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Background: Microvascular invasion (MVI) has a significant effect on the prognosis of hepatocellular 
carcinoma (HCC), but its preoperative identification is challenging. Radiomics features extracted from 
medical images, such as magnetic resonance (MR) images, can be used to predict MVI. In this study, we 
explored the effects of different imaging sequences, feature extraction and selection methods, and classifiers 
on the performance of HCC MVI predictive models.
Methods: After screening against the inclusion criteria, 69 patients with HCC and preoperative gadoxetic 
acid-enhanced MR images were enrolled. In total, 167 features were extracted from the MR images of each 
sequence for each patient. Experiments were designed to investigate the effects of imaging sequence, number 
of gray levels (Ng), quantization algorithm, feature selection method, and classifiers on the performance of 
radiomics biomarkers in the prediction of HCC MVI. We trained and tested these models using leave-one-
out cross-validation (LOOCV).
Results: The radiomics model based on the images of the hepatobiliary phase (HBP) had better 
predictive performance than those based on the arterial phase (AP), portal venous phase (PVP), and pre-
enhanced T1-weighted images [area under the receiver operating characteristic (ROC) curve (AUC) 
=0.792 vs. 0.641/0.634/0.620, P=0.041/0.021/0.010, respectively]. Compared with the equal-probability 
and Lloyd-Max algorithms, the radiomics features obtained using the Uniform quantization algorithm 
had a better performance (AUC =0.643/0.666 vs. 0.792, P=0.002/0.003, respectively). Among the values 
of 8, 16, 32, 64, and 128, the best predictive performance was achieved when the Ng was 64 (AUC =0.792 
vs. 0.584/0.697/0.677/0.734, P<0.001/P=0.039/0.001/0.137, respectively). We used a two-stage feature 
selection method which combined the least absolute shrinkage and selection operator (LASSO) and recursive 
feature elimination (RFE) gradient boosting decision tree (GBDT), which achieved better stability than and 
outperformed LASSO, minimum redundancy maximum relevance (mRMR), and support vector machine 
(SVM)-RFE (stability =0.967 vs. 0.837/0.623/0.390, respectively; AUC =0.850 vs. 0.792/0.713/0.699, 
P=0.142/0.007/0.003, respectively). The model based on the radiomics features of HBP images using the 
GBDT classifier showed a better performance for the preoperative prediction of MVI compared with 
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Introduction

Hepatocellular carcinoma (HCC) has high incidence and 
mortality rates. It is ranked fifth among all malignancies 
in terms of incidence and is the third most common cause 
of cancer-related death (1). Partial hepatectomy and liver 
transplantation are the most effective treatments for HCC (2);  
however, the respective 5-year recurrence rates are as high 
as 70% and 35% (3-5). Occult metastatic lesions produced 
by hepatoma cells that invade microvessels are a major cause 
of postoperative recurrence of HCC. Numerous studies 
have shown that microvascular invasion (MVI) is one of the 
independent risk factors for the prognosis of primary HCC (5-9).

Accurate identification of MVI in patients with HCC 
is key to formulating treatment strategies and predicting 
prognosis. However, MVI cannot be reliably diagnosed by 
biopsy, which makes its preoperative diagnosis challenging. 
Although several radiologic features of magnetic resonance 
imaging (MRI) and computed tomography (CT) images, 
such as tumor margin, internal arteries, and hypodense 
halos, are known to be predictors of MVI status, a consensus 
on the best predictive features of MVI in HCC has not been 
reached (10-12).

The rapid development of medical imaging technology 
has allowed for more information to be obtained for HCC 
evaluation. Radiomics, a method that involves the high-
throughput extraction of high-dimensional quantitative 
features from medical images, has received widespread 
attention in recent years (13-15), due to the additional 
information it provides for disease analysis. The key steps 
of radiomics analysis methods include image acquisition, 
tumor segmentation, feature extraction, and classifier 
modeling (13,14); all of these steps may have an effect 
on the final performances of radiomics models for HCC 
MVI. Studies have investigated the variability of radiomics 

features with respect to different imaging scanners (16,17), 
image acquisition parameters (18), tumor delineation 
methods (19), reconstruction methods (20-22), feature 
selection methods (23,24), and discretization (25), as well 
as the variability of model performance using different 
classifiers (23,24).

To date, several studies have shown that radiomics 
features based on CT (26-31) or MRI (32-34) perform 
well for the prediction of HCC MVI, outperforming 
radiographic features (26,27,30,32). It is worth noting that 
those studies mainly explored the predictive performance 
of different radiomics features; although, as mentioned 
previously, each step of the radiomics analysis can affect 
the final predictive performance. Ni et al. (31) showed that 
different feature selection methods and different classifiers 
had a significant effect on the prediction of HCC MVI 
based on CT radiomics features. Yang et al. (33) reported 
that radiomics features performed differently in the 
prediction of HCC MVI with different MRI sequences. 
However, almost all studies have neglected the effect of 
different radiomics feature extraction parameters on the 
performances of radiomics models for HCC MVI. In 
addition, some studies have failed to mention the detailed 
parameters of radiomics feature extraction. Therefore, we 
aimed to explore the effects of imaging sequences, feature 
extraction, feature selection and classifiers on the predictive 
performance of a radiomics biomarker for HCC MVI, and 
to provide standardized recommendations for subsequent 
radiomics research related to the prediction of HCC MVI.

