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Background: In recent years, there was an increasing popularity in applying artificial intelligence in the 
medical field from computer-aided diagnosis (CAD) to patient prognosis prediction. Given the fact that 
not all healthcare professionals have the required expertise to develop a CAD system, the aim of this study 
was to investigate the feasibility of using AutoML Vision, a highly automatic machine learning model, for 
future clinical applications by comparing AutoML Vision with some commonly used CAD algorithms in the 
differentiation of benign and malignant breast lesions on ultrasound.
Methods: A total of 895 breast ultrasound images were obtained from the two online open-access 
ultrasound breast images datasets. Traditional machine learning models (comprising of seven commonly used 
CAD algorithms) with three content-based radiomic features (Hu Moments, Color Histogram, Haralick 
Texture) extracted, and a convolutional neural network (CNN) model were built using python language. 
AutoML Vision was trained in Google Cloud Platform. Sensitivity, specificity, F1 score and average precision 
(AUCPR) were used to evaluate the diagnostic performance of the models. Cochran’s Q test was used to 
evaluate the statistical significance between all studied models and McNemar test was used as the post-hoc 
test to perform pairwise comparisons. The proposed AutoML model was also compared with the current 
related studies that involve similar medical imaging modalities in characterizing benign or malignant breast 
lesions.
Results: There was significant difference in the diagnostic performance among all studied traditional 
machine learning classifiers (P<0.05). Random Forest achieved the best performance in the differentiation 
of benign and malignant breast lesions (accuracy: 90%; sensitivity: 71%; specificity: 100%; F1 score: 0.83; 
AUCPR: 0.90) which was statistically comparable to the performance of CNN (accuracy: 91%; sensitivity: 
82%; specificity: 96%; F1 score: 0.87; AUCPR: 0.88) and AutoML Vision (accuracy: 86%; sensitivity: 84%; 
specificity: 88%; F1 score: 0.83; AUCPR: 0.95) based on Cochran’s Q test (P>0.05).
Conclusions: In this study, the performance of AutoML Vision was not significantly different from that of 
Random Forest (the best classifier among traditional machine learning models) and CNN. AutoML Vision 
showed relatively high accuracy and comparable to current commonly used classifiers which may prompt for 
future application in clinical practice.
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Introduction

Breast cancer is one of the leading causes of death in women 
around the globe. There were more than 1.6 million 
new cases and about 1.2 million people died from breast 
cancer per year in China (1,2). Breast cancer is the most 
common cancer in the Western countries. In 2018, there 
were 523,000 new cases and more than 130,000 deaths 
in breast cancer. Early diagnosis remains as an important 
aspect in breast cancer because it allows patients to have 
early treatment and thus a better prognosis and higher 
survival rate. On the contrary, according to the World 
Health Organization (3), the global shortage in healthcare 
professionals are expected to reach 12.9 million by 2035, 
meaning that there might not have sufficient radiologists 
to examine the large number of medical images of breast 
cancer patients. This increases the workload of existing 
radiologists and might lead to a delayed treatment and poor 
prognosis of patients.

Artificial intelligence, consists of machine learning and 
brain-inspired deep learning neural networks (4), may help 
to tackle the current issues in the healthcare systems around 
the world. Recent applications of artificial intelligence 
in medical ultrasound images have already included a 
variety of specific tasks ranging from image segmentation 
to biometric measurement. For example, previous studies 
successfully developed methods for automated breast 
lesion segmentation and computer-aided quantification 
of intranodal vascularity on ultrasound (5,6). Artificial 
intelligence works well with radiomics which extracts image 
information that cannot be obtained by human like textural 
data and wavelet features. With the availability of those 
radiomics features, artificial intelligence system can be 
trained to make its own diagnosis such as classifying a tumor 
as benign or malignant. However, building and training 
a top-tier machine learning model require thorough 
understanding on the mathematical and engineering aspects 
of artificial intelligence, including tuning hyperparameters 
of the model and selecting appropriate algorithms. These 
might already be a laborious task for many experienced 
engineers or computer scientists, let alone some healthcare 
professionals with limited experience in computer science. 
In view of this, Google Cloud AutoML Vision might be a 
possible solution to combat this barrier because it is a highly 
user-friendly interface. AutoML Vision provides a highly 
automated model development environment to users who 
have less experience in computer programming to develop 
and train their own machine learning models according to 

their classification needs. AutoML Vision credited with the 
advantage of transfer learning in machine learning and their 
neural architecture search technologies. 

Currently, AutoML Vision has been widely used for 
business purpose but seldom applied in the medical 
applications. However, previous studies have shown that 
AutoML Vision has potential significance in medical 
diagnostic field (7-9). The performance of these AutoML 
Vision-based computer-aided diagnosis (CAD) models 
was comparable to professional specialists indicating that 
these models could help clinical decision making. However, 
until now, there is no prior study has been conducted to 
investigate the feasibility of AutoML Vision in the analysis 
of ultrasound images in particular of breast ultrasound 
in differentiating benign and malignant lesions. As 
ultrasonography is relatively different when compared to 
other imaging modalities like X-ray, CT, or MRI in terms 
of operator dependency and image quality, testing AutoML 
Vision with ultrasound images become essential. This 
study presents a novel work in tackling this research gap by 
examining the potential usage of AutoML Vision in future 
clinical setting. 

