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Background: Meibography is a non-contact imaging technique used by ophthalmologists and eye care 
practitioners to acquire information on the characteristics of meibomian glands. One of its most important 
applications is to assist in the evaluation and diagnosis of meibomian gland dysfunction (MGD). As the 
artificial qualitative analysis of meibography images can lead to low repeatability and efficiency, automated 
and quantitative evaluation would greatly benefit the image analysis process. Moreover, since the morphology 
and function of meibomian glands varies at different stages of MGD, multiparametric analysis offering more 
comprehensive information could help in discovering subtle changes to glands during MGD progression. 
Therefore, an automated and multiparametric objective analysis of meibography images is urgently needed. 
Methods: An algorithm was developed to perform multiparametric analysis of meibography images with 
fully automatic and repeatable segmentation based on image contrast enhancement and noise reduction. 
The full architecture can be divided into three steps: (I) segmentation of the tarsal conjunctiva area as the 
region of interest (ROI); (II) segmentation and identification of glands within the ROI; and (III) quantitative 
multiparametric analysis including a newly defined gland diameter deformation index (DI), gland tortuosity 
index (TI), and gland signal index (SI). To evaluate the performance of this automated algorithm, the 
similarity index (k) and the segmentation error including the false-positive rate (rP) and the false-negative rate 
(rN) were calculated between the manually defined ground truth and the automatic segmentations of both the 
ROI and meibomian glands of 15 typical meibography images. 
Results: The results of the performance evaluation between the manually defined ground truth and 
automatic segmentations were as follows: for ROI segmentation, the similarity index (k)=0.94±0.02, the 
false-positive rate (rP)=6.02%±2.41%, and the false-negative rate (rN)=6.43%±1.98%; for meibomian gland 
segmentation, the similarity index (k)=0.87±0.01, the false-positive rate (rP)=4.35%±1.50%, and the-false 
negative rate (rN)=18.61%±1.54%. The algorithm was successfully applied to process typical meibography 
images acquired from subjects of different meibomian gland health statuses, by providing the gland area ratio 
(GA), the gland length (L), gland width (D), gland diameter deformation index (DI), gland tortuosity index 
(TI), and gland signal index (SI).
Conclusions: A fully automated algorithm was developed which demonstrated high similarity with 
moderate segmentation errors for meibography image segmentation compared with the manual approach, 
offering multiple parameters to quantify the morphology and function of meibomian glands for the objective 
evaluation of meibography images.
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Introduction

Meibomian glands play an essential role in maintaining 
ocular surface health and integrity by secreting various 
lipid components, forming a lipid layer, and preventing 
excessive tear evaporation (1). Functional disorders of the 
meibomian glands, known as meibomian gland dysfunction 
(MGD), are increasingly recognized as a high incidence 
disease (2-5). MGD is commonly characterized by terminal 
duct obstruction and/or abnormal glandular secretion, 
often leading to ocular surface epithelium damage, chronic 
blepharitis, and dry eye disease, which severely degrade 
quality of life (6). The reported prevalence of MGD varies 
widely from 3.6% to 69.3% (7,8), which is largely due to the 
lack of effective and unified diagnostic criteria (8). Evaluation 
of the changes to meibomian glands is important for the 
diagnosis and management of MGD in clinical practice. 

Besides traditional clinical evaluation methods that 
combine clinical manifests for MGD diagnosis (9), imaging 
techniques such as meibography (10-13), optical coherence 
tomography (14,15), and in vivo confocal microscopy 
(16,17) have also been used to image meibomian glands. 
Meiobiography is a non-contact imaging technique that 
uses infrared illumination which acquires images of the 
silhouette of glands from entire human eyelids. Using 
meiobiography images, morphological changes such as 
dilation, distortion, shortening, and atrophy can be directly 
observed and assessed visually and qualitatively (6,9,18), 
which greatly assists ophthalmologists in developing 
standardized diagnosis and treatment strategies (9-13).