Methods

Patients

The study was approved by the Institutional Review Board 

logistic regression (LR), SVM, and random forest (RF) classifiers (AUC =0.895 vs. 0.850/0.834/0.884, 
P=0.558/0.229/0.058, respectively). With the optimal combination of these factors, we established the best 
model, which had an AUC of 0.895, accuracy of 87.0%, specificity of 82.5%, and sensitivity of 93.1%.
Conclusions: Imaging sequences, feature extraction and selection methods, and classifiers can have a 
considerable effect on the predictive performance of radiomics models for HCC MVI.
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and Ethical Committee of The First Affiliated Hospital, 
Sun Yat-sen University, and conformed to the provisions of 
the Helsinki Declaration. The requirement for informed 
consent was waived. Between August 2016 and March 2019, 
we reviewed the medical records and imaging data of all 
HCC patients diagnosed at the First Affiliated Hospital, 
Sun Yat-sen University. The inclusion criteria were: (I) a 
solitary lesion; (II) hepatectomy; (III) no prior surgical or 
medical anticancer treatment before the MRI scan; (IV) 
MRI acquired within the 1 month prior to treatment; (V) 
HCC and MVI confirmed by pathologic examination; (VI) 
no known distant metastasis; and (VII) images with the same 
spatial resolution for all sequences. Patients with mixed cell 
tumors (HCC and cholangiocarcinoma) or with extensive 
tumor invasion were excluded. Details of the patient 
recruitment process are shown in Figure 1. Sixty-nine HCC 
patients (66 males, 3 females; mean age: 52.7 years, range: 
18–75 years) met the inclusion criteria; of them, 29 were 
confirmed with MVI by postoperative histopathology.

MRI acquisition

Gadoxetic acid-enhanced MRI examinations were 
performed for all patients (body coil, supine position), using 
a 3.0T MR system (Siemens Veiro, Germany). The MRI 
scan sequence included: T1-weighted imaging (T1WI) in/

out of phase sequence imaging, pre-enhanced T1-weighted 
imaging (pre-T1WI) sequence axial imaging, and T2-
weighted imaging (T2WI). Following the injection of 
gadoxetic acid (Primovist®, 0.1 mL/kg body weight) into 
the cubital vein at a flow rate of 1 mL/s, post-contrast 
dynamic three-dimensional (3D) T1-weighted volumetric-
interpolated breath-hold examination (VIBE) was conducted 
during the arterial phase (AP; 20–30 seconds), portal venous 
phase (PVP; 60–70 seconds), and hepatobiliary phase (HBP; 
20 minutes). The detailed scanning parameters of the pre-
T1WI, AP, PVP, and HBP are shown in Table 1. Figure 2 
shows examples of pre-T1WI, AP, PVP, and HBP images of 
a 55-year-old man.

Radiomics feature extraction

The tumor lesions on each axial slice were contoured 
carefully by a board-certified abdominal radiologist using 
ITK-SNAP software (www.itksnap.org) and then checked 
by an experienced radiologist (both with >10 years of 
experience in abdominal imaging). To increase the reliability 
of the MRI texture measurements, the voxels within the 
tumor region with intensities outside the range of μ ± 3σ 
(μ and σ represent the mean and standard deviation of the 
image intensities within the tumor region, respectively) 
were rejected and not considered in subsequent texture 

Figure 1 Flowchart of the patients’ enrollment. HCC, hepatocellular carcinoma; MRI, magnetic resonance images.

Eligible patients who underwent pretreatment MRI and were diagnosed “HCC” by 

MRI from August 2016 to March 2019 (n=967)

Patients underwent hepatectomy and pathological confirmation of HCC (n=447)
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(1) Macroscopic vascular invasion (n=67)

(2) MRI with extracellular contrast agents (n=75)

(3) Multiple HCC lesions (n=90)

(4) With extrahepatic metastasis (n=1)

(5) MRI examination underwent more than 1 month before 

hepatectomy (n=3)

(6) mixed cell tumors (HCC and cholangiocarcinoma) (n=5)

(7) Images without the same spatial resolution for all sequences 

(n=137) 
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computations, as suggested by Collewet et al. (35). Next, all 
images were resampled to an isotropic voxel size using an 
interpolation method. Except that by Zhang et al. (34), all 
previous radiomics studies on the prediction of HCC MVI 
resampled the images to a voxel size of 1.00×1.00×1.00 mm3. 
Vallières et al. (36) suggested an isotropic voxel size that was 
equal to the initial in-plane resolution (1.19×1.19×1.19 mm3  
in our study). Considering that the slice thickness was  

2 mm, in our study we resampled the images to different 
s izes  including 1 .00×1.00×1.00,  1 .19×1.19×1.19, 
1.50×1.50×1.50, and 2.00×2.00×2.00 mm3. Because 
high interpolation accuracy can reduce the influence of 
image distortion, we chose the commonly used 3D cubic 
interpolation with the Matrix Laboratory (MATLAB, 
Version R2019a) software.

The quantitative image feature toolkit, which was 

Table 1 MRI sequences and scanning parameters

Sequences TR (ms) TE (ms) Flip angle Thickness (mm) FOV (mm) Matrix

Pre-T1WI 3.92 1.39 9 2 285×380 320×240

AP 3.92 1.39 9 2 285×380 320×240

PVP 3.92 1.39 9 2 285×380 320×240

HBP 4.44 1.55 35 2 285×380 320×240

AP, arterial phase; HBP, hepatobiliary phase; FOV, field of view; MRI, magnetic resonance imaging; pre-T1WI, pre-enhanced T1-weighted 
imaging; PVP, portal venous phase; TE, echo time; TR, repeat time.

Figure 2 Examples of pre-enhanced T1WI, HBP, AP, and PVP images of a 55-year-old man. T1WI, T1-weighted imaging; AP, arterial 
phase; HBP, hepatobiliary phase; PVP, portal venous phase.

T1WI AP

PVP HBP
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developed in-house using MATLAB, was used to calculate 
the radiomics features. Using an image of a single tumor 
lesion as input, we calculated 167 quantitative features, 
including shape, intensity, and texture features, with 
the toolkit. In total, 24 shape features described the 3D 
geometric properties of the tumor. A further 37 intensity 
features estimated the first-order statistics of the intensity 
histogram. Moreover, the intra-tumor heterogeneity was 
quantified by 106 textural features derived from the gray-
level co-occurrence matrix (GLCM), gray-level run-
length matrix (GLRLM), gray-level size zone matrix 
(GLSZM), spatial gray-level dependence matrix (SGLDM), 
neighborhood gray-tone difference matrix (NGTDM), and 
neighborhood gray-level difference statistics (NGLDS).