There is an increasingly popularity in using transfer 
learning techniques with some well-established pre-trained 
convolutional neural network in the realm of machine 
learning. Several studies have been conducted on tumor 
characterization and different methods have been proposed. 
We reviewed some of the transfer learning approaches 
with fine tuning techniques of pre-trained convolutional 
neural networks (CNN), including AlexNet, ResNet and 
Inception. 

Ragab et al. (10) used some of the well-known CNN like 
Alex-Net with transfer learning fine tuning techniques and 
support vector machine to classify benign and malignant 
breast masses using the digital database for screening 
mammography (DDSM) and the Curated Breast Imaging 
Subset of DDSM (CBIS-DDSM) which yielded an accuracy 
of 80% and 87% respectively. 

Xiao et al. (11) constructed other renowned CNN 
architectures ranging from ResNet to Inception to classify 
a total of 2,058 benign and malignant ultrasound breast 
lesions and achieved an accuracy of around 85%. 

Byra et al. (12) utilized VGG19 pre-trained deep CNN 
and employed fine tuning techniques to classify 882 
ultrasound breast images into benign or malignant. They 
obtained around 88% of accuracy in the classification.

The aim of the present study was to investigate the 
feasibility of AutoML Vision in future clinical applications 
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by testing the model with breast ultrasound images and 
compare AutoML Vision with some commonly used 
CAD algorithms in distinguishing benign and malignant 
breast lesions on ultrasound. Moreover, with reference to 
appropriate literature, this study would also compare the 
proposed AutoML model with some proven state-of-the-
art transfer learning models such as ResNet and Inception 
to confirm the difference in performance between AutoML 
Vision and deep convolutional neural networks.

Methods

In this retrospective study, we proposed and compared 
different CAD models for ultrasound breast lesion 
classification by using common traditional machine learning 
classifiers, CNN, and Google AutoML Vision algorithms. 
Figure 1 shows the overview of the methodology of the 
present study. This study was approved by the Human 
Subject Ethics Subcommittee of the authors’ institution 
(Reference number: HSEARS20200311005). 

Data source 

Ultrasound images of benign and malignant breast tumors 
were collected from two online public datasets (13,14). 
These datasets have been widely used in other peer-
reviewed literatures and proven to be effective in training 
machine learning models for detecting, classifying and 
segmenting the breast tumor (15,16). Figure 2 show the 
samples images of the dataset. The details of the datasets 
were shown in Table 1.

Data preparation

As the ultrasound images were collected from two 

datasets, we firstly integrated the two sets of images into 
a single folder with according label as either “benign” 
or “malignant”. Only ultrasound images of benign or 
malignant breast lesions were included in this study because 
we focused on the binary classification performance of 
different CAD models. Duplicated images were found from 
Cairo University Breast Ultrasound Images (BUSI) dataset 
probably due to inherent dataset error. The duplicated 
images (one image of a benign lesion and one image of a 
malignant lesion) were excluded from the study to prevent 
confusion during modelling of classifiers. Finally, a total of 
895 ultrasonic breast ultrasound images were included in 
the study with 536 images of benign lesions and 359 images 
of malignant lesions. 

The dataset of the 895 images was randomly segregated 
into two groups by using a self-developed python program. 
The first group contained 800 images (89.4%) and the 
second group contained 95 images (10.6%). The first 
group of the image dataset was used for the modelling and 
evaluation of the classification performance of different 
models. The second group of the image dataset was used 
for the final hypothesis testing among all studied models 
to evaluate if there is any significant difference in the 
performance of classification. In other words, the second 
group of the dataset was used to explore the statistical 
properties among various models. A summary of the 
distribution of the number of cases is shown in Table 2.

In the subsequent modelling steps, images in the first 
group (800 images) were randomly classified into three 
subgroups which are training (80%, 640 images), validation 
(10%, 80 images), and testing (10%, 80 images) respectively 
for all studied models, i.e., traditional machine learning 
classifiers and CNN. According to Google’s documentation, 
AutoML Vision can automatically classify the data into the 
above-mentioned subgroups (17).

Figure 1 Flowchart of the design of the present study.
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Figure 2 Sample ultrasound images of the dataset. (A) Grayscale ultrasound image shows a benign breast lesion which appears anechoic and 
has well-defined borders. The acoustic enhancement indicates that the lesion is cystic. [This image is obtained from a public domain (13)]. 
(B) Grayscale ultrasound image shows a malignant breast lesion which has ill-defined borders and heterogeneous echotexture (arrows). [This 
image is obtained from a public domain (13)]. (C) Grayscale ultrasound image shows a benign breast lesion which is hypoechoic and has 
well-defined borders. [This image is obtained from a public domain (14)]. (D) Grayscale ultrasound image shows a malignant breast lesion 
which is ill-defined and hypoechoic. The lesion appears heterogeneous with hypoechoic and hyperechoic areas. [This image is obtained 
from a public domain (14)].

