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Background: Vascular quantitative metrics have been widely used in the preclinical studies and clinical 
applications (e.g., the diagnosis and treatment of port wine stain, PWS), which require accurate vessel 
segmentation. An automatic 3D adaptive vessel segmentation is in need for a reproducible and objective 
quantification of the optical coherence tomography angiography (OCTA) image.
Methods: Human skin imaging was performed with a lab-built optical coherence tomography (OCT) 
system. Rather than separately applying the conventional 2-step (intensity and binarization) thresholding 
in the decorrelation-contrast OCTA, we proposed a 3D adaptive threshold using the linear relationship 
between the local intensity and complex-decorrelation which was termed as inverse SNR-decorrelation (ID) 
threshold. Furthermore, the ID threshold was automatically determined by defining a binary image similarity 
(BISIM) index as the feedback and searching the ID threshold with the minimal BISIM value. The proposed 
ID-BISIM threshold was applied to the acquired OCTA skin images for further vessel quantification.
Results: The proposed ID-BISIM threshold enabled a 3D adaptive binarization and presented 
superior sensitivity and specificity in vessel segmentation over conventional 2-step thresholding method 
in the decorrelation-contrast OCTA and a 37–65% improvement of the Youden’s index in human 
skin experiments. The 3D binarization enabled a depth-resolved vessel skeleton and enhanced the 
differentiation of the overlapping vessels in the depth direction. Using ID-BISIM, the quantitative OCTA 
image presented a significant increase of vessel diameter index (P=0.0015) and vessel area density (VAD) 
(P=0.0485) as well as a significant decrease of vessel complexity index (VCI) (P=0.0094) in PWS lesion 
skin compared with normal skin.
Conclusions: The proposed ID-BISIM method enables an automatic 3D adaptive vessel segmentation 
with enhanced performance in quantitative OCTA. The vascular quantitative metrics would be a useful tool 
for improving the diagnosis and the treatment of PWS.
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Introduction 

Port wine stain (PWS) is a congenital cutaneous capillary 
malformations composed of ecstatic vessels, and the 
vascular targeted photodynamic therapy (PDT) has been 
widely used in the clinical treatment of PWS (1-4). Both the 
PWS diagnosis and PDT management could be improved 
by the motion-contrast optical coherence tomography 
angiography (OCTA) which is capable of visualizing the 
tissue microvasculature and perfusion down to capillary 
level in a non-invasive, label-free and high-resolution 
manner (5-7).

The motion-contrast OCTA records the depth-resolved 
scattering signals by measuring the echoes reflected from 
tissue, and then enhances the dynamic scattering of the 
red blood cells (RBCs) over the static background tissue 
by computing motion index (such as variance, difference 
or decorrelation) of the recorded backscattering signals 
(8,9). Using the motion index as the grayscale value of 
each voxel, a 3D OCTA image is generated. Furthermore, 
to reproducibly and objectively quantify the outcomes 
of OCTA in scientific research and clinical application, 
various quantification metrics of vascular morphology have 
been proposed, including vessel diameter index (VDI), 
vessel skeleton density (VSD), vessel area density (VAD), 
vessel perimeter index (VPI) and vessel complexity index 
(VCI) (10-15). The fundamental of calculating these 
metrics effectively is an accurate segmentation, which 
classifies each pixel as either a vessel or background. To 
obtain such a segmentation map, manual labeling by 
experts is the gold standard. However, since this is a time-
consuming procedure and the outcome might vary from 
expert to expert, efforts have been focused on the automatic 
extraction of the vascular structures.

To achieve the automatic segmentation, a binarization 
threshold is usually applied to already generated OCTA 
images to assign all image pixels to be either black 
(background) or white (vessel), resulting in a binary image. 
Because the OCTA contrast mainly originates from the 
computed motion index, an empirical global motion-
threshold has been used to extract the vessels from the 
background (i.e., binarization) (13). The fixed empirical 
threshold can be further improved with the automatic 
techniques such as histogram threshold using Otsu’s 
method (16-18), which adjusted the threshold for each 
image individually. Furthermore, local adaptive threshold 
approaches have been proposed for the processing of 
OCTA images (10,14,19), which produced better results 

than the global approaches. However, most of the local 
adaptive thresholds were applied on a 2D (x-y plane) enface 
maximum intensity projection (MIP) image regardless of 
the depth (z) dimension (12,13,17,20).

