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Introduction

Ultrasound examination has long been widely used 
in clinical diagnosis, and is the top choice in prenatal 
examination due to its non-radiating property. Prenatal 
evaluation of the fetal heart is a standard procedure in 
a pregnancy, and is necessary to detect congenital heart 
malformations such as the hypoplastic left heart syndrome 
and the Tetralogy of Fallot. Congenital heart malformations 

occur to 0.6–1.9% of the population, and detection can 
enable decision making and disease management. Because 
the fetal heart is very small and the interrogating ultrasound 
need to pass through much body tissues (both maternal 
and fetal), fetal ultrasound images tended to have higher 
noise and lower contrast, making evaluation and diagnosis 
a challenge even for experienced physicians. Advancements 
in image processing methods for fetal ultrasound images is 
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thus important.
Denoising and enhancing are two main ways of image 

processing fetal ultrasound images. The process of 
denoising aims to remove speckle noise and smooth artifact 
differences as much as possible. The aims of enhancing 
can vary with different applications. For example, it could 
aim to distinguish regions of different tissue types, or 
to highlight regions of specific organs or tissues, etc. In 
computer assisted fetal heart assessment based on 3D 
geometrical model, enhancing is useful for distinguishing 
the myocardium from other tissues such as blood.

Among current ultrasound image processing methods, 
denoising methods related to the non-local means (NLM) 
approach and enhancing methods related to the contrast 
limited adaptive histogram equalization (CLAHE) method 
are commonly used. In NLM, a small image patch around 
a pixel is used to search for similarity information in a large 
search window, and this information is used to heighten 
the image quality in the pixel. As for CLAHE, it can limit 
noise amplification effectively. However, in our current 
study, we found these methods can still be improved. Here, 
we proposed a new denoising and enhancing method 
framework inspired by the NLM and CLAHE methods, 
and demonstrate these improvements.

Related works

Medical image denoising
For image denoising, there are several classical filter 
methods, such as median filter (1), Wiener filter (2,3), mean 
filter (4), Gaussian filter (5), and Fourier transform (6).  
A widely used method is the Non-Local Means (NLM) (7),  
which improves image quality via searching for useful 
information within the same image. Several variants of 
NLM have been developed (8-11). In addition, several 
state-of-the-art methods have been proposed, each 
having a different denoising effect. For example, Dabov 
et al. proposed an image restoration technique exploiting 
regularized inversion and the recent block-matching and 
3D filtering (BM3D) denoising filter (12); Zoran et al. 
proposed a concept of Expected Patch Log Likelihood 
(EPLL) to improve image quality (13); Gu et al. studied the 
weighted nuclear norm minimization (WNNM) problem 
and applied this algorithm to image denoising by exploiting 
the image nonlocal self-similarity (14); Dong et al. 
introduced the concept of sparse coding noise and proposed 
a nonlocally centralized sparse representation (NCSR) 
model to implement image denoising (15); Yang et al. 

improved Non-Local Means with local statistics(NLMLS) 
for ultrasound images (16); Ai et al. proposed an adaptive 
non-local means (ANLM) method for speckle reduction 
in ultrasound images (17); Yu et al. proposed an ultrasound 
image denoising method based on fuzzy logic (FL) (18). 
Further, recently, an increasing number of deep learning 
based denoising methods have been proposed, such as 
Kokil's deep residual learning method (19), Liao’s features 
combination migration method (20) and Cao’s method for 
nonalcoholic fatty liver disease (21).

Medical image enhancing
Progress has also been made in image enhancing methods. 
In the early stage, several classical methods were proposed, 
such as histogram equalization (HE) (22), log transformation 
(LT) (23),  and gamma transformation (GT) (24).  
Later, contrast limited adaptive histogram equalization 
(CLAHE) (25) was proposed and has since been widely 
used, but the need to reduce noise amplification has limited 
this method’s contrast amplification. In recent years, several 
state-of-the-art methods were reported. For example, Shan 
et al. proposed a globally optimized linear windowed tone 
mapping (GOLWT) method to enhance image and preserve 
image structures (26); Deng proposed a generalized unsharp 
masking (GUM) algorithm using the exploratory data model 
as a unified framework (27); Researchers also proposed 
several low-light image oriented enhancing methods (28,29); 
Demirel et al. proposed an image contrast enhancement 
technique based on singular value decomposition and 
discrete wavelet transform (SVD-DWT) (30). However, 
although deep learning is increasingly widely used, there are 
few ultrasound image enhancement methods based on deep 
learning. One such method is Mishra's structure oriented 
adversarial network (31).