A B

C D

Table 1 Details of the open-access data sources of ultrasound images

Source Cairo University Breast Ultrasound Images (BUSI) dataset Mendeley Data BUS dataset

Image distribution 780 images (133 normal, 437 benign and 210 malignant) 350 images (100 benign and 150 malignant)

Accessibility https://scholar.cu.edu.eg/?q=afahmy/pages/dataset http://dx.doi.org/10.17632/wmy84gzngw.1

Breast lesion  
classification

Normal, benign, and malignant Benign and malignant

Related articles 
published

Al-Dhabyani W, Gomaa M, Khaled H, Fahmy A. Deep  
learning approaches for data augmentation and  
classification of breast masses using ultrasound  
images (15).

Singh VK, Rashwan HA, Abdel-Nasser M, Sarker M,  
Kamal M, Akram F, Pandey N, Romani S, Puig D. An  
efficient solution for breast tumor segmentation and  
classification in ultrasound images using deep adversarial 
learning (16).

https://scholar.cu.edu.eg/?q=afahmy/pages/dataset
http://dx.doi.org/10.17632/wmy84gzngw.1


1385Quantitative Imaging in Medicine and Surgery, Vol 11, No 4 April 2021

© Quantitative Imaging in Medicine and Surgery. All rights reserved.   Quant Imaging Med Surg 2021;11(4):1381-1393 | http://dx.doi.org/10.21037/qims-20-922

Modelling

In this study, three CAD systems were built: (I) traditional 
CAD system comprising the use of machine learning 
classifiers; (II) deep convolutional CAD system makes use 
of CNN as the building blocks; (III) AutoML Vision CAD 
system using Google Cloud.

The modelling for traditional and deep convolutional 
CAD models is performed on a computer workstation 
with Intel(R) HD Graphics 520 GPU, Intel(R) Core 
(™) i5-6,200 U CPUs and 8,192 MB RAM. Modelling 
environment for traditional and deep convolutional CAD 
models were launched on Jupyter Notebook (Version 
6.0.3, New York, USA) using python codes. Several 
essential python libraries were imported for modelling 
which included sci-kit learn (18,19), Tensorflow (20),  
OpenCV (21), Mahotas, NumPy, h5Py, and Matplotlib. 
The modelling environment for AutoML Vision was carried 
out on the Google Cloud Platform.

Traditional machine learning classifiers

Several commonly used traditional machine learning 
algorithms for ultrasound CAD systems were identified 
from the literature (22) which includes Random Forest 
(RF), K-Nearest Neighbors (KNN), Linear Discriminant 
Analysis (LDA), Logistic Regression (LR), Support Vector 
Machine (SVM), Naïve Bayes (NB), and AdaBoost. Feature 
extraction from the image is required for traditional models. 
However, feature descriptor in breast imaging reporting 
and data system (BI-RADS) handcrafted by radiologists 
such as depth-to-width ratio of lesion, echotexture and 
microcalcification characteristic in categorizing breast 
lesions incurs high cost and expertise. Therefore, this 
study extracted content-based radiomics image features 
using computer vision libraries ranging from OpenCV to 
Mahotas. Three common global image features descriptors 
(Haralick texture, Hu Moments, color histogram) that have 
been identified in a previous study (23), were extracted from 
all images and were used to model the traditional classifiers. 

Regarding Haralick texture, all images were converted to 
grayscale 8-bit and the fundamental theorem underlying 
was used to compute the Gray Level Co-occurrence Matrix 
(GLCM) and to calculate the 13 Haralick texture feature 
descriptors based on the GLCM, with the use of a set of 
formulae given by Haralick (24). Mahotas library would 
automatically compute these values. A total of 13 texture 
descriptors would then quantify the texture of the image, 
e.g., fine-coarse, rough-smooth, hard-soft. Regarding Hu 
Moments, they were calculated from central moments that 
could quantify the shape of the grayscale image independent 
of translation, scale, and rotation. Using OpenCV library, 
the analysis yielded a total of 7 moment descriptors (25).  
For color histogram, images were converted to hue, 
saturation, and value color space. OpenCV library 
automatically calculated the histogram for each image 
in terms of the image’s hue, saturation, and quantitative 
value of the color features which yielded a total of 512 
feature vectors. In general, a total of 532 feature vectors are 
generated from the above-mentioned feature descriptors. 
Once the above features for training images were extracted, 
built in machine learning classifiers from sci-kit learn 
libraries were used to train the traditional models (Figure 3). 
K-fold cross-validation (number of splits =10) was employed 
for traditional models. Built-in traditional machine learning 
classifiers from sci-kit learn packages were used in this 
study. The number of trees used in RF and AdaBoost were 
set to 100, the number of neighbors used in KNN was set 
to 5.