Prior to the computation of the textural features, the 
full intensity range of the tumor region was quantified to 
a smaller number of gray levels (Ng). The pixel value in a 
gray-scale image is usually an integer between 0 and 255. If 
Ng =8 is chosen, the pixel value is quantitatively mapped to 
an integer between 0 and 7, which can greatly reduce the 
burden of calculation in feature extraction. The Uniform, 
equal-probability, and Lloyd-Max quantization algorithms 
were tested using our quantitative image feature kit. The 
calculation formula of the Uniform quantization algorithm 
was:

( )( )1
y round 1min

max min

x x Ng
x x

 − −
= + − 

 [1]

where ‘round’ represents the rounding function, ‘x’ 
refers to the original tumor region voxel value, xmax and 
xmax are the maximum and minimum voxel values of the 
original tumor region, respectively, and y is the result  
(1–Ng) after quantization. The equal-probability and 
Lloyd-Max quantization algorithms were calculated using 
the histeq and lloyds functions of MATLAB, respectively. 
Ng can theoretically be set to any integer value in all three 
quantization algorithms. All previous radiomics studies 
related to the prediction of HCC MVI, only Zhang  
et al. (34), reported the value of Ng is 64 and selected 
the Uniform quantization algorithm as the quantization 
algorithm, while other studies (26-33) failed to specify the 
value of Ng or the quantization algorithm. In our study, we 
tested the three quantization algorithms and commonly 
used Ng values, including 8, 16, 32, 64, and 128.

Radiomics feature selection

There are three main types of feature selection methods: 

filter, wrapper, and embedded (37). Minimum redundancy 
maximum relevance (mRMR) (38), support vector machine 
(SVM) recursive feature elimination (RFE) (39), and least 
absolute shrinkage and selection operator (LASSO) (40) 
algorithms are common filter, wrapper, and embedded 
methods for feature selection, respectively. Of the radiomics 
studies related to HCC MVI prediction, we found that 
only two used SVM-RFE or mRMR as the feature 
selection method (29,34), and the others used LASSO 
(26,28,30,32,33). Our study tested the performance of the 
feature selection methods, including SVM-RFE, mRMR, 
and LASSO, in HCC MVI prediction. In addition, we 
present a two-stage feature selection method combining 
LASSO and the gradient boosting decision tree RFE 
(GBDT-RFE) (LASSO-RFE). The workflow of the 
LASSO-RFE is shown in Figure 3. With a 10-fold cross-
validation strategy, LASSO was applied to obtain the feature 
subsets in the training set; next, the GBDT-RFE was used 
to sort the feature subsets. A backward search algorithm 
was used to verify the performance of different numbers of 
feature combinations in the validation set, from which the 
feature subset with the best performance was selected as the 
optimal feature subset. Finally, the maximal information 
coefficient (MIC) was used to calculate the correlation 
in the optimal feature subset for 10 folds and remove the 
redundant features that had a strong correlation (MIC >0.5) 
with the features with higher frequency.

Classifiers and radiomics model building

Almost all of the previous radiomics studies about HCC 
MVI prediction used logistic regression (LR) as a classifier 
(29-30,32-34). Moreover, as SVM, random forest (RF), and 
GBDT are machine-learning classifiers commonly used 
in similar radiomics research, we explored the differences 
in performance between these four classifiers for the 
prediction of HCC MVI. In our study, LR, SVM, RF, 
and GBDT were implemented in the scikit-learn Python 
(version 3.7) library.

To train and test the model, we used the leave-one-out 
cross-validation (LOOCV) strategy, with one subject for 
testing and the remaining subjects for training. The data 
were divided into a training cohort and a testing cohort using 
the LOOCV strategy. In the training cohort, the best feature 
subset was first obtained by feature selection, and then the 
feature values of the best feature subset were standardized:

x μy
δ
−

=  [2]
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where x is the original feature value, μ and σ are the mean 
and standard deviation values of the original eigenvectors, 
respectively, and y is the standardized feature value. In the 
testing cohort, the corresponding features were standardized 
in the same way; however, it should be noted that μ and σ 
referred to the mean and standard deviation values of the 
original eigenvectors in the training cohort. Finally, the 
model was trained and tested using the training and testing 
cohorts, respectively. The above steps were repeated until 
each sample had been tested once as the testing cohort.

Study design and performance evaluation

The workflow of the study is shown in Figure 4. We chose 
1.19×1.19×1.19 mm3, 64, Uniform, LASSO, and LR as 
the initial settings for the resampled voxel size, Ng, the 
quantization algorithm, feature selection method, and 

classifier, respectively, because they have been the most 
commonly used in other radiomics studies. In experiment 1, 
we aimed to explore the prediction performance differences 
between the pre-T1WI, AP, PVP, and HBP sequences; 
the experiment was carried out with the initial settings. In 
subsequent experiments, we used the control variable strategy, 
and each experiment setting was based on the variables that 
obtained the best predictive performance from the previous 
experiment. Furthermore, we explored the effects of resampled 
voxel size, Ng, quantization algorithm, feature selection 
method, and classifiers on the performance of predictive 
models in experiments 2, 3, 4, 5 and 6, respectively.

The performance of the predictive models was evaluated 
using the receiver operating characteristic (ROC) 
curve. The area under the ROC curve (AUC) with 95% 
confidence intervals (95% CI) was calculated, because it 
denotes the classification performance across all decision 

Figure 3 Workflow of the LASSO-RFE. CV, cross-validation; GBDT, gradient boosting decision tree; GBDT-RFE, GBDT-recursive 
feature elimination; LASSO, least absolute shrinkage and selection operator.
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thresholds. From the ROC curve, the accuracy, sensitivity, 
and specificity were calculated according to the decision 
threshold with the highest accuracy. In our study, the 
stability of the feature selection method using the cross-
validation strategy was defined as:

( ) ( )
1 1

stability   
1

K K i j
i j

i j

F F
F F

j i
K K

= =

∩
∪

= ≠
× −

∑ ∑                                                                            [3]

where Fi and Fj are the feature selection results of the i-fold 
and j-fold, respectively, and K represents the total number 