Methods

From above methods we can see that researchers have made 
much valuable contribution to ultrasound image denoising and 
enhancing. However, it is unclear if they are suitable for fetal 
heart ultrasound images, such as that from 4D imaging mode 
(Spatial Temporal Image Correlation or STIC mode) (32).  
In this paper, we test a wide range of denoising and 
enhancing techniques of clinical ultrasound images of fetal 
hearts to investigate their effectiveness. We further propose 
novel strategies to improve results, via a special method 
framework containing both denoising and enhancing. 
Clinical ultrasound images of human fetal hearts were 



1569Quantitative Imaging in Medicine and Surgery, Vol 11, No 4 April 2021

© Quantitative Imaging in Medicine and Surgery. All rights reserved.   Quant Imaging Med Surg 2021;11(4):1567-1585 | http://dx.doi.org/10.21037/qims-20-818

obtained from the National University Hospital, Singapore, 
under the approved Domain Specific Review Board (DSRB) 
protocol number 2014/00056. Informed consent was sought 
from all participants. Fetal ultrasound images were obtained 
in the STIC mode, which provided 4D images, and details 
of theses scans are described previously. Images for 3 fetal 
subjects were obtained and analyzed.

In our experiment, 4D ultrasound images of human 
fetal heart are utilized as experimental data. 4D Ultrasound 
images were acquired using the Voluson 730 ultrasound 
machine with the RAB 4-8L transducer (GE Healthcare, 
Chicago, IL, USA), under the Spatio-Temporal image 
Correlation (STIC) mode. STIC imaging were acquired 
with the four chamber view on screen, and STIC sweep 
occurred over 10–15 seconds, with an image capture rate 
of 70–90 frames per second, thus giving 29–37 volumes for 
1 cardiac cycle. The images were extracted by the 4DView 
software (GE Healthcare, Chicago, IL, USA), and a stack 
of 30–40 image slices parallel to the four-chamber view 
was exported from the volumetric images at each time pint, 
spaced at 0.5mm apart. The images are 21+ weeks gestation.

Image denoising for 4D ultrasound image of human fetal 
heart

For general image denoising research, the noise models are 
always additive, and can be modelled as

v u n= + 	 [1]
where v is observed image; n is clean image and n is 

additive noise. Such models are often used in denoising 
research of medical images such as those from the CT. 
however, this is not suitable for ultrasound images, which 
has not only additive noise but also speckle noise in the 
image. Speckle noise is multiplicative noise, and can be 
modelled as

v m u n= × + 	 [2]
where m is the multiplicative component of noise.
4D ultrasound images have both time sequence (dimension) 

and space sequence (dimension). most images has two 
spatially neighboring images (blue frames in Figure 1)  
and two temporally neighboring images (green frames in 
Figure 1). Our denoising method takes full advantage of this 
characteristic, by utilizing these four neighbor images as 
reference images. 

Our denoising method was inspired by the NLM method (7).  
We adopted this approach as NLM has superior edge-
preserving filtering algorithm which fully considers 
self-similar property of image and makes full use of the 

redundant information of the image. It can also retain 
detailed characteristic in the image when denoising. In 
NLM, a small image patch around a pixel is used to search 
for similarity information in a large search window to 
calculate the noise-free intensity in the pixel.

When we apply NLM to denoise fetal heart ultrasound 
image without consideration of images in neighboring time 
points and slices, we find that the denoising effect is not 
sufficiently strong. As shown in Figure 2, after denoising by 
NLM method with different filter coefficients, h, there is 
still laminar artifact noise (such as in the purple rectangle in 
Figure 2 even after denoising). This may be because there is 
not sufficient self-similar information within the image.

However, we can see that the target image is similar 
to the two temporally neighboring images and the two 
spatially neighboring images. There is much mutual-similar 
information in these neighboring images. Therefore, 
we propose a 4D-NLM denoising method that will 
take advantage of the contextual information in these 
neighboring sequences of images. Let the search window 
have dimensions of n × n and the kernel window have 
dimensions of n × n (Figure 3A). In our method, for each 
pixel in the target image, there will be 4 search windows 
with m × m pixels at the corresponding pixel position in the 
temporally and spatially neighboring images (as shown in 
Figure 3B).

In our method, we need to calculate 4 different weights 
in 4 neighboring images. To calculate the weight in one 
of these images, we need to obtain the Euclidean distance, 
which we model as follows,

2

2,
( ) ( )i j a

E v N v N= − 	 [3]
where NK denotes a square neighborhood of fixed size 

and centered at a pixel K, and a is the standard deviation 
of the Gaussian kernel. We use neighborhood variance to 
represent the Euclidean distance.

Consider the K-th neighbor image, where there is a pixel 
P in the search window whose grayscale value is S. All the 
pixel grayscale values in the neighborhood window, whose 
center is at P, can be expressed as 2, [1, ]it i n∈ . So, the 
cumulative variance for P will be:

( )
2

2

1

n

i
i

ke s t
=

= ∑ − 	 [4]

For all the 4 search windows, the cumulative variances 
for pixels with the same position coordinates can be 
calculated as the average cumulative variance
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Traversing the entire search window domain, the average 
cumulative variance of each pixel with same position 
coordinates can be obtained.