Convolutional neural network

Tensorflow was used to build the CNN architecture. As a 
relatively small data size was used in the present study, a 
shallow CNN architecture was built. The overall structure 
of the CNN includes two convolutional layers and two fully 
connected layers with sigmoid function for the final binary 
classification result (Figure 4). All convolutional layers 
make use of 3×3 kernels stacked together with Rectified 
Linear Units (ReLUs) as activation between each other 

Table 2 Distribution of cases in the dataset used in this study

Type 1st group dataset (modelling), n (%) 2nd group dataset (hypothesis testing), n (%) Entire database, n (%)

Benign lesion 480 (54) 56 (6) 536 (60)

Malignant lesion 320 (36) 39 (4) 359 (40)

Total 800 (89) 95 (11) 895 (100)
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and followed by maximum pooling layers with 2×2 kernels. 
Hold-out validation (validation split =10%) was used to tune 
and refine the hyper-parameters of the model and check 
for any overfitting of the model. An early stop function was 
employed to determine the stopping epochs for CNN that 
is pivotal to prevent overfitting of the model. Images input 
to CNN were normalized with echogenicity (i.e., all pixel 
intensity values were normalized from 0 to 1).

AutoML Vision

For the modelling in AutoML Vision, the steps were 
simpler as Google provides a user-friendly user interface 
whereby the images were simply uploaded to a Google 
Cloud Platform bucket by a zip file in which AutoML 
Vision can recognize the label for each individual image. 
Images were distributed to the training, validation, and test 
datasets (80%, 10%, and 10%, respectively) automatically 
by Google Cloud (17). The training cost for this model is 

set to 16 node hours. The model type was set to “Cloud”. 
AutoML Vision provides with its highly automated training 
process makes the modelling step much faster and easier.

Result analytic approach

To evaluate the classification performance of all classifiers, 
the accuracy, sensitivity, specificity and F1 score were 
calculated and compared whereby malignant lesions were 
considered to be “positive cases”, while benign lesions 
were “negative cases”. Additionally, average precision, also 
known as the area under the precision-recall curve, was used 
to evaluate the compare the performance of different CAD 
models. 

For the hypothesis testing, the 95 images in the second 
group of the dataset were used to test any statistical 
significance among different classifiers. Cochran’s Q was 
used to evaluate the significance of difference of diagnostic 
performance among different models, and McNemar 

Figure 3 Features extraction for traditional machine learning classifiers.

Figure 4 Convolutional Neural Network Architecture constructed in this study.
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test was the post hoc test for pairwise comparison. All 
statistical analyses were performed using the Statistical 
Package for the Social Sciences (SPSS, version 23.0 for 
Windows, Chicago, IL, USA). A P value lesser than 0.05 
was considered significant. 

Results

Classification performance

The diagnostic performance of different classifiers in the 
differentiation of benign and malignant breast lesions 
is summarized in Table 3. Among all studied traditional 
machine learning classifiers, Random Forest (RF) 
demonstrated the best performance, followed by K-Nearest 
Neighbors (KNN) and AdaBoost. These three traditional 
classifiers demonstrated relatively high classification 
performance (i.e., accuracy >80%) while others showed 
lower accuracy. Naïve Bayes (NB) showed lowest accuracy 
(35%) among all studied traditional machine learning 
classifiers with a sensitivity of 100% and a specificity of 
0%. The CNN model built in the present study showed 
relatively high accuracy (91%). AutoML Vision also 
revealed high accuracy (86%) in differentiating benign 
and malignant breast lesions on ultrasound. AutoML 
Vision demonstrated highest average precision when 
compared with other classifiers (AUCPR: 0.95). Figure 5 
is a screenshot of the model evaluation setting of AutoML 
Vision where confusion matrix and precision-recall curve 
are shown.

Hypothesis testing

Results showed that there were significant differences 
among the classifiers in the performance of distinguishing 
benign and malignant breast lesions (Cochran’s Q statistics: 
291.28, P<0.05). Results of the pairwise post-hoc McNemar 
test demonstrated that four pairs of comparison exhibit did 
not show significant difference: AdaBoost vs. RF, AdaBoost 
vs. KNN, SVM vs. KNN, RF vs. KNN (P=0.82, 0.38, 0.14, 
0.61 respectively), whereas other comparisons showed 
significant difference (P<0.05). When compared the best-
performed traditional machine learning classifier (i.e., RF) 
with CNN and AutoML Vision, there was no significant 
differences in the diagnostic performance among these 
three models (Cochran’s Q statistics: 3.06, P>0.05). Table 4  
shows the post hoc test result verifying there is no the 
significance difference for the classification accuracy of the 
RF, CNN, and AutoML Vision.

