of 100–140 kVp, tube current of 80–480 mAs, slice 
thickness of 3–6 mm, and pixel size of 0.3×0.3–1.0×1.0 mm2.  
Standard DICOM format was used for all medical images 
in this study.

Neoadjuvant chemotherapy, pathological response 
assessment and surgery

All patients received preoperative chemotherapy followed 
by surgical resection. The neoadjuvant chemotherapy 

schema was  des igned according to  the  Nat ional 
Comprehensive Cancer Network guidelines. The total 
duration of neoadjuvant chemotherapy ranged from 8 to  
10 weeks.

The conventional three-drug regimen was used 
consisting of methotrexate, cisplatin, and doxorubicin. This 
regimen was administered in 9 weeks: week 1 and week 2: 
methotrexate (8 mg/m2 in 6 hours for patients <14 years 
of age, 12 mg/m2 in 6 hours for patients ≥14 years of age); 
week 3: cisplatin (100 mg/m2 in 24 hours) and doxorubicin 
(60 mg/m2 in 8 hours); week 5 and week 6: methotrexate; 
week 7: cisplatin and doxorubicin; week 9: surgery. Patients 
who suffered severe liver dysfunction or other adverse 
reactions after the first week of treatment received an 
alternative treatment schema consisting of methotrexate, 
ifosfamide, cisplatin and doxorubicin in 11 weeks: week 1: 
methotrexate; week 2: ifosfamide (2 mg/m2/day for 5 days); 
week 4: cisplatin and doxorubicin; week 6: ifosfamide; week 
8: ifosfamide; week 9: cisplatin and doxorubicin; week 11: 
surgery. Patients who suffered tumor progression or newly 
diagnosed lung metastasis after the first week of treatment 
received an alternative treatment schema consisting of 
methotrexate, ifosfamide, cisplatin and doxorubicin in  
10 weeks: week 1 and week 2: methotrexate; week 3: 
cisplatin and doxorubicin; week 5 and week 7: ifosfamide; 
week 8: cisplatin and doxorubicin; week 10: surgery. 

Histology analysis  of  pathological  response to 
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Table 1 Baseline characteristics of patients with high-grade 
osteosarcoma

Baseline characteristics pGR (N=69) Non-pGR (N=88)

Age, years

Mean [range] 17.65±7.57 
[5–43]

16.48±7.30  
[7–44]

≤15 33 47

>15 36 41

Sex

Male 41 50

Female 28 38

Location of primary tumor

Humerus 8 5

Femur 38 58

Tibia and fibula 23 24

Radius and ulna 0 1

Tumor stage

Localized 57 76

Metastatic 12 12

Pathologic subtype

Osteoblastic 58 58

Chondroblastic 3 16

Fibroblastic 7 7

Telangiectatic 0 5

Others 1 2

New pulmonary metastasis

Yes 3 2

No 66 86

Chemotherapy regimen

MTX, DDP and ADM 47 66

MTX, IFO, DDP, and ADM 19 17

MTX, IFO, DDP, and ADM 3 5

Age is presented as means ± standard deviations, with  
ranges in parentheses. MTX, methotrexate; DDP, cisplatin; 
ADM, doxorubicin; IFO, ifosfamide.

chemotherapy was performed by two experienced 
pathologists blinded to the CT images, using the criteria of 
Bacci et al. (18). The pGR was defined as the tumor necrosis 
percentages ≥90%; while non-pGR was defined as the 
tumor necrosis percentages <90% (19). 

About three weeks after the last cycle of chemotherapy, 
patients  underwent surgery.  The type of  surgery 
(amputation and limb salvage) was chosen depending 
on the comprehensive consideration involving location 
and extension of the tumor, and neurovascular bundle 
involvement. Simultaneous surgery for primary and 
metastatic lesions was performed for patients with 
metastatic lesions. Margins of the resections were defined 
according to the Enneking’s criteria (20).