Next, we can calculate the similarity between the 
central pixel and each neighborhood window in a search 
window. In our method, this similarity is expressed by a 
weight represented by the Euclidean distance. We calculate 
the neighborhood variance for each pixel in each search 
window. For a pixel P in a search window, its neighborhood 
variance is

2P
ee
n

= 	 [6]

Considering that we use the neighborhood variance to 
represent the Euclidean distance, we will obtain

2

2,
( ) ( )P i j a

e v N v N= − 	 [7]

and the Gaussian weight can be denoted as
2

2,
2

( ) ( )i j a
u N u N

h
GW e

−
−

=
	 [8]

where u is the hypothetical noise-free image. We do not 
have clean images, but the application of the Euclidean 
distance to the noisy neighborhoods raises the following 
equality,

2 2 2
2, 2,

( ) ( ) ( ) ( ) 2i j i ja a
v N v N u N u N σ− = − +  		  [9]

By combining equations (9) and (10), we can obtain the 
Gaussian weight

2

2

2exp P
G

eW
h

σ −
=  

 
	 [10]

where σ  is the Gaussian standard deviation and h is the 
filter coefficient. We can use h and σ  to control the decay 
of the exponential function so that we can obtain the most 

Figure 1 Adjacent relationship about reference images in 4D ultrasound image sequence.
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Figure 3 Search window and neighborhood window. (A) In the search window, the orange point is the target pixel; the blue box is the 
neighborhood window; the green point is the center pixel of neighborhood window. (B) 4 search windows at the corresponding positions of 
4 neighbor images.
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suitable Gaussian weight. For the j-th pixel in a search 
window, we can use Eq. [10] to calculate its Gaussian weight 

2, [1, ]GjW j m∈ . We can then obtain the normalization 

coefficient 
2

1
Gj

m

j
N W

=
= ∑ , which is the sum of all Gaussian 

weights, and obtain the similarity between the central pixel 
and the j-th pixel in a search window as

j
j

GW
N

W
= 	 [11]

For the k-th adjacent image, its corresponding central 
pixel value is 

2

1

m

j jk
j

s W s
=

= ∑ , where Sj is the j-th pixel value in 
search window. The final grayscale value of the central pixel 
can be calculated from all the 4 adjacent images

4

1
4k

k
s s

=
′ = ∑ 	 [12]

Image enhancing for 4D ultrasound image of human fetal 
heart

Our enhancing method was inspired by the CLAHE 
method (25), and we call it the Adaptive Clipping for Each 
Histogram Pillar (ACEHP) method. We developed this 
because we found that in our enhancing experiment of 
human fetal heart ultrasound images, there is room for 
improving the CLAHE method in terms of distinguishing 
between the cardiac region (inclusive of the myocardium 
and luminal spaces) and the other (extra-cardiac) regions. 
As shown in Figure 4, the boundary between the pericardial 
boundaries are noisy and pocketed with black spaces, 
while extra-cardiac regions have very similar appearances 
to myocardial spaces. CLAHE cannot achieve sufficient 
distinction the cardiac and non-cardiac regions. 

In ACEHP, the grayscale histogram H of the whole 
image is first constructed. Then the histogram will be 
clipped by Otsu threshold strategy (33). For an image with 
a size of M × N, the number of pixels whose grayscale values 
are smaller than threshold T is denoted as N0 and whose 
grayscale values are larger than T is denoted as N1. So, the 
corresponding probabilities of two pixel category are

0
0

N
M N

ω =
×

	 [13]
 		

1
1

N
M N

ω =
×

	 [14]

where 0 1 1ω ω+ =  and 0 1N N M N+ = × .  Let 0µ  be 
the average grayscale value of the pixels corresponding to 

0ω  and 1µ  be the average grayscale value of the pixels 
corresponding to 1ω . The interclass variance will then be

( )2
0 1 0 1g ω ω µ µ= 	 [15]

We can obtain the Otsu threshold T when g is the 
maximal value. The clipping length for the i-th histogram 
pillar based on T will be

i i
iCL H
T

= 	 [16]

where i is the grayscale value and Hi is the corresponding 
grayscale histogram height. The residual length of this 
histogram pillar will then be

i i i
rH H CL= − 	 [17]

When Hi is less than CLi, 
r

iH  is set to be 0 to avoid 
the problem of it becoming negative. That means that the 
histogram will lose some pillar, especially in the higher 
levels of grayscale. However, this is advantageous to image 

Figure 4 Enhanced ultrasound image by CLAHE method and indicative schematic of the location of the cardiac space and features in it.