Discussion

In the present study, random forest (RF) demonstrated the 
best diagnostic performance among all studied traditional 
machine learning classifiers. RF is an ensemble learning 
method which aims to build multiple independent decision 
trees in calculation whereby improving the generalizability 
and robustness over a single decision tree. Each tree in the 
random forest can learn from each other and rectify the 
mistake. Another ensemble learning classifier Adaboost, 
which aims to eventually build a strong classification tree 

Table 3 Summary of classification performance of all studied classifiers

Model Accuracy Sensitivity Specificity F1 score AUCPR

LR 0.74 0.64 0.79 0.63 0.75

LDA 0.76 0.64 0.83 0.65 0.66

KNN 0.84 0.75 0.88 0.76 0.81

RF 0.90 0.71 1.00 0.83 0.90

NB 0.35 1.00 0.00 0.52 0.35

SVM 0.73 0.57 0.81 0.59 0.67

AdaBoost 0.84 0.68 0.92 0.75 0.82

CNN 0.91 0.82 0.96 0.87 0.88

AutoML 0.86 0.84 0.88 0.83 0.95

LR, logistic regression; LDA, linear discriminant analysis; KNN, K-Nearest neighbors; RF, random forest; NB, naïve bayes; SVM, support 
vector machine; CNN, Convolutional Neural Network; AutoML, AutoML Vision; AUCPR, area under the precision-recall curve (Average 
Precision). 
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by training and refining the originally weak tree into 
strong tree sequentially, showed similar but relatively 
lower classification performance with RF. The unique 
property of multiple trees in RF makes it less susceptible 
to overfitting of the model such that it can improve the 
overall classification performance. Moreover, RF is good 
at handling large data sets with high dimensionality 
(i.e., feature vector size is 532 in the present study) and 
identifying important features while neglecting unimportant 
features in the computation (26). Figure 6 shows the relative 
features importance of the top ten most important features. 
Interestingly, most of them (7 out of 10) are Haralick 
textural features, followed by Hu Moment features and 
lastly color histogram features. This might be related 
to the data used in this study whereby most ultrasound 
images are in grayscale and only some of them include 
color Doppler signal in aiding the diagnosis for malignancy, 

leading to relatively low importance of color histogram 
features. Moreover, the Hu Moment features that quantify 
the shape of the image have lower importance due to the 
operator dependency and image formation characteristics 
of ultrasound in which a slight change in transducer 
position can greatly alter the shape of the image or tumor. 
The reason for Haralick textural features have a greatest 
influence on classification might be attributed to the fact 
that it is pertained to the distribution pattern of nuclei 
inside the breast tissues and some studies also demonstrated 
that Haralick descriptor, which is correlated with the risk of 
breast cancer, has been deemed as a more important feature 
than histogram values in characterizing breast densities 
(27,28).

Both LR and LDA have been categorized as linear 
classifiers, which are widely used in medical imaging. 
However, the performance of these classifiers is limited by 

Figure 5 Image shows the AutoML Vision model evaluation.

Table 4 Summary of the hypothesis testing between RF, CNN, and AutoML Vision

Data analysis information CNN & RF CNN & AutoML RF & AutoML

Number of samples 95 95 95

P values 0.839 0.77 0.345
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data features linearity, and the classification performance 
may be lowered if the data cannot be linearly separated (22).  
We speculate this may probably be the reason that average 
accuracy is attained by both linear classifiers. For getting 
a more in-depth understanding about features space 
distribution, we have randomly selected 40 images (20 
benign and 20 malignant cases) for the visualization of 
two randomly selected features distribution in 2D space. 
Figure 7 is the graph showing the distribution of breast 
tumor classes across two features (Haralick feature f1 and 
Hu Moment feature h7). From the graph, it is clear that 
the distribution is perhaps not linearly separable and thus it 

would be difficult for linear classifiers to draw a separation 
line to classify these two classes without huge error.

KNN, being one of the simplest classifiers and non-
parametric machine learning algorithms aims to find a 
predefined number of neighbors closest in distance to the 
new data point and predict the class of the new data point. It 
could be one option to deal with dataset where the decision 
boundary is very irregular (18,19). The decision boundary 
in this study seems to be irregular and thus yielding a 
relatively accurate performance of KNN classifier (Figure 5).

SVM theorem aims to construct a hyperplane to divide 
the data into different categories in higher dimension which 

Figure 6 Bar chart shows the relative features’ importance.

Figure 7 An example displays of the feature distribution of benign and malignant classes.
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is basically suitable for study that involves a high dimension 
of feature vector space (22). Moreover, SVM is particularly 
useful when the dataset is non-linear separable (Figure 5). 
However, the performance of SVM in this study is neither 
the best nor the worst. We speculate that its relatively 
average performance could be attributed to the relation 
between the number of training samples per class and 
the number of features. As pointed out by previous study, 
the best practice to lower the error rate of the classifier is 
having a training sample that is at least three times of the 
number of features (29).

Among all traditional machine learning classifiers, Naïve 
Bayes Classifier (NB) demonstrated the lowest accuracy, 
specificity, F1 score and average precision. This probably 
can be explained by the underlying Bayes theorem which 
assumes all features are independent of each other or 
dependence can cancel out each other (30), which may not 
be applicable for the sonographic image data in the present 
study. Documentation from the sci-kit learn pointed out 
that NB is used when dealing with text data (19) and this 
classifier is more commonly used in email spam filtering 
rather than in image classification. The poor classification 
performance of NB in the present study highlighted the 
importance of feeding appropriate features into machine 
learning algorithms because the underlying mathematical 
principles of the classifiers could affect the outcomes. 