In addition, the histogram of the motion index is also 
affected by the local intensity or signal to noise ratio (SNR) 
of OCT signal (9,21). To accurately classify the SNR-
dependent motion index, a simple approach is assigning 
an intensity-threshold to remove all the voxels without 
sufficient SNR (22-24), and then applying the motion-
threshold on the MIP image for binarization. However, the 
OCTA motion index has a complicated dependence on the 
intensity of OCT signal, thus, a fixed intensity threshold 
will either include many strong noise-induced decorrelation 
artifacts or exclude lots of valid dynamic signals (9,25). 
Gao et al. (21) calculated the OCTA decorrelation values 
(SSADA signals) at different OCT intensity levels in the 
foveal avascular zone (FAZ), and concluded a numerical 
relation between decorrelation and intensity through linear 
regression. Accordingly, an intensity-adjusted decorrelation 
threshold was applied to the MIP images for a reliable 
OCTA quantification. However, their method is based on 
the MIP OCTA image and neglected the variation of SNR 
in the depth direction. 

Recently, Huang et al. (9) derived an asymptotic linear 
relation of decorrelation to inverse SNR (iSNR) based on 
a multi-variate time series (MVTS) model, and accordingly 
they defined a linear 3σ boundary to distinguish the 
dynamic voxels from the static and noise in the iSNR 
and decorrelation (ID) space and to create SNR-adaptive 
OCT angiograms, termed as ID-OCTA. However, the 
conservative 3σ criterion cannot directly used as the 
binarization threshold for the purpose of minimizing 
binarization errors, because it was originally designed for 
generating OCTA image with high flow contrast and lots of 
low grayscale residual static tissues were reserved.

In this work, we proposed a binary image similarity 
(BISIM) method for automatically determining an optimal 
threshold in ID space entirely based on the acquired OCT 
and OCTA images. Firstly, we presented the ID-BISIM 
method. Then, human skin experiments were performed 
to validate benefits of the proposed ID-BISIM threshold 
both qualitatively and quantitatively compared with 
conventional 2-step intensity and binarization thresholding 
method in the decorrelation-contrast OCTA. Besides, 
vascular quantitative metrics were analyzed to demonstrate 
the potential of PWS evaluation with OCTA. Finally, the 
value of our work, advices for practical implementation and 
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further improvement of the study were discussed.

Methods 

Subject population and ID-OCTA

This study was approved by Ethics Committee of Chinese 
PLA General Hospital (NO.: 0404) and informed consent 
was taken all the patients. Ten subjects aged 5–15 years old 
with facial PWS were enrolled in this study. OCT scans 
were performed on two sites of cheek skin for each subject: 
(I) the lesion skin, and (II) the normal skin (the symmetrical 
site of the lesion on cheek). Each condition was scanned 
twice with their quantification results averaged to reduce 
the fluctuation of measurements, and a total of 4 datasets 
were acquired from each subject. 

The skin imaging was performed with a lab-built OCT 
system, which was primarily based on a typical spectral 
domain configuration (26). A stepwise raster scanning 
protocol (x-y) was used for volumetric imaging over a field 
of view of 2.5 mm × 2.5 mm × 2.5 mm (z × x × y), with 
300 A-lines per B-scan (fast-scan, x direction), 5 repeated 
B-scans per step (slow-scan, y direction) and 300 steps 

per volume, corresponding to a total acquisition time 
of ~8.3 s. Structural image was generated based on the 
intensity I(z,x,y) of OCT signal. As shown in Figure 1A,  
representative layered structures of human skin were 
clearly visualized in the structural cross-section, including 
epidermis and dermis. The OCT depth profile revealed 
that the signal intensity decreased exponentially with 
the increase of the penetration depth due to the light 
attenuation in the tissues, resulting in a decay of the SNR 
versus the penetration depth (insertion in Figure 1A). 