Original image                                                             Enhanced image                                                Schematic of the location
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enhancement because it can highlight the regions of interest 
(ROI). Enhanced results were shown in section “Human 
fetal heart ultrasound image enhancing”. However, if 
these clipped histogram pillars are eliminated, the image 
will integrally become darker. To solve this problem, our 
method evenly distributes all the clipped histogram pillars 
to all gray levels (as shown in Figure 5). Then we can obtain 
the final histogram

255

0
i

i

r
i iH H CL r

=

′ = +∑ 	 [18]

where r is number of gray levels (for gray level ultrasound 
image, r=256).

Based on the new histogram iH ′ , we can obtain the 
cumulative frequency for each gray level. Assume that ni is 
the number of pixels corresponding to the i-th gray level 
and n is the total number of pixels of the entire image. The 
grayscale cumulative frequency for each gray level is

1

, 0

,0

i
i

i
i i

nP i
n

nP P i r
n−

 = =

 = + < <


	 [19]

Therefore, we can define a grayscale mapping function

i is L P= × 	 [20]
where a is the maximum value of the gray level in the 

grayscale histogram. Finally, each gray level can be mapped 
to a new gray level and an enhanced ultrasound image can 
be obtained.

Results

Because we did not have training data, we could not 
implement deep learning methods for comparison with 
other methods, and as such, we kept to non-machine 
learning methods.

Human fetal heart ultrasound image denoising

To verify our method’s effectiveness, we compared it to 
several classical and state-of-the-art methods [NLM (7),  
median filter (1), Wiener filter (2,3), mean filter (4), 
Gaussian filter (5), Fourier transform (6), BM3D (12), 
EPLL (13), NCSR (14), WNNM (15), NLMLS (16), 
ANLM (17) and FL (18)]. In general, the denoising result 
will be better if the search window is larger, however the 
time efficiency will be reduced. For NLM, NLMLS, 
ANLM and our method (4D-NLM), we adopt the search 
window size of 21×21 pixels and the neighborhood window 
size of 7×7 pixels as a balance between denoising strength 
and time efficiency (7). The window size of mean filter, 
median filter and Gaussian filter were 7×7. The window 
size of Wiener filter was 5×5. The search window size of 
BM3D was 21×21. The number of iterations of NCSR 
and WNNM were both 5. The a in FL was −0.7, and 
the Gaussian standard deviation and filter coefficient of 
NLM, NLMLS and our method (4D-NLM) were 0.8 and 
20. These parameters were all set to the original papers' 
recommended values. Under these parameter values, better 
result can be achieved.

Results are shown in Figure 6. Visually, we can observe 
that the original ultrasound image of human fetal heart has 
much noise, and that after being blurred by the median 
filter, the image is smoother but still has much noise. Using 
mean filter and Gaussian filter appear to eliminate most 
of the noise, but the feature edges also becomes blurred, 
indicating that useful information in the image is removed. 
Fourier transform and Wiener filter are better than other 
classical methods, but results are still not smooth enough. 
We can see that classical denoising methods are not very 
effective to the human fetal heart ultrasound images. The 

Pixel number
Clipping line

Pixel number

even
distribution

Grayscale Grayscale

A B

Figure 5 Adaptive histogram clipping. (A) histogram pillars higher than the red line are clipped. (B) final histogram with the evenly 
distributed clipped grayscale components.
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Figure 6 Denoising results by different methods.
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Mean filter                                     Gaussian filter                                     Fourier transform 

BM3D                                               EPLL                                                NCSR

WNNM                                                     NLM                                              ANLM

NLMLS                                                   FL                                         Our method (4D-NLM)
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state-of-the-art methods generally performed better at 
denoising than classical methods. Compared with our 
proposed method, EPLL method and WNNM method 
have the similar denoising effect, but both of them have 
blurred edge; while NLM method, BM3D method and 
NCSR method have more noise. We tested two improved 
NLM algorithm, ANLM and NLMLS, but they also 
resulted in more noise than our method. FL can make 
image smoother in the regions of interest (ROI), but the 
contrast has changed. Our proposed method can effectively 
utilize the information of neighborhood images, so it has 
less noise and clearer edges.

To validate these visual observations and formally 
evaluate denoising effects, we adopted the “method noise” 
strategy to quantify improvements (34). Method noise is 
an established evaluation technique that is particularly 
useful where there is no reference image for calculating 
noise parameters. Method noise is defined as the difference 
between original image and denoised image

ˆi i in x y M= − + 	 [21]
where i is the index of pixel; xi and yi denote the pixel 

value of original and denoised image; M is a constant to 
promote result image of method noise easier to observe.

Method noise has two main functions. Firstly, it can 
evaluate how much noise has been removed, as the resulting 
image contains all noise removed by denoising. If the 
resulting image is uniform, less noise has been removed 
and if the result image is noisy, more noise has been 
removed. Secondly, it can also be used to evaluate whether 
the denoising process removed structural information, 
by observing whether the resulting image contains the 
structures of the original image. A good denoising method 
should not remove such structures from the image. If 
method noise result contains these structures (such as edges 
and outlines), these details of original image are lost after 
denoising and the denoising method is not desirable.