Figure 4 Workflow of the study. μ and σ represent the mean and standard deviation of the MRI voxel within the tumor region, respectively; 
AP, arterial phase; GBDT, gradient boosting decision tree; GLCM, gray-level co-occurrence matrix; GLRLM, gray-level run-length matrix; 
GLSZM, gray-level size zone matrix; HBP, hepatobiliary phase; PVP, portal venous phase; pre-T1WI, pre-enhanced T1-weighted imaging; 
LASSO, least absolute shrinkage and selection operator; LASSO-RFE, a method combining LASSO and gradient boosting decision tree 
recursive feature elimination; LOOCV, leave-one-out cross-validation; LR, logistic regression; MRI, magnetic resonance imaging; mRMR, 
minimum redundancy maximum relevance; NGLDS, neighborhood gray-level difference statistics; NGTDM, neighborhood gray-tone 
difference matrix; RF, random forest; SGLDM, spatial gray-level dependence matrix; SVM, support vector machine; SVM-RFE, SVM-
recursive feature elimination.
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of folds. The stability value ranged between 0 and 1. If the 
feature selection results of each fold were consistent, the 
stability value would be 1.

Statistical analysis

The Mann-Whitney U test was used to compare the clinical 
characteristics between MVI-present and MVI-absent cohorts 
for continuous variables, and the Chi-square test was used 
for categorical variables. To evaluate the differences in the 
predictive performance of the different models, the ROC 
curves of all models were compared using MedCalc software 
(version 12.7.0). Other statistical analyses were performed in 
the scipy-stats Python (version 3.7) library. Two-tailed P values 
<0.05 were considered statistically significant.

Results

Demographic and clinical characteristics

The demographic and clinical characteristics of the patients 

are listed in Table 2. All patients had hepatitis, and 28 had 
accompanying cirrhosis.

Prediction performance of the models

Experiment 1
With the settings of resampled voxel size, quantization 
algorithm, Ng, feature selection method, and classifier 
as 1.19×1.19×1.19 mm3, Uniform, 64, LASSO, and LR, 
respectively, the performance of the predictive models built 
using the AP, PVP, pre-T1WI, and HBP images are listed in 
Table 3. The ROC curves are shown in Figure 5. The model 
based on the radiomics features of HBP images displayed 
a better predictive performance for HCC MVI than the 
radiomics features of AP, PVP, and pre-T1WI (AUC =0.792 vs. 
0.641/0.634/0.620, respectively). The P values of the differences 
between the HBP ROC curve and the AP, PVP, and pre-T1WI 
curves were 0.041, 0.021, and 0.010, respectively.

Experiment 2
With the settings of Ng, quantization algorithm, feature 

Table 2 Demographics and clinical characteristics of the 69 study patients

Characteristics MVI-present (n=29) MVI-absent (n=40) P value

Age (years), mean ± SD [range] 49.7±11.8 [25–75] 55.2±11.6 [18–75] 0.034

Sex (male; female) 28; 1 37; 3 0.477

AFP (μg/L), mean ± SD (range) 3,779.9±10,372.6 (0.7–45,020.8) 8,633.8±50,419.0 (1.4–319,159.4) 0.109

Tumor size (mm), mean ± SD [range] 55.4±26.8 [23–113] 44.9±21.2 [14–92] 0.158

Liver disease, n (%)

Hepatitis 29 (100.0) 40 (100.0) >0.999

Etiology of hepatitis 0.329

Hepatitis C 0 (0.0) 1 (2.5)

Hepatitis B 29 (100.0) 33 (82.5)

Alcohol 2 (6.9) 4 (10.0)

Metabolic 2 (6.9) 6 (15.0)

Other 0 (0.0) 3 (7.5)

Cirrhosis 8 (27.6) 20 (50.0) 0.061

ALBI grade of cirrhosis 0.589

Grade 1 17 (58.6) 26 (65.0)

Grade 2 12 (41.4) 14 (35.0)

Grade 3 0 (0.0) 0 (0.0)

The ALBI score grading was: grade 1 (score ≤–2.6), grade 2 (–2.6< score ≤–1.39) and grade 3 (score >–1.39). ALBI, albumin-bilirubin; AFP, 
alpha-fetoprotein; MVI, microvascular invasion; SD, standard deviation.
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selection method, and classifier as 64, Uniform, LASSO, 
and LR, respectively, details of the performance of the 
predictive models built using the HBP radiomics features 
obtained with different resampled voxel sizes are listed in 
Table 4. The ROC curves are shown in Figure 6. Compared 
with the images of 1.50×1.50×1.50 and 2.00×2.00×2.00 mm3,  
the  rad iomics  fea tures  obta ined  wi th  images  o f 
1.00×1.00×1.00 or 1.19×1.19×1.19 mm3 displayed a better 
performance (AUC =0.792/0.792 vs. 0.639/0.613, P=0.010 
and 0.001, respectively). The radiomics features obtained 
using the 1.193 mm3 resampled voxel size had a higher 
sensitivity than those obtained using 1.003 mm3 (sensitivity 
=86.2% vs. 75.9%).

Experiment 3
With the settings of resampled voxel size, Ng, feature 
selection method, and classifier as 1.19×1.19×1.19 mm3, 64, 
LASSO, and LR, respectively, details of the performance 
of the predictive models built using the HBP radiomics 

Figure 5 ROC curves of the predictive models built using 
different sequences when the Ng, quantization algorithm, feature 
selection method, and classifier were 64, Uniform, LASSO, and 
LR, respectively. AP, arterial phase; AUC, area under the ROC 
curve; HBP, hepatobiliary phase; LASSO, least absolute shrinkage 
and selection operator; LR, logistic regression; Ng, number of 
gray levels; pre-T1WI, pre-enhanced T1-weighted imaging; PVP, 
portal venous phase; ROC, receiver operating characteristic.