To aid ophthalmologists in conducting quantitative 
evaluation of meibomian glands with meibography images, 
research has been conducted to obtain and evaluate the 
reliability of various detailed scale parameter grading 
methods (10-13,19-28). The most common of these is the 
dropout area or meibomian gland area (10-13,19-23). Using 
Image J or other image editing software, the dropout area 
or meibomian gland area can be quantitatively calculated; 
however, this is mostly conducted in a subjective manner, as 
gland/gland-loss regions are manually selected (10-13,19-21).  
Thus, these methods are relatively time-consuming and 
can lead to obvious intra- and interobserver variability 
(13,24,25), which limit their use in clinical studies where 

many images need to be analyzed efficiently. There is thus 
a strong need for the development of objective analyses 
using automated algorithms; however, only a few automated 
approaches have been demonstrated (22,23,25-28) due to 
difficulties in measuring the eyelid area and meibomian 
gland segmentation with meibography images.

Meibomian gland dropout mostly occurs in the advanced 
stage of MGD, and comparison of the histologic sections 
of normal and obstructed human glands has revealed that 
obstruction of the orifice in MGD can result in dilation of 
the gland acinus and central duct, increased gland tortuosity, 
damage to secretory meibocytes, and eventually the atrophy 
of glands (29,30). Therefore, in addition to area ratio 
parameters, there is a need to develop other quantitative 
parameters that can detect detailed morphological changes 
to meibomian glands which can potentially be used for 
MGD diagnosis and severity assessment (9). To date, 
only a handful of studies have reported the analysis of 
gland length, width, or regularity in meibography images 
(12,13,25-28), of which some are subjectively characterized 
in manual fashion (12,13). A multi-parametric objective 
analysis would offer doctors comprehensive information in 
MGD diagnosis and evaluation, especially in discovering 
subtle changes in preclinical and early-stage cases and 
monitoring MGD progression.

In this study, we developed an objective meibography 
image–analyzing algorithm that is capable of automatically 
performing segmentation of the eyelid area with each single 
meibomian gland and providing multiple quantitative 
parameters for gland evaluation. Along with traditional 
parameters, such as the meibomian gland area ratio, gland 
length, and gland width, our algorithm introduces new 
morphological parameters including a gland diameter 
deformation index and gland tortuosity index. This address 
concerns in quantifying local gland diameter variation and 
the degree of curved and winding glands resulting from 
gland terminal duct obstruction, which mostly exists in the 
intermediate stages of MGD progression (13,16,25,29,30). 
Moreover, since changes in the secretion, consistency, and 
colour of meibum inside meibomian glands (12,29,31) 
could alter the signal intensity of glands in meibography 
images, we developed a new parameter, the gland signal 
index, to quantify the gland signal level, which can 
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potentially be used to evaluate meibum secretion activity. 
Performance of the automated algorithm was evaluated 
by analyzing the similarity index and segmentation 
error between manual and automatic segmentations. We 
demonstrated the feasibility of our algorithm in processing 
typical meibograhy images, compared the acquired gland 
parameters of different images, and selected representative 
meibomian glands.

Methods

The development of this automated and multiparametric 
algorithm was based on Labview (Released 2016, 
National Instruments Corporation, USA) with NI vision 
Development Module 2016 on a PC running Windows 
10. Images processed in this article were acquired using 
commercialized meibography Keratograph 5M (Oculus, 
Germany). The meibography acquired red–green–blue 
(RGB) infrared images and frames of the everted eyelid 
area with a 1,088×512 pixel resolution. Acquired images 
were converted to grayscale, and then exported and saved 
as bitmaps for analysis with our customized software. The 
algorithm provides fully automatic and repeatable analysis 
in three steps: (I) segmentation of the tarsal conjunctiva 
area as the region of interest (ROI), (II) segmentation and 
identification of meibomian glands within the ROI, and (III) 
quantitative multiparametric analysis. 

ROI segmentation 

Figure 1 shows a flow map of the processing steps of 
the algorithm for ROI segmentation with a sample 
meibography image (Figure 1, IG). In brief, automatic 
extraction of the ROI is performed by removing the 
unwanted signals outside the tarsal conjunctiva area and to 
fit the boundary of the ROI region. For this, the original 
grayscale meibography image (Figure 1, IG) is firstly 
processed with a Prewitt operator to select the unwanted 
regions with eyelashes and highlight areas that typically 
appear around the eyelash roots and eyelid margin with 
large light reflections. The processed image is binarized 
and dilated to generate a mask image (Figure 1, IM), which 
is then subtracted from the original grayscale image 
(Figure 1, IG), resulting in the image in Figure 1, IGM. The 
resulting image then undergoes median filtering with a 
circular structural element having a 3-pixel diameter to 
remove random noises. To enhance the image contrast and 