Angiographic images were created by calculating the 
change of OCT signal between successive tomograms taken 
at the same location. Here the inter-frame decorrelation 
D(z,x,y) was computed as a motion index to quantify the 
RBCs-induced dynamic changes (27), as shown in Figure 
1B. However, it is impossible to extract the dynamic flow 
simply based on a threshold in decorrelation dimension, 
because the decorrelation value of noise region is also 
high, which results in pseudo-dynamic artifact (such as the 
region indicated by red oval in Figure 1B). To characterize 
the dependence of decorrelation on SNR, Huang et al. (9) 
proposed a MVTS model and found that the mathematical 
expectation of the decorrelation has a linear relation with 

Figure 1 ID-OCTA of human skin using a SNR-adaptive dynamic-static/noise classifier. (A) OCT structural cross section (i.e., intensity 
mapping). (B) Decorrelation mapping calculated with a temporal spatial kernel. The region with low SNR level (indicated by the red oval) 
also presents high decorrelation value, generating noise-induced dynamic artifacts. (C) Dynamic flow signal (red area) identified with the 
linear 3σ boundary (see the red line in D). (D) ID space mapping. Red line is the linear 3σ boundary. (E) Gaussian-filtered (sigma = 1, 
filtersize = 5) 3D ID-OCTA image. Decorrelation value is encoded with color. (F) Enface projection of ID-OCTA image. OCTA, optical 
coherence tomography angiography.
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Figure 2 Proposed ID-binary image similarity (ID-BISIM) thresholding method for data-based 3D-adaptive binarization. (A) Binary 
image sequence created by changing the ID-threshold αT from 1° to 90° with an interval of 1°. Typical binary OCTA cross-sections when 
(B1) αT=5°, (B2) αT=25° and (B3) αT=40°. Cross-sectional maps of morphologic vector corresponding to (C1) B1, (C2) B2 and (C3) B3. 
Subtraction of the paired vector maps was performed to characterize the local structure differences between the two binary images: (D1) 
intra-class, (D2) inter-class, (D3) inter-class. (E) Plot of BISIM index versus ID- threshold α1 and α2. The BISIM index is minimal when 
α1=7° and α2=37°. (F) Voxels were projected into the ID space. ID-BISIM threshold αT=7°, as indicated by the red solid line. (G) Binarized 
OCTA cross-section with the ID-BISIM method.
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iSNR Eq. [1] and the standard deviation σ is described as 
Eq. [2]:

, . .,D iSNR a s→   [1]

,D vc Dσ =    [2]

where 

2siSNR
I

= , s2 refers to the intensity of system 
noise and I is the intensity of OCT signals. a.s. denotes 
convergence with probability one. cv is the coefficient 
of variance (CoV) of decorrelation, and D  is the mean 
value of the decorrelation. Accordingly, SNR-adaptive 
angiograms (see Figure 1C) were created by defining a 
linear 3σ boundary (see Figure 1D) to distinguish the 
dynamic voxels from the static and noise in the iSNR-
decorrelation (ID) feature space, and the 3D ID-OCTA 
imaging and corresponding enface projection were obtained  
(Figure 1E,F). However, the conservative 3σ criterion 
cannot directly used as the binarization threshold for the 

purpose of minimizing binarization errors, because it was 
originally designed for generating OCTA image with high 
flow contrast and lots of low grayscale residual static tissues 
were reserved.

Binarization thresholding and quality metric

We proposed a SNR adaptive binarization method based on 
the linear boundary of static signals in ID space, which was 
illustrated in Figure 2. To quantitatively evaluate the linear 
SNR adaptive threshold, we defined an ID threshold DT (see 
the red line in Figure 2F):

( )cotT TD iSNRα=   [3]

where αT is the ID-threshold evaluating the slope of the 
ID line DT. The pixels were assigned to be white if its ID-
threshold [ ]0, Tα α∈ , otherwise be black. Changing the 
threshold αT from 1° to 90° with an interval of 1°, a binary 
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image sequence can be generated (see Figure 2A) and can be 
roughly divided into three classes: (I) the binary image has 
only dynamic flow signal when [ ]11 , Tα α∈ °  (see Figure 2, B1); 
(II) the binary image has both flow signal and static tissue 
when ( ]1 2,Tα α α∈  (see Figure 2, B2); (III) the binary image 
has flow signal, static tissue and noise when ( ]2 ,90Tα α∈ °  
(see Figure 2, B3). The binary images of the same class have a 
similar structure while the images of different classes exhibit 
different structures. To estimate the intra-class similarity and 
the inter-class difference, we defined a morphologic vector 
array ( ), ,v z xα  to represent the structure of the binary image 
( ), ,B z xα . As shown in Figure 2C, selecting a window from 

the binary image and setting the center of the window as the 
origin, the vector ( ), ,v z xα  is the coordinate center of non-
zero pixels in the window. 