Table 3 Performance of predictive models built using HBP, AP, PVP, and T1WI sequences when the resampled voxel size, Ng, quantization 
algorithm, feature selection method, and classifier were 1.19×1.19×1.19 mm3, 64, Uniform, LASSO, and LR, respectively

Sequence AUC 95% CI Accuracy (%) Sensitivity (%) Specificity (%)

HBP 0.792 0.678–0.881 75.4 86.2 67.5

AP 0.641 (P=0.041*) 0.517–0.753 63.8 58.6 67.5

PVP 0.634 (P=0.021*) 0.510–0.747 63.8 62.1 65.0

Pre-T1WI 0.620 (P=0.010*) 0.495–0.734 59.4 51.7 65.0

*, Statistically significant results from the ROC analysis, as compared with HBP. P values refer to the comparison between ROC curves 
and HBP. AP, arterial phase; AUC, area under the ROC curve; ROC, receiver operating characteristic; CI, confidence interval; HBP, 
hepatobiliary phase; LASSO, least absolute shrinkage and selection operator; LR, logistic regression; Ng, number of gray levels; pre-T1WI, 
pre-enhanced T1-weighted imaging; PVP, portal venous phase.

Table 4 Performance of the predictive models built using HBP radiomics features obtained by different resampled voxel sizes when the Ng, 
quantization algorithm, feature selection method, and classifier were 64, Uniform, LASSO, and LR, respective

Resampled voxel size, mm3 AUC 95% CI Accuracy (%) Sensitivity (%) Specificity (%)

1.193 0.792 0.678–0.881 75.4 86.2 67.5

1.003 0.792 (P>0.999) 0.678–0.881 75.4 75.9 75.0

1.503 0.639 (P=0.010*) 0.514–0.751 60.9 62.1 60.0

2.003 0.613 (P=0.001*) 0.488–0.728 65.2 62.1 67.5

*, Statistically significant results from the ROC analysis as compared with 1.19×1.19×1.19 mm3. P value indicates the significance in ROC 
curve comparison with 1.19×1.19×1.19 mm3. AUC, area under the ROC curve; ROC, receiver operating characteristic; CI, confidence 
interval; HBP, hepatobiliary phase; LASSO, least absolute shrinkage and selection operator; LR, logistic regression; Ng, number of gray 
levels.
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features obtained with the Uniform, Lloyd-Max, and equal-
pro quantization algorithms are listed in Table 5. The ROC 
curves are shown in Figure 7. Compared with the equal-
probability and Lloyd-Max algorithms, the radiomics 
features obtained using the Uniform quantization algorithm 
had a better performance (AUC =0.792 vs. 0.643/0.666, 
respectively). The P values for the differences between the 
Uniform ROC curves and the Lloyd-Max and equal-pro 
curves were 0.002 and 0.003, respectively.

Experiment 4
With the settings of resampled voxel size, quantization 
algorithm, feature selection method, and classifier 

as 1.19×1.19×1.19 mm3, Uniform, LASSO, and LR, 
respectively, details of the performance of the predictive 
models built using the HBP radiomics features obtained 
with different Ngs, including 8, 16, 32, 64, and 128, are 
listed in Table 6. The ROC curves are shown in Figure 8. 
Among the values of 8, 16, 32, 64, and 128, the best HCC 
MVI predictive performance was obtained when Ng was 64 
(AUC =0.792 vs. 0.584/0.697/0.677/0.734, respectively). 
The P values of the differences between the ROC curves 
with a Ng of 64 and the curves with a Ng of 8, 16, 32, and 
128 were <0.001, 0.039, 0.001, and 0.137, respectively.

Experiment 5
With the settings of resampled voxel size, Ng, quantization 
algorithm, and the classifier as 1.19×1.19×1.19 mm3, 64, 
Uniform, and LR, respectively, details of the performance 
of the predictive models built using the HBP radiomics 
features obtained by different feature selection methods, 
including LASSO-RFE, LASSO, mRMR, and SVM-
RFE, are listed in Table 7. Among these feature selection 
methods, the radiomics features selected by LASSO-
RFE showed better stability and predictive performance 
than LASSO, mRMR, and SVM-RFE (stability =0.967 
vs. 0.837/0.623/0.390, respectively; AUC =0.850 vs. 
0.792/0.713/0.699, respectively) (Figure 9). The P values of 
the differences between the LASSO-RFE ROC curves and 
the LASSO, mRMR, and SVM-RFE curves were 0.142, 
0.007, and 0.003, respectively.

Experiment 6
With the settings of resampled voxel size, Ng, quantization 
algorithm, and feature selection method as 1.19×1.19×1.19 mm3,  
64, Uniform, and LASSO-RFE, respectively, details of 
the performance of the predictive models established with 
SVM, LR, RF, and GBDT based on the HBP images are 

Figure 6 ROC curves of predictive models built based on HBP 
radiomics features obtained with different resampled voxel 
sizes, including 1.003, 1.193, 1.503 and 2.003 mm3 when the Ng, 
quantization algorithm, feature selection method, and classifier 
were 64, Uniform, LASSO, and LR, respectively. AUC, area under 
the ROC curve; HBP, hepatobiliary phase; LASSO, least absolute 
shrinkage and selection operator; LR, logistic regression; Ng, 
number of gray levels; ROC, receiver operating characteristic.

Table 5 Performance of the predictive models built using HBP radiomics features obtained by Uniform, Lloyd-Max and equal-pro quantization 
algorithms when the resampled voxel size, Ng, feature selection method, and classifier were 1.19×1.19×1.19 mm3, 64, LASSO, and LR, 
respectively

Quant.algo. AUC 95% CI Accuracy (%) Sensitivity (%) Specificity (%)

Uniform 0.792 0.678–0.881 75.4 86.2 67.5

Lloyd-max 0.666 (P=0.002*) 0.542–0.775 68.1 69.0 67.5

Equal-pro 0.643 (P=0.003*) 0.519–0.755 66.7 58.6 72.5

*, Statistically significant results from the ROC analysis as compared with Uniform. P value indicates the significance in ROC curve 
comparison with Uniform. AUC, area under the ROC curve; ROC, receiver operating characteristic; CI, confidence interval; HBP, 
hepatobiliary phase; LASSO, least absolute shrinkage and selection operator; LR, logistic regression; Ng, number of gray levels; Quant.
algo., quantization algorithm.
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shown in Figure 10. The model based on the radiomics 
features of the HBP images using GBDT displayed a better 
performance than LR, SVM, and RF for the preoperative 
prediction of MVI (AUC =0.895 vs. 0.850/0.834/0.884, 
respectively). The P values of the differences between the 
GBDT ROC curves and the RF, LR, and SVM curves were 
0.558, 0.229, and 0.058, respectively (Table 8).