Figure 7 shows the method noise result images of 
different approaches. We can see that different methods 
resulted in different residual pixel method noise intensities. 
EPLL method, WNNM method, NLM method and our 
proposed 4D-NLM method can generate better method 
noise result images (residual pixels intensity level can 
be ranked as: 4D-NLM>NLM>WNNM>EPLL>other 
methods). From the global perspective, the result image by 
4D-NLM method contains more uniform residual pixels 
than all other methods, suggesting more uniform denoising. 
Improved NLM algorithm, ANLM and NLMLS, resulted 
in less edges and outlines, however these two methods have 

lower residual pixels intensities. Furthermore, the result 
image of NLM and FL methods contain obvious edge and 
outline, which means a lot of original image information is 
lost after denoising. On the other hand, the result image of 
our 4D-NLM method contains hardly any edge and outline, 
demonstrating that it retains more structural information 
than NLM.

For 4D-NLM, filter coefficient (h) has a great effect on 
the smoothness of the image. The denoising results with 
different filter coefficients are shown in Figure 8. Form 
Figure 8A,B,C we can see that when the filter coefficient 
is 20, the image is the smoothest. And according to  
Figure 8D,E,F, method noise analysis show that when 
filter coefficient is 20, the most noise is removed and the 
edge information are preserved well. However, when filter 
coefficient increases, the run time of 4D-NLM will increase 
significantly. To balance the run time and denoising effect, 
we recommend a filter coefficient of 20.

In order to prove the versatility of our method, we also 
used 4 different images for comparison (as shown in Figure 9).  
Figure 9A,B,C,D are original images before denoising 
(Figure 9B is from another imaging plane but at the same 
time point as Figure 9A, while Figure 9C and Figure 9D are 
selected from two further different datasets.). We can see 
there is much speckle noise in these original images. In 
particular, Figure 9C has more speckle noises than others 
in ventricle. The overall intensity of Figure 9D is very low, 
making it more difficult to process its noise. After denoising 
by 4D-NLM method, we can obtain clearer result image 
(Figure 9E,F,G,H). This experiment show that our method 
is effective for different ultrasound images of human fetal 
hearts. For easy observation, we selected a brighter part of 
the image as the test region.

We use CNR to evaluate image quality, computed as
ROI bg

bg

x x
CNR

σ
−

= 	 [22]

where ROIx
 
is the average pixel value inside the regions 

of interest (ROI); bgx  is the average pixel value inside 
the background and bgσ  is the standard deviation in the 
surrounding background. The standard deviation of image 
can be computed as

2

1 1

1 ( ( , ) )
M N

i j
P i j

M N
σ µ

= =

= −
× ∑∑ 	 [23]

where M and N are the width and height of image; P(i,j) 
is corresponding pixel value and µ is the average pixel value 
of image. When calculating bgσ , we only need to remove 
ROI from the image.

To quantify which method is better able to retain 
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Median filter                                           Wiener filter                                          Mean filter  

Gaussian filter                                   Fourier transform                                         BM3D 

EPLL                                                     NCSR                                                 WNNM

NLM                                                      ANLM                                                   NLMMS

FL                                          Our method (4D-NLM)

Figure 7 Method noise result images by different approaches.
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Figure 8 Denoising results (A,B,C) of 4D-NLM with different filter coefficients and corresponding method noise results (D,E,F).

structure information during denoising, we introduced the 
sharpness metric based on histogram of strong edge width 
(HSEW) (35). This method is based on edge information. 
It has low computational complexity, fast calculation speed 
and good independence from image content. The main 
computing procedure is as follows.

For image f, the horizontal and vertical gradient map can 
be expressed as Gx and Gy respectively.

x xG S f= ∗ 	 [24]

y yG S f= ∗	 [25]

where Sx is the horizontal gradient Sobel operator and Sy 

is the vertical gradient Sobel operator. Then we can obtain 
the horizontal binary image Bx and vertical binary image By 
with strong edge.

	 [26]
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where (i,j) denotes the pixel coordinates; xξ  and yξ  
are horizontal and vertical thresholds; M and N are width 
and height of image. Then, we calculate the widths of 
strong edges by locating them from the binary image, and 
obtaining the maximum distance across the edges. Let ℵ  be 
the total number of strong edges and iℵ  is the number of 
strong edges with the width of wi, the probability of strong 
edge with width wi is thus

( ) i
ip w ℵ
=
ℵ

	 [28]
We can then calculate the distance factor of strong edge 

width, d(wi) as
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Figure 9 Original images and result images denoised by 4D-NLM. (A,B,C,D) are original images and (E,F,G,H) are denoising results. The 
red box is focused region.

where wm denotes edge width with the maximum 
probability; we denotes the largest edge width. Finally, the 
sharpness metric is

( ) ( )
e

o

w

i i i
w

Metric d w p w w=∑ 	 [30]

where wo is the minimum edge width. This method 
expresses that if Metric is smaller, the image is clearer.