visibility of the glands, the Convolution-Highlight Details 
operator is applied to the image with a structural element 
size of 25×25 pixels. Gland edges and image details are 
further sharpened and outlined by a Laplacian filter with a 
structural element size of 29×29 pixels, as shown in image 
Figure 1, IHD. The processed image is then binarized and 
binary inversed to highlight the surrounding background of 
the glands on the tarsal conjunctiva area (Figure 1, IBI). As 
the former subtracted regions are inversed to be positive, 
the mask image is subtracted again from the binary-inversed 
image Figure 1, IBI, resulting in image Figure 1, IBIM. To 
eliminate image speckles and small artifacts, the image in 
Figure 1, IBIM was eroded by a structural element 5×5 pixels 
in size, which also shatters connected small irregularities. 
All signal blocks with a size smaller than 190 pixels and 
which are empirically found, are then cleared to remove 
small irregularities that do not belong to the everted eyelid. 
The image is then dilated back by a structural element 5×5 
pixels in size, and a border rejecting operator is applied 
to remove large irregularities connected with the image 
borders (Figure 1, IRSO).

As most information on the tarsal conjunctiva area is 
kept, a gradient out operator with a circular structural 
element 8 pixels in diameter is employed to connect the 
signal blocks followed by a convex hull operator that uses 
a Graham scan algorithm to fit a closing shape of the tarsal 
conjunctiva area (Figure 1, ICH). To remove the remaining 
surrounding lumps, the image is then eroded, withholding 
only the largest block, and then dilated back, resulting in a 
single block fitting the eyelid region (Figure 1, ICF). To define 
the final ROI, the image, as represented by Figure 1, ICF, is 
converted into grayscale, and the contour of the final block 
is used to fit the final boundaries of the ROI. For the upper 
boundary, longitudinal top-down scans are performed to 
find the first signal rising points, which are then connected 
and fitted by a second degree, one-dimensional B-spline 
of the centripetal parameter (blue line in Figure 1, ICF). 
For the lower boundary, the optimal fitting with a second 
degree, one-dimensional B-spline is performed to the line 
connecting the first signal rising points of the bottom-
up longitudinal scans in the image (green line in Figure 
1, ICF). The final ROI is acquired with the closing area 
formed by the fitted upper and lower boundaries (Figure 1,  
IROI). The original meibography image with the ROI 
boundary (red line in Figure 1, IGCF), within which the gland 
segmentation and quantitative analysis would be performed, 
is also shown in Figure 1, IGCF. 
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Figure 1 Flow map showing the algorithm steps for ROI segmentation.
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Segmentation and identification of glands within the ROI

The main steps of the algorithm for meibomian gland 
segmentation are shown in Figure 2. The original grayscale 
meibography image (Figure 2, IG) is first sequentially 
processed by a median filter, a Convolution-Highlight 
Details operator, and a Laplacian filter, as mentioned above 
in the description of the ROI segmentation process. This 
dampens the random noises and highlight the glands’ 
visibility (Figure 2, IGHD). The resulting image is then 
multiplied by the binary mask of the ROI and binarized 
(Figure 2, IGE). To remove the remaining image speckles 
and smooth the shape of the glands, the binarized image 
is convoluted by a median filter with a circular structural 
element 5 pixels in diameter. As the ROI segmentation is 
usually overestimated resulting in some detected objects 
belonging to the edge of the everted eyelid, an orientation 
operator is applied to remove those objects with a 
main angle lower than 45° or higher than 135°. This is 
determined empirically, as the eyelid edges are typically 
horizontal while glands mostly have a vertical orientation. 
The image containing all the detected signals from the 
glands for gland area ratio analysis is shown as Figure 2, IGL. 

Since the small meibomian glands on the nasal and 
temporal sides are mostly irregular, usually out of focus, 
and unevenly illuminated during meibography imaging, 
these segmented glands are usually broken into pieces 
(Figure 2, IGL). Thus, to perform further quantitative 
analysis of each single gland, these broken glands are 
excluded by eliminating objects containing fewer than 
1,400 pixels, as shown in Figure 2, IMG. While in some 
cases segmented glands can be connected (highlighted in 
green and yellow in Figure 2, IMG), affecting the subsequent 
analysis, the connected glands are detected by calculating 
the number of horizontal segments, Nh, and vertical 
segments, Nv, of the single objects in Figure 2, IMG and 
extracting those with Nh >350 or Nv >200 (Figure 2, ICG).  
The extracted connected glands images (Figure 2, ICG) are 
then sent to the gland fragmentation algorithm.