Feature selection results

With the LOOCV strategy, LASSO-RFE was used to select 
features in the training cohort. The selected features of 68 

folds were solidity, range, high gray-level zone emphasis 
(HGLZE), and gray-level variance of GLSZM (GLSZM_
GLV), while those of the remaining 1 fold were solidity, 
range, HGLZE, GLSZM_GLV, and maximum NGLDS 
(NGLDS_Max); the mean, standard deviation, and range 
(minimum–maximum) of each of these five features are 
listed in Table 9.

Discussion

In this study, the model based on the radiomics features of 
HBP images displayed a better predictive performance for 
HCC MVI than those based on the radiomics features of 
AP, PVP, and pre-T1WI images; moreover, the differences 
in performance were significant (P values =0.010–0.041). 
Our finding is in accordance with the conclusion of Yang 
et al. (33). Notably, the predictive model based on HBP 
had higher sensitivity than the other sequences. Gadoxetic 
acid is a liver-specific intracellular MRI contrast agent that 
provides enhanced hepatocellular parenchymal contrast. 
Other studies have reported that gadoxetic acid-enhanced 
MRI may aid in the diagnosis of HCC MVI (41,42), 
which has been confirmed by our research, and may occur 
because, in the presence of MVI, tumor thrombi obstruct 
the minute portal branches that supply the hepatocytes. 
Thus, the uptake of gadoxetic acid by hepatocytes will 
decrease, resulting in hemodynamic changes that are visible 
on imaging (43).

Our results showed that the feature extraction parameters 
(resampled voxel size, Ng, and discretization method) had a 
considerable effect on the predictive performance of models 
for HCC MVI. The best predictive performance was obtained 
when the resampled voxel size was 1.19×1.19×1.19 mm3,  
equivalent to the transverse plane resolution. A possible 

Figure 7 ROC curves of predictive models built based on HBP 
radiomics features obtained by Uniform, Lloyd-Max, and equal-
pro quantization algorithms when the Ng, feature selection 
method, and classifier were 64, LASSO, and LR, respectively. 
AUC, area under the ROC curve; Equal-pro, equal-probability; 
HBP, hepatobiliary phase; LASSO, least absolute shrinkage and 
selection operator; LR, logistic regression; Ng, number of gray 
levels; ROC, receiver operating characteristic.

Table 6 Performance of the predictive models built using HBP radiomics features obtained with different Ngs when the resampled voxel size, 
quantization algorithm, feature selection method, and classifier were 1.19×1.19×1.19 mm3, Uniform, LASSO, and LR, respectively

Ng AUC 95% CI Accuracy (%) Sensitivity (%) Specificity (%)

64 0.792 0.678–0.881 75.4 86.2 67.5

8 0.584 (P<0.001*) 0.459–0.702 58.0 72.4 47.5

16 0.697 (P=0.039*) 0.575–0.802 63.8 69.0 60.0

32 0.677 (P=0.001*) 0.553–0.784 66.7 55.2 75.0

128 0.734 (P=0.137) 0.614–0.834 69.6 82.8 60.0

*, Statistically significant results from ROC analysis as compared with Ng =64. P value indicates the significance in ROC curve comparison 
with Ng =64. AUC, area under the ROC curve; ROC, receiver operating characteristic; CI, confidence interval; HBP, hepatobiliary phase; 
LASSO, least absolute shrinkage and selection operator; LR, logistic regression; Ng, number of gray levels.
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explanation is that compared with 1.00×1.00×1.00, 
1.50×1.50×1.50, and 2.00×2.00×2.00, the resampled voxel 
size of 1.19×1.19×1.19 mm3 does not require interpolation 
in the transverse plane of MR images, which can reduce 
the image distortion caused by interpolation and is thus 
conducive to extracting the features correlated with 
MVI. Moreover, the greater the difference between the 
resampled voxel size and 1.19×1.19×1.19 mm3, the worse 
the performance. Compared with equal-probability and 
Lloyd-Max, the radiomics features obtained using the 

Uniform quantization algorithm had better performance. 
Furthermore, the performance differences were mainly 
reflected in sensitivity, which may be because the equal-
pro and Lloyd-Max quantization algorithms change 
the dimensionless range of intensity, thereby discarding 
the gadoxetic acid uptake information (i.e., metabolic 
activity) that plays an important role in the diagnosis of 
MVI, as discussed earlier. Among the values of 8, 16, 32, 
64, and 128, the best HCC MVI predictive performance 
was obtained when Ng was 64. There were significant 
differences (P<0.001–0.039) in predictive performance 
compared with Ng =8 or 16. However, when Ng was 128 
(>64), a better predictive performance was not achieved, 
even if the difference of predictive performance between 64 
and 128 was not significant (P=0.137). PET (44), CT (45), 
and MRI (46) studies have reported that radiomics features 
are extremely sensitive to the specific choice of Ng, which is 
similar to the findings of our study. Compared with previous 
studies, we focused on the change in the final performance 
rather than the variability of the radiomics feature values. 
Ng values of 8, 16, and 32 are likely too small, especially 
a Ng of 8, which has previously been criticized as being 
inadequate for textural analysis (44). However, using a Ng 
of 128 will lead to large and empty matrices (including 
GLCM, GLRLM, GLSZM, NGTDM, and SGLDM) that 
may influence results. Thus, the most robust choice for Ng 
is 64; previous studies have also shown that this value is 
more suitable for the extraction of radiomics features than 8, 
16, 32, and 128 (44).

High-throughput radiomics features can easily lead to 
over-fitting (47), especially in small datasets such as ours. In 
this case, what the classifier learns may be data-dependent 

Figure 8 ROC curves of prediction models built based on HBP 
radiomics features obtained with different Ngs, including 8, 
16, 32, 64, and 128, when the quantization algorithm, feature 
selection method, and classifier were Uniform, LASSO, and LR, 
respectively. AUC, area under the ROC curve; HBP, hepatobiliary 
phase; LASSO, least absolute shrinkage and selection operator; 
LR, logistic regression; Ng, number of gray levels; ROC, receiver 
operating characteristic.