Table 1 shows the CNR values and HSEW values of 
denoising result images by different methods. Image-1 
is Figure 9A and Image-2 is Figure 9C. From Table 1 we 
can see that 4D-NLM has better CNR and HSEW than 
not only traditional methods (BM3D, EPLL, NCSR 
and Wiener filter), but methods based on NLM (NLM, 
ANLM, NLMLS). We can also see that the Gaussian filter 
has higher CNR, but it also has higher HSEW. This means 
Gaussian filter destroys edge information in the image 
during noise removal. Similarly, although FL has higher 
CNR (for Image-1 and Image-2) and lower HSEW (for 
Image-2) than 4D-NLM, the visual denoising effect of this 
method is not satisfactory (as shown in Figure 6, the noisy 
region is enhanced). Therefore, combining Table 1 and 
Figure 6, 4D-NLM can generate better denoising effect 

than the other methods mentioned. We also tested the 
average CNR and HSEW values for two large image sets 
(each set has 100 ordinary fetal heart ultrasound images), 
the similar parameter performance can be seen.

Human fetal heart ultrasound image enhancing

In this experiment, original image (OI) and the image 
denoised by 4D-NLM are used as the input images to test 
various enhancing approaches. Several classical and state-of-
the-art enhancing methods were compared to our proposed 
method. These methods include histogram equalization 
(HE) (22), contrast limited adaptive histogram equalization 
(CLAHE) (25), log transformation (LT) (23), gamma 
transformation (GT) (24), GOLWT (26), GUM (27), 
BIMEF (28), CETLLI (29), LLIE (36) and SVDDWT (30). 
In the gamma transformation, the gamma value was 0.4. All 
other methods use the default parameters in their respective 
publications.

As shown in Figure 10, for four experimental groups with 
different input images, HE and CLAHE methods improve 
the contrast, but amplify the noise, such that the cardiac 
regions appear very similar to extra-cardiac regions. With 

A B C D

E F G H
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Table 1 Comparison of image quality measures after denoising

Methods Image-1 (CNR, HSEW) Imgae-2 (CNR, HSEW)
Image Sequence 1 & 2  

(CNR-1, CNR-2, HSEW-1, SD-HSEW-2)

OI 5.499, 2.834 4.594, 3.618 5.213, 7.705, 2.812, 1.444

BM3D 5.513, 3.678 4.606, 5.184 5.230, 7.754, 2.667, 3.511

EPLL 5.447, 3.709 4.615, 4.820 5.236, 7.842, 3.097, 4.210

NCSR 5.520, 3.767 4.604, 4.287 5.227, 5.758, 2.860, 2.711

Gaussian filter 5.583, 3.527 4.637, 4.691 5.320, 7.816, 2.790, 1.599

Wiener filter 5.526, 3.742 4.617, 4.390 5.250, 7.766, 2.623, 1.803

NLM 5.524, 3.741 4.604, 4.302 5.243, 7.771, 2.433, 2.351

NLMLS 5.526, 3.991 4.604, 4.299 5.214, 7.810, 2.571, 2.102

ANLM 5.521, 3.853 4.602, 4.276 5.251, 7.782, 2.712, 2.194

FL 5.709, 4.843 5.752, 4.079 5.501, 7.833, 2.401, 2.331

4D-NLM 5.541, 3.230 4.620, 4.250 5.253, 7.781, 2.356, 2.584

log transformation, the whole image becomes brighter but 
the edge becomes blurred. The result of grayscale stretching 
is high contrast effect but serious amplification of noise. The 
same goes for BIMEF and CETLLI methods. SVDDWT 
method also amplifies noise. Gamma transformation, 
LLIE, GUM and GOLWTM methods generate obvious 
less contrast enhancing effect than other methods. Our 
enhancing method (ACEHP) is found to keep low-noise 
level while creating cleaner pericardial boundaries. It also 
enhances the distinction between the fetal heart regions 
and extra-cardiac regions by homogenizing extra-cardiac 
regions. We can see the left part of image enhanced by 
HE, it has artefact. But image enhanced by ACEHP does 
not have these problems. On the other hand, the HE has 
artefacts and noise in the bottom right corner of the image. 
That means that when we use these images to implement 
3D volume rendering, the results will not be good enough.