Radiomics analysis of tumor regions

Radiomics analysis of osteosarcoma tumor regions was 
conducted according to the following three steps. The 
tumor was delineated by one experienced orthopedic 
surgeon using the ITK-SNAP software, reviewed and 
modified if necessary, by the second experienced orthopedic 
surgeon and an experienced radiologist (21). The two 
orthopedic surgeons and the radiologist were blinded to 
the pathological response to chemotherapy. Radiomics 
features were extracted from the confirmed tumor regions 
on CT images following image pre-processing. Subsequent 
classification was implemented to differentiate patients 
with pGR and non-pGR by using a pathological response 
classifier. 

A total of 491 image features were extracted from each 
tumor region. Prior to feature extraction, image pre-
processing was performed including voxel resampling and 
intensity normalization. All CT images were resampled 
to the same voxel size of 0.5×0.5×5 mm³. Voxel intensity 
within the tumor region was discretized to a range of 64 
intensities. The feature pool was categorized as intensity 
statistics features, geometry features, texture features, and 
wavelet features. The intensity statistics features measured 
the voxel intensities statistical distribution within the 
tumor region. The geometry features described the 3D 
shape features of the tumor region. The texture features 
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describing the spatial intensity correlation and distributions 
of the voxels within the tumor region were calculated 
based the gray-level co-occurrence matrix (GLCM), the 
gray-level size-zone matrix (GLSZM), the gray-level run-
length matrix (GLRLM), and the neighborhood gray-
tone-difference matrix (NGTDM). The feature extraction 
process was conducted based on open-source Radiomics 
packages in MATLAB 2017b (MathWorks, Natick, 
MA, USA) (22-24). Details in feature extraction were 
described comprehensively in the Supplementary Material  
(Appendix 1).

Radiomics analysis of non-tumorous regions 

For non-tumorous bone feature extraction, regions of 
interest of 30×30×3 voxels (15×15×15 mm3, cubic area) were 
delineated in the region of cancellous bone structures where 
the tumor was located. The compact bone region was not 
included in the regions of interest given that the compact 
bone was too thin to obtain feature information. Since 
imaging features were extracted based on the non-tumorous 
bone region with a cubic size, the geometry features were 
not included. The feature pool for the non-tumorous bone 
region included three categories, involving intensity statistics 

features, texture features, and wavelet features. Radiomics 
analysis of non-tumorous regions was performed on the 
extracted 484 non-tumorous bone features. An example of 
regions of interest for the tumor region and non-tumorous 
bone region was shown in Figure 2. 

Leave-one-out cross validation (LOOCV) and feature 
selection 

To reduce selection bias within the training dataset, 
feature selection and temporary classifier construction 
were performed concurrently using the LOOCV method 
(17,25,26). The temporary classifier was constructed using 
features selected within each cross-validation iteration 
process. Note that in each iteration process, we further 
divided the training dataset into two separate sub-datasets: 
N-1 patients as the temporary training set and one patient 
as the temporary validation set. N was the overall number of 
patients in the training dataset in our study. The temporary 
classifier was developed using the temporary training set 
and validated using the temporary validation set. These 
training and validation procedures were repeated N times. 
Model performance was measured using the area under 
the receiver operating characteristic curve (AUC) value 

Figure 2 Illustration of the regions of interest segmentation on CT images. Radiomics analysis was performed in regions of interest from 
both tumor region (top, B) and non-tumorous bone region (bottom, C). Images of (B) and (C) were in the transverse plane. Image (A) was in 
the frontal plane.

A

B

C

Tumor region

Non-tumorous region

https://cdn.amegroups.cn/static/public/QIMS-20-681-supplementary.pdf
https://cdn.amegroups.cn/static/public/QIMS-20-681-supplementary.pdf
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averaged during the LOOCV process (mean ± standard 
deviation).

During each LOOCV iteration process, the maximum 
relevance minimum redundancy (mRMR) feature selection 
approach was used to select a compact feature set (27,28). 
The mRMR method aimed to generate a feature set which 
had the maximum relevance to the actual label and the 
minimum redundancy to other features. Based on the rule 
of thumb, the number of predictors should remain less 
than 1/10 of the case number in the group (29,30). Thus, 
to prevent over fitting, the potential feature number was 
limited to 12 when deriving a temporary classifier using the 
multivariable logistic regression algorithm. The optimal 
temporary classifier was determined from 11 classifiers 
with feature number ranging from 2 to 12. The optimal 
temporary classifier was identified with the AUC value. 