Table 7 Performance of the predictive models built using HBP radiomics features obtained by different feature selection methods, 
comprising LASSO-RFE, LASSO, mRMR, and SVM-RFE, when the resampled voxel size, Ng, quantization algorithm, and classifier were  
1.19×1.19×1.19 mm3, 64, Uniform, and LR, respectively

Fea.Select.algo. Stability AUC 95% CI Accuracy (%) Sensitivity (%) Specificity (%)

LASSO-RFE 0.967 0.850 0.744–0.925 79.7 82.8 77.5

LASSO 0.837 0.792 (P=0.142) 0.678–0.881 75.4 86.2 67.5

mRMR 0.623 0.713 (P=0.007) 0.591–0.815 66.7 79.3 57.5

SVM-RFE 0.390 0.699 (P=0.003) 0.577–0.804 69.6 75.9 65.0

*, Statistically significant results from ROC analysis as compared with LASSO-RFE. P value indicates the significance in ROC curve 
comparison with LASSO-RFE. AUC, area under the ROC curve; ROC, receiver operating characteristic; CI, confidence interval; Fea.
Select.algo., feature selection methods; HBP, hepatobiliary phase; LASSO, least absolute shrinkage and selection operator; LASSO-RFE, 
a method combining LASSO and gradient boosting decision tree recursive feature elimination; LR, logistic regression; mRMR, minimum 
redundancy maximum relevance; Ng, number of gray levels; SVM-RFE, support vector machine recursive feature elimination.
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noise rather than MVI biomarkers, which greatly reduces 
the generalizability of the HCC MVI predictive model. 
In our study, to avoid the disadvantages of dimensionality, 
feature selection was used, and we used the LOOCV 
strategy to determine if over-fitting had occurred. Among 
the three commonly used feature selection methods 
(mRMR, SVM-RFE, and LASSO), the radiomics features 
selected by LASSO displayed the best stability and 
predictive performance, which may be because LASSO 
retains the good features of both the subset selection and 

ridge regression. LASSO is suitable for analyzing large sets 
of radiomics features with a relatively small sample size 
and is designed to avoid over-fitting, which helps to reduce 
the interference of data noise (irrelevant features) (48,49). 
We also presented a two-stage feature selection LASSO-
RFE, which achieved better stability and performance than 
LASSO. After using LASSO to select a feature subset, RFE 
used a verification set to perform a secondary selection of 
feature subsets, which further eliminated irrelevant features. 
Similar methods using two-stage feature selection have been 

Figure 9 ROC curves of predictive models built based on HBP 
radiomics features obtained by different feature selection methods, 
comprising LASSO-RFE, LASSO, mRMR, and SVM-RFE, when 
the Ng, quantization algorithm, and classifier were 64, Uniform, 
and LR, respectively. AUC, area under the ROC curve; HBP, 
hepatobiliary phase; LASSO, least absolute shrinkage and selection 
operator; LASSO-RFE, a method combining LASSO and gradient 
boosting decision tree recursive feature elimination; LR, logistic 
regression; mRMR, minimum redundancy maximum relevance; 
Ng, number of gray levels; ROC, receiver operating characteristic; 
SVM-RFE, support vector machine recursive feature elimination.

Table 8 Performance of the predictive models established with SVM, LR, RF, and GBDT based on the HBP images when the resampled voxel 
size, Ng, quantization algorithm, and feature selection method were 1.19×1.19×1.19 mm3, 64, Uniform, and LASSO-RFE, respectively

Classifiers AUC 95% CI Accuracy (%) Sensitivity (%) Specificity (%)

GBDT 0.895 0.797–0.956 87.0 93.1 82.5

RF 0.884 (P=0.558) 0.784–0.949 84.1 86.2 82.5

LR 0.850 (P=0.229) 0.744–0.925 79.7 82.8 77.5

SVM 0.834 (P=0.058) 0.725–0.912 81.2 82.8 80.0

P value indicates the significance in ROC curve comparison with GBDT. AUC, area under the ROC curve; ROC, receiver operating 
characteristic; CI, confidence interval; HBP, hepatobiliary phase; GBDT, gradient boosting decision tree; LASSO-RFE, a method combining 
LASSO and gradient boosting decision tree recursive feature elimination; LR, logistic regression; Ng, number of gray levels; RF, random 
forest; SVM, support vector machine.
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Figure 10 ROC curves of predictive models established with 
SVM, LR, RF, and GBDT classifiers based on the HBP images 
when the Ng, quantization algorithm, and feature selection method 
were 64, Uniform and LASSO-RFE, respectively. AUC, area under 
the ROC curve; GBDT, gradient boosting decision tree; HBP, 
hepatobiliary phase; LR, logistic regression; Ng, number of gray 
levels; LASSO-RFE, a method combining LASSO and gradient 
boosting decision tree recursive feature elimination; RF, random 
forest; ROC, receiver operating characteristic; SVM, support 
vector machine.
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used to achieve better performance in previous radiomics 
studies (50,51).

In the preoperative prediction of MVI, the model based 
on the radiomics features of HBP images using GBDT 
displayed a better performance than those using LR, SVM, 
and RF; this is consistent with the findings of Ni et al. (31), 
who explored the best model for MVI prediction based on 
CT images (31). In fact, some radiomics studies have also 
reported that GBDT has a better performance than other 
classifiers, including LR, SVM, and RF (52,53). This may 
be because GBDT is an iterative algorithm based on a 
decision tree, which can improve performance by reducing 
model deviation in the iterative process. Nevertheless, no 
significant differences were found among the four classifiers 
(P values =0.058–0.558), which indicates that the predictive 
ability of the radiomics features found in our study for MVI 
does not depend largely on the classifier.