As shown in Figure 3, the gland fragmentation algorithm 
is developed to automatically separate connected glands. 
The extracted connected gland image (Figure 3, ICG) is 
continuously eroded with a structural element size of 1×3 
pixels until the detecting objects number, N, exceeds 1 
(Figure 3, IED). The eroded image is then binary inversed 
and skeletonized to generate a skeleton image (Figure 3, IIS), 
which is then subtracted from the connected gland image 
(Figure 3, ICG), resulting in separation of the connected 

glands (Figure 3, IGS). However, as seen in the zoom-in 
area of Figure 3, IGS, although separated, the single glands 
are disrupted by some skeleton branches. Before sending 
the separated disrupted glands for repair, the number of 
horizontal segments, Nh, and vertical segments, Nv, of the 
single objects depicted in Figure 3, IGS are calculated to 
ascertain whether objects of connected glands still exist. If 
they do, the eroding process is repeated to obtain further 
separation, and if not, the separated single disrupted glands 
(Figure 3, ISGS) proceed to the repair process. By applying 
a gradient out operator with a circular structural element 
with a 3-pixel diameter followed by a fill hole operator, the 
disrupted single glands are fixed while being expended out 
by 1 pixel (Figure 3, IGO). A gradient in the operator with 
a circular structural element 3-pixels in diameter is then 
applied to form the contours of the single glands (Figure 3, 
IGC). Gland repair (Figure 3, IRG) is achieved by subtracting 
the gland contours from the expended glands. The final 
separated glands are shown in Figure 3, ISG. By combing the 
final separated glands and the detected single glands (red 
glands in Figure 2, IMG), all intact glands are identified and 
labelled for further quantitative analysis.

Quantitative parameter analysis 

Using the segmented ROI and labelled intact meibomian 
glands, quantitative parameters including the gland area 
ratio (GA), gland length (L), gland width (W), gland 
diameter deformation index (DI), gland tortuosity index (TI), 
and gland signal index (SI) are defined and computed.

The gland area ratio, GA is calculated as follows:

100%gl

ROI

N
GA

N
= ×  [1]

in which Ngl is the number of pixels occupied by all detected 
signals from the glands (Figure 2, IGL) and NROI is the 
number of pixels occupied by the segmented ROI area 
(Figure 1, IROI).

Morphological parameter analysis of the length, width, 
diameter deformation index, and tortuosity index are 
performed on each segmented and labelled gland (Figure 2, 
ILMG). The single gland length, L, is defined as follows:

MNL R l= ×  
[2]

in which lMN is the length (in pixels) of the gland central 
line between endpoints M and N (Figure 4A), and R is the 
digital resolution of the meibography. By imaging a diffuse 
reflectance grid distortion target (#62-949, Edmund Optics), 
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Figure 2 Flow map showing the algorithm steps for meibomian gland segmentation. The gland fragmentation algorithm is depicted in 
Figure 3.
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as shown in Figure 4B, R was calibrated to be 0.03 mm/pixel  
in our case with images captured by OCULUS Keratograph 
5M. The gland width, D, is defined by the averaged width 
across a single gland:

1

1 n

i
i

D R d
n =

= × ∑  [3]

in which di is the width (in pixels) of the gland at every 
3-pixel point on the gland central line and is calculated 
by the pixel length of the perpendicular line of the local 

tangent line within the intersection points A, B on the gland 
edge contour (Figure 4A). To address diameter variations 
such as the uneven dilation and discontinuous atrophy of 
a gland, which are related to the status of the meibomian 
gland duct and acinus (37), the gland diameter deformation 
index, DI, is introduced by the following:

( )2

1

1 n

d i
i

DI R d D
n =

= = × −∑σ  [4]

which is the standard deviation σd of the local gland widths 

Figure 3 Flow map of the gland fragmentation algorithm to separate connected glands.
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within a single gland. To quantify the degree of gland 
curving and hairpin-loop–like winding changes, which 
mostly result from gland terminal duct obstruction, the 
gland tortuosity index, TI is defined as follows: 

' '
1 1

1 1n n
MN MN i

i
i iMN MN i

l lTI k
l n l n R s= =

∆
= × = ×

×∆∑ ∑ α
 [5]

in which lMN is the length (in pixels) of the gland central line 
between endpoints M and N, '

MNl  is the length (in pixels) of 
the straight line between endpoints M and N, ki is the local 
curvature of the gland central line at every 3-pixel point, Δαi 
is the angularity between tangent lines at point i and i–1, 
and Δsi is the arc length (in pixels) between point i and i–1 
(Figure 4A). To obtain an overall evaluation of all the glands 
detected in the tarsal conjunctiva, the averaged length 
( L ), width ( D ), diameter deformation index (DI ), and 
tortuosity index (TI ) of all the detected meibomian glands 
are computed for each meibography image.