From the viewpoint of CAD systems using traditional 
machine learning classifiers, the advantages include simpler 
architecture and flexibility in choosing multiple classifiers. 
On the contrary, the drawbacks of using traditional 
machine learning classifiers include the requirements of 
feature engineering and underperformance of the system 
in extremely large amount of data for analysis. Study has 
found that owing to the simple structure, the classification 
performance of traditional machine learning algorithms 
become steady when dealing with large amount of data 
whereas deep learning like CNN increases with increasing 
amount of large data (31).

CNN is considered as the gold standard in image 
classification as it consists of different layers like 
convolution and pooling, which can preserve the spatial 
relationship of the image. In addition, features like edges 
or blobs are automatically extracted within these layers and 
the neural network optimizes the classification performance 
by minimizing the loss of binary cross entropy (32). With 
these characteristics, CNN achieved high accuracy in 
differentiating benign and malignant breast lesions on 
ultrasound images in the present study. However, to build 

a CNN that can provide accurate results, many trial-
and-error and experiences in determining the number of 
convolutional layers, choosing activation function and their 
combinations are needed. Therefore, considering the pros 
and cons of CNN, it is expected that more CAD systems 
will adopt the deep learning approach.

The present study found that the diagnostic accuracy 
of AutoML Vision was similar to that of CNN and RF 
in distinguishing benign and malignant breast lesions 
on ultrasound. Similar finding was also found in another 
paper which constitutes the use of AutoML Vision as 
an automated deep learning classifier and convolution 
neural networks in classifying invasive ductal carcinoma 
using histopathology images (33). Result from that study 
indicated comparable classification accuracy and F1 
score for both AutoML Vision and CNN. The similar 
performance observed between AutoML Vision and CNN 
is probably due to the machine learning principle behind. 
Theoretically speaking, both classifiers utilize the deep 
learning technique where multilayer perceptron are stacked 
with convolution filters and pooling function. AutoML 
Vision can automatically find the best performing neural 
network architecture and hyperparameters with Google 
neural architecture search technology. Thus, with the same 
machine learning principle with CNN, AutoML Vision 
by Google demonstrated their strengths and uniqueness 
by developing a highly automated deep learning classifier 
with the added value of Google’s neural architecture search 
technology, targeting different users to create their machine 
learning model in a more convenient manner. According 
to the available documentation about AutoML Vision, the 
main machine learning techniques is probably attributed to 
transfer learning and neural architecture search techniques 
by Google. Future research of utilizing both transfer 
learning and neural architecture search techniques to 
develop open sources automated diagnosis system is needed.

Although the classification performances and statistical 
testing in this study demonstrated no significant difference 
between AutoML Vision with the current CNN constructed 
in this study, further comparison with some state-of-the-
art CNNs in similar classification tasks across different 
literatures is needed. As transfer learning is now becoming a 
more popular and robust option than merely convolutional 
neural network in classification task, this study has 
identified several related works in comparing their results 
with our proposed AutoML Vision model to further justify 
the statistical result obtained. In Table 5, some of the related 
works that involved the use of transfer learning techniques 
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and pre-trained well-established deep convolutional neural 
network were shown. The proposed AutoML model shows 
the highest AUCPR value (an alternative value of AUC) 
of 0.95 and the accuracy also shows a decent score of 0.85 
which is comparable to other pre-trained CNNs. Therefore, 
we believe that there might not be much difference in the 
performance between CNN and AutoML Vision model.

One must also note that even though AutoML Vision 
can automatically produce a CAD model for users, detailed 
information about the model performance is limited in 
the version of AutoML Vision that we used in the present 
study. 

There are limitations in this study. First, the images 
collected from the open-access databases were not in 
DICOM format and thus information such as patient 
demographic data was not available. Secondly, the sample 
size of the study was small, and we could not investigate 
the capability of different classifiers in handling of large 
amount of data. Thirdly, due to the limited resources, this 
study constructed relatively simple CAD models which do 
not include image preprocessing and image segmentation 
components which are considered as common practice in 
establishing complex CAD models (34). Lastly, this study 
compared the diagnostic performance of different classifiers, 
however, the relationship between the image data used in 
the study and the performance of different classification 
methods remains to be investigated. 

Conclusions

In this study, we had built three CAD models (traditional 
machine learning models comprising of seven commonly 
used c lass i f iers ,  CNN, and AutoML Vis ion)  and 

investigated their performance in distinguishing benign 
and malignant breast lesions on ultrasound. Among all 
traditional machine learning models, RF demonstrated 
the best classification performance. AutoML Vision had a 
comparable classification performance with RF and CNN. 
AutoML Vision with its user-friendly interface has high 
potential for clinical practice aiding physicians in decision-
making. 

Acknowledgments

Funding: None. 