Using the LOOCV strategy, the solidity, range, 
HGLZE, and GLSZM_GLV were selected stably in all  
69 folds,  and achieved a good average predictive 
performance using classifiers including LR, SVM, RF, and 
GBDT (AUC =0.834–0.895). This may demonstrate the 
stability and robustness of the extracted radiomics features. 
Specifically, we found that the presence of HCC MVI 
resulted in lower values of solidity, range, HGLZE, and 
GLSZM_GLV. The possible reasons may be as follows. 
Solidity is derived by calculating the proportion of pixels 
of the tumor region to the largest possible convex hull 
polygon structure of the tumor region, and the convex hull 
is the best-fitting polygon that encloses all of the pixels in 
the tumor region. Solidity reflects the degree of irregularity 
of the tumor; the more irregular the tumor, the smaller 
the isolation value. Moreover, according to histologic 

examination, MVI-positive HCC has a tendency to 
aggressively invade the tumor capsule and protrude into the 
noncancerous parenchyma, thus often showing an irregular 
shape (54). HGLZE indicates the distribution of the high 
gray-level region; a smaller HGLZE value indicates that 
the high gray-level region occupies a lower proportion 
of the image. A previous study reported that lower signal 
intensities are more frequent in MVI-positive HCC than 
in MVI-negative HCC on HBP images using gadoxetic 
acid-enhanced MRI (55). Therefore, the lower values of 
HGLZE in MVI-positive patients are most likely caused 
by an uneven occurrence of MVI in the tumor region. 
GLSZM_GLV indicates the dispersion degree of gray levels 
in the tumor region, and the range indicates the difference 
between the maximum and minimum values of tumor signal 
intensity. The lower values of range and GLSZM_GLV 
in MVI-positive patients may be caused by intratumoral 
heterogeneity (e.g., micro-necrosis and inflammation), 
accompanying MVI (56).

To date, radiomics studies of MVI prediction have 
reported AUCs of 0.727–0.88 and 0.833–0.861 with CT 
(26-31) and MRI (32-34), respectively. By optimizing 
the combination of various impact factors that affect the 
radiomics process, the final MVI predictive model in 
our study achieved an AUC of 0.895, accuracy of 87.0%, 
sensitivity of 93.1%, and specificity of 82.5%. Despite 
our predictive model of HCC MVI showing a better 
performance than those in previous studies, it should 
be noted that because of the lack of standardization in 
radiomics and the diversity in research methods, it is 
difficult to compare the results of different studies. The 
majority of previous studies used a single method for their 
radiomics research; thus, their models may not achieve the 

Table 9 Results of feature selections obtained by LASSO-RFE based on the HBP images when the resampled voxel size, Ng and quantization 
algorithm were 1.19×1.19×1.19 mm3, 64 and Uniform, respectively

Feature MVI-present (n=29) MVI-absent (n=40) P value

Solidity 0.79±0.12 (0.31–0.91) 0.85±0.04 (0.75–0.92) 0.007*

Range 274.18±78.48 (160.83–490.18) 339.78±115.31 (150.24–647.98) 0.008*

HGLZE 999.62±94.36 (825.33–1,144.09) 1,092.96±148.42 (815.40–1,387.84) 0.004*

GLSZM_GLV 3.88×10–4±4.92×10–4 (5.35×10–6–2,043.18×10–6) 12.25×10–4±22.02×10–4 (21.49×10–6–8,351.83×10–6) 0.152

NGLDS_Max 27.07±5.80 (20.67–44.75) 24.80±4.45 (16.82–35.70) 0.061

Data are expressed as the mean ± SD (range). *, Statistical significance. P values are based on the Mann-Whitney U test. HGLZE, high 
gray level zone emphasis; GLSZM_GLV, gray-level variance of gray-level size zone matrix; HBP, hepatobiliary phase; LASSO-RFE, a 
method combining LASSO and gradient boosting decision tree recursive feature elimination; MVI, microvascular invasion; Ng, number of 
gray levels; NGLDS_Max, maximum of neighborhood gray-level difference statistics; SD, standard deviation.
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maximum prediction performance, because many aspects 
of the radiomics process, including imaging sequence, 
feature extraction parameters, feature selection method, 
and classifiers, have a great effect on MVI predictive 
performance. Moreover, previous studies have given only 
limited consideration to the effect of these factors on MVI 
predictive performance. When the quantization algorithm, 
Ng, feature selection method, and classifier were Uniform, 
64, LASSO-RFE, and GBDT, respectively, the performance 
of the predictive models built on HBP images achieved 
the best performance in our study. This combination of 
factors is not quite the same as the method that has been 
commonly used in previous studies on MVI prediction. 
The lack of standardization and unification is also a major 
problem facing radiomics (57), which limits its large-scale 
application for the diagnosis of diseases. Therefore, we also 
hope that our work can provide standardized references for 
subsequent radiomics research related to MVI prediction.

This study may have several limitations. Firstly, with 
regard to accurate tumor segmentation, radiomics features 
might provide a more complete characterization of the 
tumor; however, there is no gold standard for tumor 
contouring. Thus, we failed to explore the effect of tumor 
segmentation on MVI prediction. However, in our study, 
tumor lesion contouring was verified by experienced 
radiologists, so we believe that any variation in tumor lesion 
contouring had limited effects in this study. Secondly, the 
exact value of the best Ng for MVI prediction is not given 
in our study. There are currently no specific guidelines for 
choosing the optimal Ng; however, we strongly recommend 
a Ng of 64. Thirdly, we only tested the most commonly used 
method of feature extraction, in which the Ng is a single 
value, but the optimal feature sets may consist of different 
features produced by multiple Ngs. Finally, because we used 
the LOOCV strategy on a small number of samples from 
a single center, further verification with a larger, external 
cohort is warranted to obtain reliable results.

In summary, we showed that imaging sequence, feature 
extraction parameters, feature selection method, and 
classifiers all affect the performance of radiomics models in 
predicting MVI. When the imaging sequence, quantization 
algorithm, Ng, feature selection method, and classifier were 
HBP, Uniform, 64, LASSO-RFE, and GBDT, respectively, 
the performance of the predictive models was better than 
those based on other combinations. The effect of different 
factors should be considered in future similar radiomics 
studies.
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