As meibomian gland functional and structural disorders 
affect meibum secretion activity, different meibum 
consistency and colour directly alter the reflection of 
the illumination light, resulting in changes in the signal 
intensity of glands in meibography images. To quantify 
the gland signal level in the image, which can potentially 
be used to evaluate the meibum secretion, the gland signal 
index is defined as follows: 

i

0

GREYSI lg
GREY

=  [6]

in which GREYi is the averaged image grey value of 
the segmented intact glands (Figure 2, ILMG) in the raw 
meibography image (Figure 2, IG), and GREYo is the 
averaged image grey value of the non-gland area (Inversed 
area of Figure 2, IGE) within the ROI area in the raw image. 

Results

To validate the performance of this automated and 
multiparametric algorithm, 15 meibography images 
were acquired with OCULUS Keratograph 5M (Oculus, 
Germany) from subjects of different meibomian gland 
health status. Images were evaluated and agreed upon by 
two professional ophthalmologists. Informed consent was 
obtained from the subjects. The experimental procedures 
adhered to the tenets of the Declaration of Helsinki [1983] 
and were approved by the Institutional Review Board of the 
Zhongshan Ophthalmic Centre, Sun Yat-sen University, 
China (protocol number: 2019KYPJ110). The ground truth 
of the ROI and meibomian glands segmentations were 
defined by the mean manually delineated ROI and glands’ 
boundaries by the two ophthalmologists. The meibography 
images were also automatically and objectively processed 

A B

Figure 4 (A) Schematic illustrating the elements for morphological parameter calculation of a single meibomian gland; (B) meibography 
imaging of a diffuse reflectance grid distortion target for digital resolution calibration of the system.
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by the algorithm for ROI and glands’ segmentation and 
multiparametric calculation. The manual segmentation 
of each image took approximately 8 minutes, while the 
automated processing took approximately 15 seconds.  

Segmentation performance validation

To evaluate the segmentation performance of the algorithm, 
the similarity index (k) and segmentation error (32-35) 
were calculated between the manually defined ground truth 
segmentation and the automatic segmentation of both the 
ROI and meibomian glands. The similarity index (k), also 
known as the kappa coefficient, measures the similarity of 
the two segmentations defined by the ratio of the area of 
their intersection divided by the area of their union {Eq. [7]}. 
This ranges from 0 for segmentations that have no overlap 
to 1 for segmentations that are identical. To determine the 
segmentation error, we calculated the false-positive rate (rP) 
and the false negative rate (rN). The false-positive rate (rP) 
was depicted as the probability of the non-ROI/non-gland 
area included in the automatic segmentation results, and vice 
versa for the false-negative rate (rN). The false-positive rate (rP) 
and the false-negative rate (rN) were calculated by dividing 
the area of the incorrectly segmented non-ROI/non-gland 
area and ROI/gland area by the manually segmented ROI/
gland area, as shown in Equation 8 and 9 respectively.

( ) 2
, m a

m a
m a

S S
k S S

S S
∩

=
+  [7]

100%a m a
P

m

S S S
r

S
− ∩

= ×  [8]

100%m m a
N

m

S S S
r

S
− ∩

= ×  [9]

in which Sm is the manually segmented ROI/gland area and 
Sα is the automatic segmented ROI/gland area. 

Figure 5 illustrates the contours of the segmented 
ROI (Figure 5A) and meibomian glands (Figure 5B) of a 
representative meibography image. The contours of the 
mean manually segmented ROI and meibomian glands 
are depicted in yellow while the algorithm automatically 
segmented contours are depicted in red. Table 1 shows the 
averaged similarity index and segmentation error between 
the manual and automatic segmentation of the ROI and 
meibomian glands for the 15 meibography images. For 
ROI segmentation, the similarity index (k)=0.94±0.02, 
the false-positive rate (rP)=6.02%±2.41%, and the false-
negative rate (rN)=6.43%±1.98%. For meibomian gland 
segmentation, the similarity index (k)=0.87±0.01, the false-
positive rate (rP)=4.35%±1.50%, and the false-negative rate 
(rN)=18.61±1.54%.