To validate visual observations, we used entropy to gauge 
the enhancement. Entropy is a measurement of information 
uncertainty and is calculated by

255

2
0

logi i

i

H HE
M M=

= −∑ 	 [31]

where M denotes the pixel number of image and Hi 
is the corresponding grayscale histogram height of the 
i-th grayscale. A large entropy indicates more random 
and disordered information in the image, while a smaller 
entropy indicates clearer classification of information in 
the image. A small entropy value will also imply clearer 
distinguishing of various regions in the image. Table 2 shows 

the entropy values of different methods' enhancing result 
images. We can see that the entropy value of our method 
(ACEHP) performed better than other methods examined.

Volume rendering for human fetal heart ultrasound image

Our aim is distinguishing the human fetal cardiac region and 
non-cardiac regions via denoising and enhancing process, 
so that other important image processing steps like image 
registration, tissue movement tracking, etc. can be better 
implemented. Based on the image sets of several different 
human fetus, we utilized 3D volume rendering (under a 
same transfer function) to evaluate the processing effect of 
different means (denoising + enhancing). In this experiment, 
we selected several method combinations with well denoising 
and enhancing effect as the comparing methods.

As shown in Figure 11, in the volume rendering for 
original image set, it is difficult to find out the cardiac 
region and obvious boundary. In the volume rendering 
for processed image sets via “BM3D+GOLWTM” 
method combination and “median filter+GOLWTM” 
method combination, the cardiac lumen region is very 
unclear. For the images processed via "EPLL+GUM" 
and "NCSR+GUM" combinations, we can see relatively 
complete cardiac lumen region by volume rendering, 
however, the boundaries are not very neat. “Gaussian 
filter+CLAHE” and “Wiener filter+CLAHE” method 
combinat ions  can  a l so  genera te  re la t ive ly  c lear 
cardiac lumen, however, noise level remained high. 
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OI + CLAHE                       OI + HE                             OI + CETLLI                      OI + LLIE

OI + SVDDWT                           OI + LT                                OI + GT                 OI + ACEHP

4D-NLM                  4D-NLM + GOLWTM              4D-NLM + GUM            4D-NLM + BIMEF

4D-NLM + CLAHE               4D-NLM + HE                 4D-NLM + CETLLI            4D-NLM + LLIE

4D-NLM + SVDDWT               4D-NLM + LT                      4D-NLM + GT              4D-NLM + ACEHP

WNNM                        WNNM + GOLWTM             WNNM + GUM               WNNM + BIMEF

OI                             OI + GOLWTM                       OI + GUM                        OI + BIMEF 
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WNNM + CLAHE                  WNNM + HE                WNNM + CETLLI                 WNNM + LLIE

WNNM + SVDDWT                 WNNM + LT                    WNNM + GT                       WNNM + ACEHP

EPLL                     EPLL + GOLWTM               EPLL + GUM                             EPLL + BIMEF

EPLL + CLAHE                 EPLL + HE                             EPLL + CETLLI               EPLL + LLIE

EPLL + SVDDWT                      EPLL + LT                           EPLL + GT                   EPLL + ACEHP

Figure 10 Enhancing results by different method combinations.

“WNNM+CETLLI” and “Gaussian filter+CETLLI” 
m e t h o d  c o m b i n a t i o n s  h a s  s i m i l a r  p r o b l e m s  a s 
“BM3D+GOLWTM” and “median filter+GOLWTM” in 
being unable to generate the cardiac lumen region. But on 
top of this, the boundary generated are less sharp. In the 
volume rendering for processed image sets via our method 
combination "4D-NLM+ACEHP", the cardiac region 
and non-cardiac regions can be obviously distinguished. 
In addition, the cardiac lumen is clear and the boundary is 
neat. Even the ventricular walls can be well rendered.

Discussion

In the current study, we propose a new denoising and 
enhancing method framework to improve 4D clinical fetal 
heart ultrasound images, the 4D-NLM denoising and 
ACEHP enhancing methods. 4D-NLM utilize additional 
information available from both spatial and temporal 
neighboring images to improve denoising, while ACEHP 
adopts an adaptive clipping technique that can ensure 
enhancing without amplification of noise.
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Table 2 Entropy values of result images after enhancing