Furthermore, to investigate individual importance of the 
tumor and non-tumorous bone features, features used in the 
temporary classifier for more than 50% times were recorded 
during the LOOCV process. To investigate the additional 
value of non-tumorous bone features in assessing treatment 
response to chemotherapy, the temporary classifiers were 
constructed using tumor features alone, non-tumorous bone 
features alone, and combined features, respectively.

Classifier construction and independent validation 

We developed a classifier to predict individual pathological 
response status using the tumor features that were selected 
more than 50% of the LOOCV process with multivariable 
logistic regression algorithm. For comparison, we further 
developed a pathological response classifier using the 
combined features selected more than 50% of the LOOCV 
process. Then the proposed classifiers were validated using 
an independent validation dataset. 

Reproducibility validation of pathological response classifier

To assess the reproducibility of the region selection of the 
bone region and the proposed classifier, we re-delineated 
the non-tumorous bone ROIs of patients from the 
independent validation dataset. The re-delineation process 
was conducted by the same orthopedic surgeon following 
the same procedure. Furthermore, we extracted the non-
tumorous bone features based on the re-delineated ROIs. 
Then features were normalized using values calculated 
based on the training dataset. We validated the proposed 
pathological response classifiers using re-delineated feature 

dataset. The performance difference between the re-
delineated validation dataset and the independent validation 
dataset was measured using the Delong test. 

Classifier construction integrating the clinical features 
with imaging features

We developed a clinical-imaging classifier using both 
imaging features and clinical features with multivariable 
logistic regression algorithm. The clinical features 
included age, sex, location of primary tumor, tumor 
stage, pathologic subtype, and new pulmonary metastasis. 
For the tumor features based clinical-imaging classifier, 
clinical and radiomics features were combined with those 
selected more than 50% of the LOOCV process. For 
the combined imaging features based clinical-imaging 
classifier, we included the clinical features and combined 
imaging features selected more than 50% of the LOOCV 
process. The proposed classifiers were validated using the 
independent validation dataset.

Statistical analysis

Receiver operating characteristic (ROC) analysis was used 
to evaluate the performance of the proposed classifiers, with 
AUC value to differentiate patients with pGR and non-
pGR (31). The maximum AUC value was 1.0, indicating 
a perfect prediction. The minimum value of 0.5 indicated 
no predictive power. The Mann-Whitney U-test was 
used to assess performance difference in AUC values. 
The Delong test was used to access the deference in ROC 
curves. A threshold P value less than 0.05 was defined as the 
significant difference in the two-tailed analysis. The Holm-
Bonferroni method was conducted to correct for multiple 
comparisons. All statistical analysis was performed with R 
software (Version 3.4.1, www.R-project.org) and MedCalc 
(Version 15.2.2, www.medcalc.org). The mRMR algorithm 
was conducted using the “mRMRe” package in R software. 
The ROC analysis was conducted using the “pROC” 
package. 

Results

Radiomics analysis of tumor features 

As shown in Table 2, an AUC of 0.7799±0.0044 (range, 
0.7649–0.7913) was obtained for the pathological response 
classifier developed using the tumor features alone 
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during the LOOCV process. ROC analysis indicated that 
individual tumor feature showed inferior classification 
performance in pathological response prediction, with an 
AUC of 0.5494±0.0339 (range, 0.5008–0.6304). In the 
LOOCV process, we found eleven tumor features were 
selected more than 50% times, including LZE-tumor, 
SRE-LLL-tumor, corrp-LLH-tumor, SZE-LLH-tumor, 
Complexity-LHL-tumor, corrm-LHH-tumor, SRHGE-LHH-
tumor, svarh-HLH-tumor, corrp-HHL-tumor, cshad-HHH-
tumor, SZHGE-HHH-tumor. The feature SRE-LLL-
tumor indicated short run emphasis value extracted based 
on GLRLM from the wavelet decomposed image using 
low-pass, low-pass and low-pass filters. The full names 
for all other abbreviations were provided in Table S1, 
Supplementary Material (Appendix 1).