( )
( )

( )

( )

( )
( ) ( )

1 /2 1 /2

1 /2 1 /2
, , , , ,

k k

h k j k
v z x B z h x j h jα α

− −

=− − =− −
= ∑ ∑ + + ⋅



 
[4]

where a square window with k pixels is used. In this paper, 
k is set to 35 pixels for an image with total 300 * 300 pixels. 
h and j are the pixel indexes inside the window. The cross-
sectional vector maps ( ), ,v z xα  reflect the local structure 
of the binary image at the position (z,x) (see Figure 2C). 
The vector cross-sections within each class were paired. 
The Euclidear distances of the difference between the 
paired vector maps were performed to characterize the 
local structure difference between two binary images (see 
Figure 2D), and they were further summed over the full z-x 
dimensions with a step of k as the global difference:

( ) ( ) ( )
1 1

, , , , ,
Z X

z x
v m l v m z x v l z x

= =
∆ = ∑ ∑ −

 

 
[5]

where   denotes Euclidear distance, Z and X are the 
number of windows in the depth and width directions of the 
image, respectively. m and l are the α values of the paired 
vector maps ( ), ,v z xα . The binary images with similar 
structure (i.e., intra-class, see Figure 2, D1) would have a 
smaller ∆v score than the images with distinct structures (i.e., 
inter-class, see Figure 2, D2,D3). The BISIM of each class 
(V) was defined as the summation of all the paired images 
within each class: 

( )
,

,= , ,i
m l

V v m l m l class i and m l∆ ∈ ≠∑
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where i is an index of the class,
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where ni is the number of vector maps in class i. The change 

of the BISIM value was plotted versus the angles α1 and α2 
(see Figure 2E,F). When BISIM has the minimum value, 
which means obtained angles α1 and α2 divide signals in 
the ID space into three groups with minimum structural 
difference within each group, so the corresponding 
angle α1 was assigned to the threshold αT (see Figure 2F). 
In this work, α1 and α2 were initially set as 15˚ and 30˚, 
respectively. The gradient descent method (28) was used 
to quickly determine the minimum value of BISIM and 
the corresponding coordinates ( *

1α , *
2α ). Accordingly, the 

binarized cross-sectional angiogram was generated by 
applying the ID-threshold with *

1Tα α=  (see Figure 2G). 
The quality of the automatic segmentation result was 

evaluated by its consistence with the ground truth. Each pixel 
of the binary map was classified as either true-positive Tp, 
true-negative Tn, false-positive Fp, or false-negative Fn. Based 
on the ratio of the amount of pixels in each set, the following 
quality metrics are calculated for a segmentation (20):

: TpSensitivity Se
Tp Fn

=
+  

[8]

: TnSpecificity Sp
Tn Fp

=
+  [9]

’  : 1Youden s index J Se Sp= + −
 

[10]

Manual segmentations on Gaussian-filtered (sigma=0.5, 
kernel size=3) MIP image of OCTA were used to generate 
ground truth. Four manual segmentations were created 
by an expert for each data. Then, Simultaneous Truth and 
Performance Level Estimation (STAPLE) algorithm (29)  
was used to obtain the probabilistic estimate map of 
the true segmentation according to these four manual 
segmentations. Every pixel in the probabilistic estimate 
map was regarded as the foreground only if its probability 
was 75% and more in the probabilistic estimate map, while 
every other pixel was marked as background (20).

In order to facilitate comparison, conventional 2-step 
(intensity and binarization) thresholding method in the 
decorrelation-contrast OCTA was also performed as the 
control group, which was abbreviated as “2-step thresholding” 
in the following part. The similar binarization strategies 
were used to generate binary map for further quantitative 
evaluation (18,23,30) or serve as a control group (21).  
In control group, two kinds of threshold were used for 
binarization: intensity-threshold (removing the regions 
without sufficient SNR level and generating flow image) (22),  
decorrelation-threshold (i.e., binarization threshold). The 
intensity-threshold level was adjusted to two different 
levels: 6 standard deviations (2-step-6σ) or 3 standard 
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deviations (2-step-3σ) above the mean of the estimated noise  
process (31). The estimation of noise was taken once per 
acquisition, meaning that it is possible for the threshold levels 
to change, though typically by a small amount (31). The 
decorrelation threshold was determined with the global Otsu 
method in the enface MIP OCT angiogram (16,18). 