Methods Entropy Methods Entropy Methods Entropy Methods Entropy

OI 6.95 4D-NLM 6.99 WNNM 6.81 EPLL 7.01

OI+GOLWTM 7.44 4D-NLM+GOLWTM 7.54 WNNM+GOLWTM 7.32 EPLL+GOLWTM 7.56

OI+GUM 7.39 4D-NLM+GUM 7.36 WNNM+GUM 7.41 EPLL+GUM 7.38

OI+BIMEF 7.23 4D-NLM+BIMEF 7.20 WNNM+BIMEF 7.26 EPLL+BIMEF 7.24

OI+CLAHE 7.60 4D-NLM+CLAHE 7.56 WNNM+CLAHE 7.66 EPLL+CLAHE 7.49

OI+HE 6.90 4D-NLM+HE 6.92 WNNM+HE 6.89 EPLL+HE 6.93

OI+CETLLI 6.95 4D-NLM+CETLLI 6.91 WNNM+CETLLI 6.97 EPLL+CETLLI 6.91

OI+LLIE 7.18 4D-NLM+LLIE 7.17 WNNM+LLIE 7.18 EPLL+LLIE 7.16

OI+SVDDWT 7.54 4D-NLM+SVDDWT 7.49 WNNM+SVDDWT 7.56 EPLL+SVDDWT 7.54

OI+LT 6.84 4D-NLM+LT 6.87 WNNM+LT 6.90 EPLL+LT 6.85

OI+GT 6.73 4D-NLM+GT 6.77 WNNM+GT 6.69 EPLL+GT 6.71

OI+ACEHP 4.83 4D-NLM+ACEHP 4.84 WNNM+ACEHP 4.83 EPLL+ACEHP 4.82

For image denoising, we implemented a wide range of 
methods to compare to our proposed 4D-NLM method. 
Via visual observation, we can see that some methods (e.g., 
median filter, BM3D and NCSR) can smooth the image 
to a certain extent, but not sufficiently so, some methods 
(e.g., mean filter, Gaussian filter, EPLL, WNNM) can 
eliminate most of the noise but also blurred the edge, 
while some methods (e.g., Fourier transform) can keep the 
edge clear but resulted in very uneven boundaries. NLM 
and its improved algorithm (e.g., ANLM and NLM) can 
remove most of the noise but NLM blurred the edge of 
images, and ANLM and NLM has deficiencies in evaluating 
indicators (CNR and HSEW). Some methods (e.g., FL) has 
no denoising effect. our proposed 4D-NLM method can 
effectively utilize the information from neighboring images, 
so it has lesser noise and clearer feature edges. Evaluations 
using “method noise” strategy demonstrated that 4D-NLM 
method denoise more uniformly in the field of view, 
and does not remove structural information from the 
image. In particular, we can see that it improves upon the 
traditional NLM method by removing much less structural 
information. We thus believe that 4D-NLM method can be 
effective for human fetal heart ultrasound image denoising.

For image enhancing, similar experiments comparing 
a range of classical and state-of-the-art approaches were 
performed to compare to our proposed ACEHP method. 
ACEHP could give superior entropy and HSEW outcomes, 
indicating a strong ability to generate distinguishing 

features between different regions, and yet retain boundary 
clarity.

With both 4D-NLM and ACEHP, volume rendering 
enabled better visualization of the cardiac luminal space, 
and also ventricular walls, although signal losses in the walls 
is still common, due to low quality original images. Our 
approach can be a good way to improve 3D/4D rendering 
of fetal hearts from scans, to better enable obstetricians and 
cardiologists to detect malformations and dysfunction of 
the heart. However, it should be noted that this study has 
examined only on 4D human fetal heart ultrasound images. 
Our proposed denoising method (4D-NLM) requires 
images with both spatial and temporal neighbors, and can 
thus be used only in 4D images. In addition, our ultrasound 
image enhancing method has only been tested on fetal 
cardiac images, and may not be generalizable to other body 
structures. Our proposed enhancing method (ACEHP) 
should be tested before being applied for other applications.

Conclusion

In this paper, we proposed a special method framework of 
denoising and enhancing for ultrasound image of human 
fetal heart. For denoising, we designed a 4D-NLM method 
to smooth target image utilizing contextual information 
from spatially and temporally neighboring images. It can 
more effectively reduce the laminar artifact noise that is 
common in ultrasound images. For enhancing, we designed 
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Figure 11 Volume rendering for heart ultrasound image sets of different human fetus.

OI                       BM3D + GOLWTM      median filter + GOLWTM          EPLL + GUM                   NCSR + GUM 

Fetal 1:

Fetal 2:

Fetal 3:

Fetus 3Fetus 2Fetus 1

OI                     BM3D + GOLWTM        median filter + GOLWTM          EPLL + GUM                NCSR + GUM 

OI                          BM3D + GOLWTM       median filter + GOLWTM        EPLL + GUM                  NCSR + GUM 

Gaussian filter + CLAHE  Wiener filter + CLAHE        WNNM + CETLLI       Gaussian filter + CETLLI       4D-NLM + ACEHP

Gaussian filter + CLAHE  Wiener filter + CLAHE       WNNM + CETLLI         Gaussian filter + CETLLI     4D-NLM + ACEHP

Gaussian filter + CLAHE   Wiener filter + CLAHE        WNNM + CETLLI      Gaussian filter + CETLLI      4D-NLM + ACEHP

Schematic highlighting cardiac regions for each fetus (red highlight):
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the ACEHP method to distinguish (enhance) the cardiac 
region and non-cardiac regions via adaptive clipping for 
each histogram pillar. These two methods form a holistic 
method framework, which we believe can be useful for 
medical applications. Our method is tested and validated 
using clinical fetal heart ultrasound images.
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