Automatic segmentation and multiparametric results

The segmentation results of the five representative 
meibography images acquired from subjects with different 
gland health status are shown in Figure 6. Images are 
displayed from Figure 6A,B,C,D,E based on their stage of 
MGD progression from healthy to severe as evaluated and 
agreed upon by the two ophthalmologists. The left column 
shows the original meibography images with the red curves 
encompassing the automatically segmented ROIs. The 
right column shows the segmented and labelled single 
meibomian glands for further quantitative analysis. The 
automatic calculated quantitative parameters, including 
the gland area ratio (GA), and gland signal index (SI), 
in addition to the averaged gland length ( L), width (D),  
diameter deformation index (DI ), and tortuosity index (TI ),  
are shown in Table 2. The preliminary results indicate that 
as the severity of MGD progressed from healthy to severe 
stages, the measured GA decreased from 39.84% to 19.34% 
and the L  showed a downtrend. Despite this, D , DI ,  
and TI  all increased in images of intermediate MGD and 

Figure 5 Illustrations of the contours of the (A) ROI and (B) meibomian glands of a representative meibography image segmented manually 
(yellow) and automatically (red). 
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Table 1 Averaged similarity index and segmentation error between the manual segmentation and automatic segmentation of the ROI and 
meibomian glands

Segmentations Similarity index (k)
Segmentation error

False-positive rate, rP (%) False-negative rate,rN (%)

ROI segmentation 0.94±0.02 6.02±2.41 6.43±1.98

Glands segmentation 0.87±0.01 4.35±1.50 18.61±1.54

Data are shown as mean ± standard deviation. ROI, region of interest.

Figure 6 The automatic ROI (left column) and meibomian gland (right column) segmentation results of the five representative meibography 
images with different health statuses of meibomian glands. The display sequence from (A-E) is based on their stage of MGD progression 
from healthy to severe.

A1 A2

B1 B2

C1 C2

D1 D2

E1 E2
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Table 3 Morphological parameters of representative meibomian glands

Representative glands

L (mm) 6.55 6.51 6.44 6.15 3.06

D (mm) 0.35 0.48 0.54 0.58 0.34

DI 0.07 0.13 0.18 0.25 0.09

TI 0.13 0.31 0.41 1.12 0.20

L, gland length; D, gland width; DI, gland diameter deformation index; TI, gland tortuosity index.

then declined in severe MGD when serious gland atrophy 
occurred. SI varied since the secretion, density, and colour 
of meibum inside the meibomian glands varied across cases.

Comparison of representative glands

To better demonstrate the correspondence of gland 
morphological parameters to detailed gland characteristics, 
especially the newly defined DI and TI, we selected several 
representative glands from the processed meibography 
images and compared the calculated morphological 
parameters and their appearance characteristics as shown 

in Table 3. This showed that the less uniform the gland 
diameter was along its length, the higher the gland DI 
was, which is directly related to the uneven dilation and 
discontinuous atrophy of the meibomian gland duct and 
acinus (29,30). In addition, the larger the degree of gland 
curving and winding was, the higher the TI, which reflects 
the typical macro tortuous appearance of meibomian glands 
appearing in intermediate MGD (25,29).

Discussion

In this study, we reported a fully automated algorithm 

Table 2 Multiparametric analysis results of the five representative meibography images with different health statuses of meibomian glands

Meibography images GA (%) L (mm) D (mm) DI TI SI

A 39.84 5.62±1.25 0.35±0.08 0.10±0.04 0.18±0.11 13.91

B 36.73 5.04±1.20 0.42±0.07 0.12±0.03 0.26±0.08 20.27

C 31.57 5.05±1.26 0.42±0.10 0.15±0.07 0.30±0.26 19.53

D 29.20 4.55±1.25 0.42±0.08 0.15±0.04 0.40±0.21 18.15

E 19.34 2.62±0.76 0.32±0.06 0.09±0.04 0.18±0.09 24.97

Data are shown as mean ± standard deviation. GA, gland area ratio; L, gland length; D, gland width; DI, gland diameter deformation index; 
TI, gland tortuosity index; SI, gland signal index.
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for the objective segmentation and multiparametric 
quantitative analysis of meibography images. The 
automatic segmentations showed high similarity with 
moderate segmentation errors when compared with manual 
segmentations performed by professional ophthalmologists. 
The use of traditional parameters, such as the gland area 
ratio, gland length, and gland width, along with the newly 
defined parameters, including gland diameter deformation 
index, gland tortuosity index, and gland signal index, 
achieved a more comprehensive analysis of meibography 
images.