Vascular quantitative metrics

In clinical study, to quantitatively evaluate the differences 
between several groups of vasculatures, vascular quantitative 
metrics were calculated based on the binary maps, 
corresponding skeleton maps and perimeter maps (10,32,33). 
Conventional process to generate skeleton map and perimeter 
map was performed on the binary projection (10-12), 
however, the depth information was lost during the process 
of projection. Consequently, vessels in different layers 
might be identified as a single continuous vessel. To solve 
this problem, we obtain the skeleton map and perimeter 
map based on the 3D binary result and then acquire 
corresponding projection images. To generate the depth 
encoded projectional image, the skin surface was flattened 
based on the structural information and the depth was 
defined as the vertical distance between the vessel pixel and 
the skin surface boundary.

Here, several widely accepted statistical parameters were 
calculated, including VDI, VSD, VAD, VPI and VCI (10), 
the definitions are given as: 

( )
( )

1, 1

1, 1

,
,

n
x y
n
x y

A x y
VDI

S x y
= =

= =

∑
=
∑   [11]

( )1, 1
2

,n
x y S x y
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n

= =∑
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[12]
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n
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[13]
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[14]
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∑
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∑  
[15]

where n represents the width and height of the enface 
OCTA image. A(x,y) represents the pixels registered as 
vessel area. S(x,y) represents the pixels registered as vessel 
skeleton.P(x,y) represents the pixels as vessel edge. VDI 
reflects the average diameter of blood vessels in the image 
and is sensitive to the dilation of blood vessels. VSD was 
calculated as the ratio of the length occupied by the blood 

vessels to the total area in the skeletonized vessel map. VAD 
was calculated as the ratio of vessel area to total binary image. 
Vascular length and diameter changes can cause significant 
changes in VAD. VPI was calculated as the ratio of the 
vessel perimeter to the total area of the OCTA image. VCI 
represents the visual complexity of graphics in an image. In 
tortuous and irregular patterns, the value of VCI is high. 

In addition, vessel metrics map could be obtained by 
calculating quantitative descriptive metrics in local kernel. 
A down sampled block map could be generated with 30 × 
30 (pixels) block size, the map was resized to original size 
and Gaussian filtered with a 3 × 3 (pixels) kernel. All vessel 
metrics maps were generated in the same fashion.

Statistical analysis

Vascular quantitative metrics mentioned above were firstly 
averaged for each condition and then presented as mean ± 
standard deviation. Paired sample t-test were implemented 
between normal skin and lesion site. Statistical significance 
is presented at two levels: *, P≤0.05; and **, P≤0.01.

Results

Binarization is a fundamental operation in OCTA 
quantification. The binarization performance of the 
proposed ID-BISIM threshold was quantitatively compared 
with the 2-step thresholding method (Figure 3). As shown 
in Figure 3A, based on the structural and angiographic 
images, the cross-sectional image can be decomposed into 
4 components: air (green), superficial epidermis (blue, 
segmented from structure image), dermal blood flow (red, 
identified from OCTA image) and tissue around the dermis. 
The air (random noise) region above the epidermal surface 
is characterized with low intensity (large iSNR) and high 
decorrelation in the ID space (green dots in Figure 3B). 
In contrast, the superficial and avascular epidermis layer 
exhibits high intensity (small iSNR) and low decorrelation 
(no dynamic blood flow) in the ID space (the blue dots 
in Figure 3B). In the dermal layer, the dynamic flow (red 
dots in Figure 3B) and the surrounding tissue (black dots in 
Figure 3B) were above and below the ID-BISIM threshold 
(red line in Figure 3B), respectively. The ID-BISIM method 
enables a 3D-adaptive threshold, while the global thresholds 
used in the 2-step thresholding method cannot separate the 
dynamic signals from the static background completely. To 
be specific, in 2-step thresholding method, a high intensity 
threshold (6σ) lost amount of blood flow signals (compare 
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Figure 3 ID-BISIM threshold enables a 3D adaptive binarization of OCTA images with improved sensitivity and specificity. (A) 
Representative cross-sectional OCTA image overlaid with the corresponding structural (intensity) image. Green region: the air above the 
skin surface, pure noise. Blue region: the superficial, avascular epidermal layer segmented based on OCT structural image, pure static tissue. 
Red region: the dermal blood flow identified based on ID-BISIM, pure dynamic flow. (B) ID space distribution of the pixels of the air (green), 
epidermis (blue), dermal blood flow (red) and dermal surrounding tissue (black). The red line denotes the demarcation line obtained by ID-
BISIM method. The dashed purple horizontal lines represent the intensity threshold of the 2-step thresholding method (mean value add 
3σ or 6σ). σ is the standard deviation of the estimated noise process. The dashed purple vertical lines represent the decorrelation threshold. 
(C) Manual ground-truth segmentation. Binarized OCT angiograms with (D) ID-BISIM, (E) 2-step thresholding-6σ, and (F) 2-step 
thresholding-3σ thresholds. The three rows are 1) Binarized cross-sectional angiograms, 2) binarized enface angiograms (red dashed line 
indicates the position of the cross-section in 1), and 3) binarization image overlaid on manual segmentation mask (white: Tp, black: Tn, red: 
Fn, green: Fp), respectively. OCTA, optical coherence tomography angiography; ID-BISIM, ID-binary image similarity.
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Figure 3D,E), while a low intensity threshold (3σ) left 
numerous static background (compare Figure 3D,F), which 
were also indicated by the dashed lines in Figure 3B. To 
quantitatively demonstrate the advantages of ID-BISIM 
over 2-step thresholding method, a total of 40 scans from 
ten subjects were used for comparing difference methods 
with manual segmentations (Figure 3C). The result was 
summarized in Table 1. Generally speaking, the proposed 
ID-BISIM threshold enables a 3D adaptive binarization 
with an improved sensitivity and specificity over the 
conventional 2-step thresholding method, corresponding 