Footnote

Conflicts of Interest: All authors have completed the ICMJE 
uniform disclosure form (available at http://dx.doi.
org/10.21037/qims-20-922). The authors have no conflicts 
of interest to declare. 

Ethical Statement: This study was approved by the Human 
Subject Ethics Subcommittee of the authors’ institution 
(Reference number: HSEARS20200311005).

Open Access Statement: This is an Open Access article 
distributed in accordance with the Creative Commons 
Attribution-NonCommercial-NoDerivs 4.0 International 
License (CC BY-NC-ND 4.0), which permits the non-
commercial replication and distribution of the article with 
the strict proviso that no changes or edits are made and the 
original work is properly cited (including links to both the 
formal publication through the relevant DOI and the license). 
See: https://creativecommons.org/licenses/by-nc-nd/4.0/.

Table 5 Comparison of the results of the present study with other related works involving the use of most proven, state-of-the-art models, and 
with mammography

Reference Pre-trained network employed Dataset Data classes Accuracy AUC AUCPR

Ragab et al. (10) Fine-tuned AlexNet Mammography DDSM (n=1,840) Benign and malignant 
breast masses

0.81 0.88 –

Mammography CBIS-DDSM (n=5,272) 0.87 0.94 –

Xiao et al. (11) Fine-tuned ResNet50 Breast ultrasound images (n=2,058) Benign and malignant 
breast masses

0.85 0.91 –

Fine-tuned InceptionV3 0.85 0.91 –

Byra et al. (12) Fine-tuned VGG19 + match 
layer techniques

Breast ultrasound images (n=882) Benign and malignant 
breast masses

0.89 0.94 –

The proposed 
AutoML model

– Breast ultrasound images (n=895) Benign and malignant 
breast masses

0.86 – 0.95

http://dx.doi.org/10.21037/qims-20-922
http://dx.doi.org/10.21037/qims-20-922
https://creativecommons.org/licenses/by-nc-nd/4.0/


1392 Wan et al. CAD for breast ultrasound

© Quantitative Imaging in Medicine and Surgery. All rights reserved.   Quant Imaging Med Surg 2021;11(4):1381-1393 | http://dx.doi.org/10.21037/qims-20-922

References

1.	 Atlanta G. American Cancer Society. Cancer facts and 
figures 2013. American Cancer Society, 2013.

2.	 Fan L, Strasser-Weippl K, Li JJ, St Louis J, Finkelstein 
DM, Yu KD, Chen WQ, Shao ZM, Goss PE. Breast 
cancer in China. Lancet Oncol 2014;15:e279-89.

3.	 Gulland A. Shortage of health workers is set to double, 
says WHO. British Medical Journal Publishing Group, 
2013.

4.	 Pakdemirli E. Artificial intelligence in radiology: friend or 
foe? Where are we now and where are we heading? Acta 
Radiologica Open 2019;8:2058460119830222.

5.	 Cheng SC, Ahuja AT, Ying M. Quantification of intranodal 
vascularity by computer pixel-counting method enhances 
the accuracy of ultrasound in distinguishing metastatic and 
tuberculous cervical lymph nodes. Quant Imaging Med 
Surg 2019;9:1773.

6.	 Lee CY, Chang TF, Chou YH, Yang KC. Fully automated 
lesion segmentation and visualization in automated whole 
breast ultrasound (ABUS) images. Quant Imaging Med 
Surg 2020;10:568.

7.	 Faes L, Wagner SK, Fu DJ, Liu X, Korot E, Ledsam JR, 
Back T, Chopra R, Pontikos N, Kern C. Automated deep 
learning design for medical image classification by health-
care professionals with no coding experience: a feasibility 
study. Lancet Digital Health 2019;1:e232-42.

8.	 Livingstone D, Chau J. Otoscopic diagnosis using 
computer vision: An automated machine learning 
approach. Laryngoscope 2020;130:1408-13.

9.	 Yang J, Zhang C, Wang E, Chen Y, Yu W. Utility of 
a public-available artificial intelligence in diagnosis of 
polypoidal choroidal vasculopathy. Graefes Arch Clin Exp 
Ophthalmol 2020;258:17-21.

10.	 Ragab DA, Sharkas M, Marshall S, Ren J. Breast cancer 
detection using deep convolutional neural networks and 
support vector machines. PeerJ 2019;7:e6201.

11.	 Xiao T, Liu L, Li K, Qin W, Yu S, Li Z. Comparison 
of transferred deep neural networks in ultrasonic 
breast masses discrimination. Biomed Res Int 
2018;2018:4605191.

12.	 Byra M, Galperin M, Ojeda‐Fournier H, Olson L, O'Boyle 
M, Comstock C, Andre M. Breast mass classification 
in sonography with transfer learning using a deep 
convolutional neural network and color conversion. Med 
Phys 2019;46:746-55.