Various researchers have conducted quantitative analysis 
of meibography images with everted eyelid area and 
meibomian gland segmentations. However, most of these 
studies have implemented subjective methods to manually 
select the eyelid region and/or segmented the gland/gland-
loss area with commercialized image editing software such 
as Image J (12,13,24) or self-developed semiautomatic 
algorithms (21) which usually have relatively low reliability 
and efficiency (24,25). Furthermore, while some automated 
methods have been developed, only a few researchers have 
tested multiparametric automated analysis methods. Arita 
et al. proposed image enhancement techniques to isolate 
meibomian glands but only computed the gland area ratio (22).  
Celik et al. introduced automated meibomian gland 
segmentation using Gabor wavelet filtering by extracting the 
orientation, width, length, and the curvature of segmented 
glands but used a standardized elliptical area for the ROI 
segmentation without adapting it to the real shape of each 
meibography image (23). Koh et al. reported an automated 
method to extract gland morphological features including 
gland length and width and trained a linear classifier for 
image classification but used manual selection for analysis 
of the eyelid region (26). Koprowski et al. described a fully 
automated approach that differentiated between gland, 
intergland, and gland drop-out areas to analyze images by 
gland area ratio together with detailed parameters quantifying 
the gland branches (27). Llorens-Quintana et al. developed 
an algorithm capable of segmenting both gland and tarsal 
conjunctiva areas automatically, and providing the gland 
area ratio, fitted ellipse for gland length and width analysis, 
and a newly defined gland irregularity parameter (28).  
Compared with the aforementioned approaches, our 
automated multiparametric algorithm identifies the ROI 
contours and segments meibomian glands based on image 
contrast enhancement and noise reduction. A subalgorithm 
has also been implemented to separate connected 
glands while not affecting their original appearance for 

further morphological analysis. In addition to traditional 
parameters, we proposed a novel method to objectively 
quantify gland diameter variations, gland tortuosity, and 
gland signal level, thus offering more comprehensive 
information which is likely to be advantageous for detecting 
local and subtle changes of meibomian glands.

The segmentation performance evaluation results 
indicate that our automatic algorithm produced a relatively 
high false-negative rate for meibomian gland segmentation 
compared with the mean manual segmentation. This is 
because manual segmentation tends to include the gaps 
between the gland acinus as the gland area, while automatic 
algorithms are more sensitive to image contrast and can 
detect and exclude these gap areas. Compared with former 
studies, the gland area ratio calculated by our algorithm 
is relatively smaller (12). This is because we excluded the 
intergland area from calculating the gland area ratio, as 
our method can precisely distinguish meibomian glands 
from the intergland area, while most other methods include 
it. The quality of the meibography images acquired for 
algorithm processing needs to be guaranteed. Images 
with low contrast, inhomogeneous illumination, and poor 
resolution could introduce extra error during ROI and 
meibomian gland segmentations, affecting the reliability 
of the final quantitative analysis results. Although our 
algorithm is currently adapted to the images acquired with 
the OCULUS Keratograph 5M (Oculus, Germany)—as 
most of the processing parameters are selected empirically—
it may be adjusted to permit its use with other types of 
meibograpy instruments.

The algorithm offers more morphological and functional 
parameters for meibomian glands analysis, and our 
preliminary results show its potential in detecting subtle 
variations in meibomian glands. However, large scale 
clinical studies are needed to comprehensively characterize 
the relations between these quantitative parameters and 
the clinical manifestation of meibomian glands in different 
pathological stages of disease. Moreover, our current 
algorithm takes into account the analysis of the upper lid 
only. Since everting the lower eyelid is not as easy as the 
upper eyelid where a larger tarsal plate exists, meibography 
images of the lower lid are typically unevenly focused and 
only partially expose the meibomian glands; thus, automatic 
segmentation of the ROI and meibomian glands in the 
lower lid remains challenging. Future work will focus on 
lower lid meibography image analysis since combining 
the evaluation of both lids offers better clinical diagnostic 
performance.
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