Table 1 Comparison of ID-BISIM and 2-step thresholding 
methods using manual segmentations as ground truth

Methods Sensitivity Specificity Youden’s index

ID-BISIM 0.83±0.15 0.98±0.01 0.81±0.15

2-step-3σ 0.86±0.06 0.73±0.21 0.59±0.15

2-step-6σ 0.63±0.12 0.87±0.10 0.49±0.08

A total of 40 datasets were used: ten subjects, two sites in 
each subject and twice scans for each site. ID-BISIM, ID-binary 
image similarity.
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to a 37–65% improvement of Youden’s index. It takes 
about 1.15s to get αT for one data, which was tested using 
MATLAB (R2019a, MathWorks, Natick, Massachusetts) 
running on a 64-bit PC with Core inter(R) (TM)i7-9700k 
CPU, and 16GB RAM.

Skeleton operation is performed on the binarization 
images for the quantification of VSD and VPI. The 
proposed ID-BISIM threshold enabled a 3D binarized 
vessel image (see Figure 4A). Rather than the projectional 
2D binarized image (see Figure 4B), the additional 
depth information facilitated the differentiation of the 
vessels which are close to each other in the enface plane 
but at different depths. For example, the two vessels of 
different depths (marked with the blue and pink arrows) 

were successfully differentiated (see Figure 4C) in 3D 
binarization, while in 2D binarized image (see Figure 4D) 
they were presented as a single large vessel.

Quantitative OCTA image can be readily achieved with 
the proposed ID-BISIM threshold. Apparent changes of the 
vessel morphology were observed between the normal skin 
(Figure 5A) and the PWS lesion site (Figure 5B). Vascular 
dilation and hyperplasia were observed in PWS (see VDI 
and VAD in Figure 5), which corresponding with the clinical 
symptoms of bright red patches. 

Statistical results of the vascular quantitative metrics 
for normal skin and PWS are shown in Table 2. Using 
the proposed ID-BISIM thresholding method, the VDI 
and VAD increased significantly in PWS (P=0.0015 

Figure 4 Comparison of 3D and 2D binarization in vessel skeleton. Binarized (A) 3D and (B) 2D vascular images using ID-BISIM 
threshold, i.e., the vessel area maps. Depth is encoded with color. (C) 3D and (D) 2D vessel skeleton maps. The blue and pink arrows 
indicate two vessels that are close to each other in the enface plane but at different depths. 
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Figure 5 Quantitative OCTA of skin vascular morphology. 1) Original enface ID-OCTA images. 2) Vessel diameter map. 3) Vessel skeleton 
map. 4) Vessel area map. 5) Vessel perimeter map. 6) Vessel complexity map. All the maps are integrated with the OCTA images. (A) Normal 
skin (the symmetrical normal site of the lesion on cheek). (B) PWS lesion skin. OCTA, optical coherence tomography angiography.
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Table 2 Quantitative analysis of vascular metrics for normal skin and PWS