13.	 Al-Dhabyani W, Gomaa M, Khaled H, Fahmy A. Dataset 
of breast ultrasound images. Data Brief 2019;28:104863.

14.	 Rodrigues PS. Breast Ultrasound Image. Mendeley Data 
2017. doi: 10.17632/wmy84gzngw.1

15.	 Al-Dhabyani W, Gomaa M, Khaled H, Aly F. Deep 
learning approaches for data augmentation and 
classification of breast masses using ultrasound images. Int 
J Adv Comput Sci Appl 2019;10:e14464.

16.	 Singh VK, Rashwan HA, Abdel-Nasser M, Sarker M, 
Kamal M, Akram F, Pandey N, Romani S, Puig D. 
An Efficient Solution for Breast Tumor Segmentation 
and Classification in Ultrasound Images Using Deep 
Adversarial Learning. arXiv preprint arXiv:190700887 
2019.

17.	 Bisong E. Google AutoML: Cloud Vision. Building 
Machine Learning and Deep Learning Models on Google 
Cloud Platform. Verlag: Springer, 2019:581-98.

18.	 Buitinck L, Louppe G, Blondel M, Pedregosa F, Mueller 
A, Grisel O, Niculae V, Prettenhofer P, Gramfort A, 
Grobler J. API design for machine learning software: 
experiences from the scikit-learn project. arXiv preprint 
arXiv:13090238 2013.

19.	 Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion 
B, Grisel O, Blondel M, Prettenhofer P, Weiss R, Dubourg 
V. Scikit-learn: Machine learning in Python. J Mach Learn 
Res 2011;12:2825-30.

20.	 Abadi M, Barham P, Chen J, Chen Z, Davis A, Dean 
J, Devin M, Ghemawat S, Irving G, Isard M (eds). 
Tensorflow: A system for large-scale machine learning. 
Savannah, USA: 12th USENIX Symposium on Operating 
Systems Design and Implementation, 2016.

21.	 Bradski G, Kaehler A. The opencv library. Dr Dobb's J. 
Software Tools 2000;25:120-5.

22.	 Huang Q, Zhang F, Li X. Machine learning in ultrasound 
computer-aided diagnostic systems: a survey. Biomed Res 
Int 2018;2018:5137904.

23.	 Kumar RM, Sreekumar K. A survey on image feature 
descriptors. Int J Comput Sci Inf Technol 2014;5:7668-73.

24.	 Miyamoto E, Merryman T. Fast calculation of Haralick 
texture features. Human computer interaction institute. 
Carnegie Mellon University, Pittsburgh, USA: Japanese 
Restaurant Office, 2005.

25.	 Huang Z, Leng J (eds). Analysis of Hu's moment invariants 
on image scaling and rotation. Chengdu, China: 2010 2nd 
International Conference on Computer Engineering and 
Technology, 2010.

26.	 Qi Y. Random forest for bioinformatics. Ensemble 
machine learning. Springer, 2012:307-23.

27.	 Aswathy M, Jagannath M. Detection of breast cancer on 
digital histopathology images: Present status and future 



1393Quantitative Imaging in Medicine and Surgery, Vol 11, No 4 April 2021

© Quantitative Imaging in Medicine and Surgery. All rights reserved.   Quant Imaging Med Surg 2021;11(4):1381-1393 | http://dx.doi.org/10.21037/qims-20-922

possibilities. Inform Med Unlocked 2017;8:74-9.
28.	 Carneiro PC, Franco MLN, Thomaz RL, Patrocinio 

AC. Breast density pattern characterization by histogram 
features and texture descriptors. Biomed Eng Res 
2017;33:69-77.

29.	 Foley D. Considerations of sample and feature size. IEEE 
Trans Inf Theory 1972;18:618-26.

30.	 Zhang H. The optimality of naive Bayes. Menlo Park: 
Proceedings of 17th International Florida Artificial 
Intelligence Research Society Conference, 2004:562-7.

31.	 Alom MZ, Taha TM, Yakopcic C, Westberg S, Sidike P, 
Nasrin MS, Hasan M, Van Essen BC, Awwal AA, Asari 

VK. A state-of-the-art survey on deep learning theory and 
architectures. Electronics 2019;8:292.

32.	 Liu S, Wang Y, Yang X, Lei B, Liu L, Li SX, Ni D, Wang 
T. Deep learning in medical ultrasound analysis: a review. 
Engineering 2019;5:261-75.

33.	 Zeng Y, Zhang J. A machine learning model for detecting 
invasive ductal carcinoma with Google Cloud AutoML 
Vision. Comput Biol Med 2020;122:103861.

34.	 Cheng HD, Shan J, Ju W, Guo Y, Zhang L. Automated 
breast cancer detection and classification using ultrasound 
images: A survey. Pattern Recognition 2010;43:299-317.

Cite this article as: Wan KW, Wong CH, Ip HF, Fan D, 
Yuen PL, Fong HY, Ying M. Evaluation of the performance of 
traditional machine learning algorithms, convolutional neural 
network and AutoML Vision in ultrasound breast lesions 
classification: a comparative study. Quant Imaging Med Surg 
2021;11(4):1381-1393. doi: 10.21037/qims-20-922