Radiomics analysis non-tumorous features

When we performed radiomics analysis of non-tumorous 
bone regions, an AUC of 0.7219±0.0121 (range, 0.6916–
0.7492) was obtained using the pathological response 
classifier developed based on the non-tumorous bone 
features only during the LOOCV process. Individual non-
tumorous feature showed poor classification performance 
in pathological response prediction with an AUC of 
0.5341±0.0288 (range, 0.5002–0.6270) using ROC analysis. 
Two non-tumorous bone features were selected more than 
50% of the time during the LOOCV process, including 
Entropy-bone, corrm-LLH-bone. 

Radiomics analysis of combined features 

The radiomics analysis of combined features showed 
higher AUC values (0.8207±0.0042, range, 0.8099 to 

0.8347) than the analysis of tumor features alone during 
the LOOCV process. The AUC difference between the 
classifiers based on combined features and tumor features 
was 0.0408±0.0046, with a range from 0.0259 to 0.0538. 
Statistical significance was observed for the AUC difference 
with P value <0.0001 using Mann-Whitney U-test. 

Ten image features were selected more than 50% during 
the LOOCV process, including seven tumor features 
(SRE-LLL-tumor, SZE-LLH-tumor, SRHGE-LHH-tumor, 
svarh-HLH-tumor, corrp-HHL-tumor, cshad-HHH-tumor, 
SZHGE-HHH-tumor) and three non-tumorous features 
(corrm-LLH-bone, SRLGE-HLH-bone, RLV-HHH-bone). Of 
these features, seven tumor features were all selected more 
than 50% times for the tumor features-based classifier; a 
bone feature of corrm-LLH-bone was selected more than 
50% times for the non-tumorous bone features-based 
classifier.

Classifier construction and independent validation 

For the pathological response classifier developed using the 
eleven tumor features, AUC was 0.766 [95% confidence 
interval (CI), 0.679–0.840; significance level, P value 
<0.0001] for the training dataset, and 0.766 (95% CI, 
0.606–0.885; significance level, P value =0.0004) for the 
independent validation dataset. By contrast, the combined 
features-based classifier showed better performance than 
the tumor features-based classifier in both training and 
validation datasets (training dataset: 0.791, 95% CI, 0.706–
0.860; significance level, P value <0.0001; validation dataset: 
0.816, 95% CI, 0.662–0.920; significance level, P value 
<0.0001). The ROC curves of both tumor features and 
combined features-based classifiers in the training dataset 
and validation dataset were showed in Figure 3. 

Table 2 Classification performance with tumor volume features, bone structure features, and combined features in the assessment of neoadjuvant 
chemotherapy response

Radiomics features AUC AUC difference P value

Tumor volume features 0.7799±0.0044 – –

Bone structure features 0.7219±0.0121 – –

Combined features 0.8207±0.0043 – –

Tumor volume features vs. bone structure features – 0.0580±0.0130 <0.0001

Tumor volume features vs. combined features – 0.0408±0.0046 <0.0001

Bone structure features vs. combined features – 0.0987±0.0121 <0.0001

Data were presented with means ± standard deviations. P value was calculated using the Mann-Whitney U-test. The Holm-Bonferroni  
method was conducted to correct for multiple comparisons. AUC, area under the receiver operating characteristic curve.

https://cdn.amegroups.cn/static/public/QIMS-20-681-supplementary.pdf
https://cdn.amegroups.cn/static/public/QIMS-20-681-supplementary.pdf
https://cdn.amegroups.cn/static/public/QIMS-20-681-supplementary.pdf
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Reproducibility validation of pathological response classifier

In the reproducibility validation test of the proposed 
classif iers using re-delineated ROIs,  a promising 
performance was achieved with an AUC of 0.797 (95% CI, 
0.640–0.907; significance level, P value =0.0001). We also 
observed a non-significant performance difference between 
the re-delineation dataset and the independent validation 
dataset (P value =0.4553). The ROC curves of the combined 
features-based classifier in the re-delineation validation 
dataset were showed in Figure 3.