VDI VSD VAD VPI VCI

ID-BISIM

Normal 8.713±0.683 0.051±0.013 0.404±0.097 0.137±0.022 218.429±34.402

PWS 10.461±1.103 0.047±0.013 0.497±0.156 0.122±0.021 153.674±59.965

P value 0.0015** 0.86 0.0485* 0.07 0.0094**

2-step-3σ

Normal 8.802±0.684 0.040±0.010 0.348±0.072 0.121±0.019 193.212±27.912

PWS 10.417±1.594 0.044±0.010 0.445±0.090 0.123±0.021 163.324±54.036

P value 0.024* 0.390 0.053 0.686 0.152

P values were obtained by paired sample t-test and statistical significance is presented at two levels: *, P≤0.05, and **, P≤0.01. PWS, port 
wine stain; ID-BISIM, ID-binary image similarity; VDI, vessel diameter index; VSD, vessel skeleton density; VAD, vessel area density; VPI, 
vessel perimeter index; VCI, vessel complexity index.

and 0.0485 respectively). Besides, significant decrease 
was observed in VCI with P=0.0094, while there are no 
statistical significances in VSD and VPI. Similar changes 
were also observed in the 2-step-3σ thresholding method, 
but presented less statistically significant (only VDI was 
statistically significant with P=0.024).

Discussion

Vascular quantitative metrics have been widely used in 

scientific research and clinical application, which require 
accurate binarization and effective extraction of vessel 
skeleton (13,34-36). In order to obtain precise binarization 
results, we proposed a 3D adaptive ID threshold using the 
linear relationship between the local intensity and complex-
decorrelation, and the ID threshold was automatically 
determined based on the similarity of binary image structure. 
Furthermore, we extend the skeleton extraction operator 
to 3D space so as to distinguish vessels in different depths. 
Finally, the validity of the proposed ID-BISIM method was 
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demonstrated by comparing with the conventional 2-step 
thresholding method. Thus, the superior performance 
of the proposed ID-BISIM method will be helpful to the 
quantitative diagnosis and treatment of skin diseases. 

Distinct from the conservative 3σ criterion used in the 
grayscale ID-OCTA, the proposed ID-BISIM works for the 
purpose of determining an optimal ID threshold to assign 
all OCTA image pixels to be either black (background) or 
white (vessel) with minimal segmentation errors. Based on 
the derived linear relation of the decorrelation to the iSNR 
in reference (9), the BISIM evaluates the intra-class similarity 
of the three groups divided by ID angles α1 and α2, and ID-
BISIM was used to automatic determine the ID-thresholds 
with minimal BISIM, or in other words, with minimal 
segmentation error. The proposed ID-BISIM algorithm 
offers several advantages over existing binarization methods. 
Rather than simply removed low SNR region in 2-step 
thresholding method, which means a balance must be struck 
between including valid signals and excluding noise (31), the 
ID-BISIM threshold enables a 3D adaptive binarization with 
an improved sensitivity and specificity over the conventional 
2-step method, and presented improved statistical significance 
in the differentiation of PWS from the health skin. 

The ID-threshold obtained with ID-BISIM was 
mainly influenced by the diameter and area density of 
vessels. To be specific, if the tomogram is dominant by 
vessels, the dynamic signals are densely distributed in 
ID space, while the static signals are distributed sparsely, 
under the minimum classification error criterion, the 
corresponding ID threshold obtained by ID-BISIM was 
larger. This adaptive threshold is essential for the accuracy 
of binarization and further quantitative analysis. Besides, 
different OCT systems hardly influence the ID threshold 
because the intensity of OCT signals has been normalized 
by the noise level and the distribution of OCT signals in 
ID space will only have a global shift along the asymptotic 
distribution. However, although the threshold is almost 
constant for different systems, the SNR of OCT systems 
will still influence the final angiograms due to the overall 
displacement of OCT signals in ID space. 

In addition, the window size k of the morphologic vector 
array is of importance for the performance of ID-BISIM. To 
be specific, if k is set too large, the morphologic vector array 
( )v , ,z xα  will lose its sensitivity, on the other hand, if k is 

set too small, the stability of the vector array is degraded. 
In both cases, the vascular structures cannot be effectively 
extracted. Here, as a rule of thumb, we recommend setting 
k to be 2~3 times the capillary diameter.

In conclusion, the proposed ID-BISIM enables an 
automatic 3D adaptive vessel segmentation with enhanced 
performance in quantitative OCTA. The vascular quantitative 
metrics would be a useful tool for improving the diagnosis 
and the treatment of PWS.
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