Classifier construction integrating the clinical features and 
imaging features

Integration of clinical features with tumor feature achieved 

an AUC of 0.814 (95% CI, 0.731–0.880; significance level, 
P value <0.0001) for the training dataset and 0.728 (95% 
CI, 0.564–0.856; significance level, P value =0.0080) for 
the validation dataset. Integrating the clinical features 
with the combined features, we observed an AUC of 
0.820 (95% CI, 0.738–0.885; significance level, P value 
<0.0001) for the training dataset and 0.811 (95% CI, 
0.656 to 0.917; significance level, P value =0.0001) for the 
validation dataset. The ROC curves of these two clinical-
imaging classifiers in both training dataset and validation 
dataset were provided in Figure 4. The difference between 
AUC values was 0.0059 (95% CI, −0.0311–0.0428) for the 
training dataset and 0.0827 (95% CI, −0.0248–0.190) for 
the validation dataset between the clinical/tumor classifier 
vs. clinical/combined classifier. 

Figure 3 The ROC curves of the tumor features-based classifier in the training dataset (A) and validation dataset (B). The ROC curves of 
the combined features-based classifier in the training dataset (C), validation dataset (D, blue line), and re-delineation validation dataset (D, 
red line). ROC, receiver operating characteristic.
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Discussion 

In this study, we compared the performance of pathological 
response prediction to chemotherapy with the use of 
tumor features alone and the combination of tumor and 
non-tumorous bone features. Results showed statistically 
significant improvement in pathological response prediction 
performance with the combined features. 

Literature showed a wide spectrum of accuracy in 
radiomics studies for pathological response prediction to 
chemotherapy in patients with osteosarcoma, probably 
due to the difference in data sets and model construction 
algorithms. Song et al. achieved a high AUC of 0.918 
with a relatively small data set of thirty-five patients (10), 
whereas Davis et al. reported an AUC of 0.807 using a 
data set of thirty-four patients (9). However, both these 
studies only analyzed image features based on intratumoral 
heterogeneity. To the best of our knowledge, the present 
study is the first study to predict pathological response by 
combining tumor features and non-tumorous bone features. 

For the features selected more than 50% in the LOOCV 
process, ten out of eleven tumor-based features, one out 
of two non-tumorous bone feature, and ten out of ten 
combined features were all wavelet features. This indicated 
the vital role of wavelet image features in the pathological 
response prediction. This observation was consistent with 
previous studies which also used wavelet-based features 
in the proposed radiomics models (32-34). The wavelet 
transformation splitting images into different subimages 
with different frequency components may further explore 

the spatial heterogeneity at multiple scales within the 
regions of interest (33). 

The results of this study suggested that non-tumorous 
bone features could strengthen pathological response 
prediction to chemotherapy in osteosarcoma. Previous 
studies have demonstrated that the development of 
osteosarcoma was related to bone microenvironment and 
complex bone cell-tumor interactions (15,35,36). The 
improvement of pathological response prediction accuracy 
using combined features supports that tumor cell and 
nearby normal bone matrix interaction is important for 
treatment response.

For the non-tumorous bone features, only two features 
were selected from the LOOCV process, including Entropy-
bone, corrm-LLH-bone. For the radiomics analysis of 
combined features, three bone features (corrm-LLH-bone, 
SRLGE-HLH-bone, RLV-HHH-bone) were retained. The 
feature of corrm-LLH-bone was selected from both processes, 
indicating stable predictive power in this non-tumorous 
bone feature. This feature measured pixel correlation to its 
neighbor over the whole region of interest. This indicated 
that the neoadjuvant chemotherapy to the osteosarcoma 
might cause local influence to non-tumorous regions, 
resulting in changes in local texture.

A few limitations to be noted: (I) the study was a 
retrospective study with data from single institution and 
small sample size, which limited the use of LOOCV method 
and small independent validation set. (II) Only CT images 
were studied, yet MR imaging might be more commonly 

Figure 4 The ROC curves of two clinical-imaging classifiers in training dataset (A) and validation dataset (B). The orange line indicated 
the ROC curves for the clinical-combined features based classifier. The green line indicated the ROC curves for the clinical-tumor features 
based classifier. ROC, receiver operating characteristic.
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used for patients with HOS nowadays. (III) Patients 
included in this study underwent three-drug regimen, 
whereas two regiments of three-drug regimen and two-drug 
regimen (cisplatin and doxorubicin) may be a preferred 
treatment by NCCN. The validation using patients treated 
by different regimens was valuable. (IV) Clinical and 
imaging features were studied, yet a variety of other relevant 
signatures, such as biological features, molecular features, 
immune features, etc. might affect results of the current 
study. Nevertheless, this is the first pilot study of using 
quantitative features of tumor and non-tumorous bone 
regions based on medical images for predicting pathological 
response to chemotherapy in osteosarcoma. Prospective and 
multicentric studies are underway involving more imaging 
modalities, regimens and features to further validate the 
findings of this study. 

Conclusions

Radiomics analysis of combined tumor and non-tumorous 
bone features showed improved performance of pathological 
response prediction to chemotherapy in HOS compared 
to that of tumor features alone. Moreover, the proposed 
classifier had the potential to predict the pathological 
response to chemotherapy for HOS patients.
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Supplementary

The feature pool in this study

In this study, we extracted 491 image features based on tumor volume, including four categories: intensity statistics features, 
geometry features, texture features, and wavelet features. We extracted 484 image features based on non-tumorous bone 
region, including three categories: intensity statistics features, texture features, and wavelet features. The feature extraction 
process was conducted based on open-source Radiomics packages in MATLAB 2017b (MathWorks, Natick, MA, USA).

Table S1 Full names and abbreviations of imaging features in this study

Full names Abbreviations

Intensity statistics features

Variance –

Skewness –

Kurtosis –

Mean –

Energy –

Entropy –

Uniformity –

Geometry features

Max diameter MaD

Surface volume ratio SVR

Compactness1 Cpt1

Compactness2 Cpt2

Surface area SA

Spherical disproportion SphDisp

Sphericity –

Texture features (grey-level co-occurrence matrix)

Autocorrelation autoc

Contrast contr

Correlation corrm

Correlation2 corrp

Cluster prominence cprom

Cluster shade cshad

Dissimilarity dissi

Energy energ

Entropy entro

Homogeneity homom

Homogeneity2 homop

Maximum probability maxpr

Table S1 (continued)
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Table S1 (continued)

Full names Abbreviations

Sum of squares variance sosvh

Sum average savgh

Sum variance svarh

Sum entropy senth

Difference variance dvarh

Difference entropy denth

Information measure of correlation1 inf1h

Information measure of correlation2 inf2h

Inverse difference normalized indnc

Inverse difference moment normalized idmnc

Texture features (grey-level run-length matrix)

Short run emphasis SRE

Long run emphasis LRE

Grey-level non-uniformity GLN

Run-length non-uniformity RLN

Run percentage RP

Low grey-level run emphasis LGRE

High grey-level run emphasis HGRE

Short run low grey-level emphasis SRLGE

Short run high grey-level emphasis SRHGE

Long run low grey-level emphasis LRLGE

Long run high grey-level emphasis LRHGE

Grey-level variance GLV

Run-length variance RLV

Texture features (grey-level size zone matrix)

Small zone emphasis SZE

Large zone emphasis LZE

Grey-level non-uniformity GLN

Zone-size non-uniformity ZSN

Zone percentage ZP

Low grey-level zone emphasis LGZE

High grey-level zone emphasis HGZE

Small zone low grey-level emphasis SZLGE

Small zone high grey-level emphasis SZHGE

Table S1 (continued)
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Wavelet features

The wavelet features were extracted based the imaged decomposed by undecimated wavelet transform. Two kinds of filter 
of high-pass and low-pass was used in undecimated wavelet transform. By using the filters along three directions (x-, y- and 
z-direction), we could obtain 8 decomposed images. Then, the textural features were calculated based on the decomposed 
images. For example, we used the abbreviations ‘LLL’ to represent the low pass, low pass, and low pass filters in three axes 
for the original image during the wavelet translation. The same descriptions were used for all other imaged after wavelet 
translation. The wavelet feature name was defined as the combination of feature name and wavelet filter name. A number of 
424 features were obtained through undecimated wavelet transform. 

Table S1 (continued)

Full names Abbreviations

Large zone low grey-level emphasis LZLGE

Large zone high grey-level emphasis LZHGE

Grey-level variance GLV

Zone-size variance ZSV

Texture features (neighbourhood grey-tone difference matrix)

Coarseness –

Contrast –

Busyness –

Complexity –

Strength –


