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Background: To develop and verify a prediction model for distinguishing malignant from benign ground-

glass nodules (GGNs) combined with clinical characteristics and 18F-fluorodeoxyglucose (FDG) positron 
emission tomography-computed tomography (PET/CT) parameters.
Methods: We retrospectively analyzed 170 patients (56 males and 114 females) with GGNs who underwent 
PET/CT and high-resolution CT examination in our hospital from November 2011 to December 2019. 
The clinical and imaging data of all patients were collected, and the nodules were randomly divided into a 
derivation set and a validation set. For the derivation set, we used multivariate logistic regression to develop a 
prediction model for distinguishing benign from malignant GGNs. A receiver operating characteristic (ROC) 
curve was used to evaluate the diagnostic efficacy of the model, and the data in the validation set were used to 
verify the prediction model.
Results: Among the 170 patients, 197 GGNs were confirmed via postoperative pathological examination or 
clinical follow-up. There were 21 patients with 27 GGNs in the benign group and 149 patients with 170 GGNs  
in the adenocarcinoma group. A total of five parameters, including the patient’s sex, nodule location, margin, 
pleural indentation, and standardized uptake value (SUV) index (the ratio of nodule SUVmax to liver 
SUVmean), were selected to develop a prediction model for distinguishing benign from malignant GGNs. 
The area under the curve (AUC) of the model was 0.875 in the derivation set, with a sensitivity of 0.702 and 
a specificity of 0.923. The positive likelihood ratio was 9.131, and the negative likelihood ratio was 0.322. In 
the validation set, the AUC of the model was 0.874, which was not significantly different from the derivation 
set (P=0.989).

Conclusions: This study developed and validated a prediction model based on 18F-FDG PET/CT imaging 
and clinical characteristics for distinguishing malignant from benign GGNs. The model showed good 
diagnostic efficacy and high specificity, which can improve the preoperative diagnosis of high-risk GGNs.
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Introduction 

In recent years, with the popularity of low-dose computed 
tomography (CT) in lung cancer screening, the detection 
rate of ground-glass nodules (GGNs) has gradually 
increased. GGNs are divided into mixed GGN (mGGN) 
and pure GGN (pGGN) according to the presence of solid 
ingredients in the nodules. They are markedly different from 
solid lung nodules in terms of their biological behavior, and 
have a higher probability of malignancy than solid nodules 
(34% vs. 7%) (1,2). GGNs are common in early-stage lung 
adenocarcinoma but can also be caused by inflammation, 
interstitial fibrosis, or local hemorrhage (3,4). Due to the 
small number of cells within a GGN and the difficulty of 
obtaining material, bronchoscopy or percutaneous lung 
biopsy present significant limitations for the diagnosis of 
GGN. Furthermore, they are invasive examinations, and are 
often accompanied by complications such as pneumothorax 
and hemorrhage (5). Therefore, imaging remains the 
primary method to characterize GGNs. 

The Fleischner Association Guidelines 2017 (6) 
recommend that GGN detection should be planned during 
CT follow-up to determine whether GGNs persist based 
on the dynamic changes of the nodules. Nodules that 
are infectious or inflammatory lesions typically reduce in 
volume or disappear during follow-up. Long-term CT 
follow-up can cause severe anxiety and repeated radiation 
exposure for patients, so it is difficult for some patients 
to accept. Therefore, more efficient imaging techniques 
are needed to distinguish malignant from benign GGNs. 
GGNs have different morphologies and diverse imaging 
manifestations. Recently, it was found that early-stage 
lung adenocarcinoma with GGNs has a higher incidence 
in female and non-smoking populations (7), which poses a 
significant challenge for clinical and imaging physicians.

Several studies (8) have reported that a single CT 
morphological feature or quantitative parameter is not 
sufficient for the accurate differential diagnosis of GGNs, 
and thus a multivariate prediction model is likely to improve 
diagnostic performance. Previous prediction models for 
distinguishing benign from malignant lung nodules include 
the Mayo (9), Veterans Affairs (VA) (10), Brock (11), 
Herder (12), and Bayesian Inference Malignancy Calculator 
(BIMC) (13) models. The Mayo and VA models, which 
were developed based on solid nodules, suggest that age and 
smoking history are independent risk factors that increase 
the probability of malignant pulmonary tumors. However, 
this conclusion is contradicted by the epidemiological 

characteristics of GGNs. Considering the uniqueness of 
GGNs, the Brock model adjusted the correlation coefficient 
according to the nodule type. However, this model is 
complicated to use, and its derivation data are obtained 
from primary screening patients with a low malignancy 
rate (5.5%). Currently, few models are dedicated to GGN 
prediction.

Our previous study found that early lung adenocarcinoma 
showed low fluorodeoxyglucose (FDG) uptake on positron 
emission tomography (PET)/CT imaging (14,15), which is 
consistent with the results from other groups (4). Moreover, 
benign GGNs can also lead to false-positive findings due 
to their high FDG uptake. Scott et al. (16) and Chun  
et al. (17) indicated that the FDG uptake of benign GGN 
was significantly higher than that of malignant GGNs. 
Therefore, it is likely that the glucose metabolism of GGNs 
is different from that of solid lung nodules. 

In this study, we aimed to build a prediction model based 
on 18F-FDG PET/CT imaging that took both functional 
metabolism and CT imaging characteristics into account in 
order to distinguish malignant from benign GGNs.

Methods 

Clinical data

In this single-center retrospective study, we screened a total 
of 228 patients with GGNs who underwent 18F-FDG PET/
CT and high-resolution CT (HRCT) examination in our 
hospital from November 2011 to December 2019. This 
study was approved by the institutional ethics committee 
for retrospective analysis {no. [2018] KD 013}, and the 
requirement for written informed consent was waived. The 
inclusion criteria for patients were as follows: (I) underwent 
PET/CT and HRCT examination; (II) definitive diagnosis 
through surgery within 1 month after PET/CT examination 
or by volume reduction during CT follow-up for benign 
GGNs; and (III) a maximum GGN diameter of ≤30 mm. 
Patients were excluded based on the following criteria: (I) 
presence of malignant lesions (stage IB or higher) based 
on the 8th version of lung cancer tumor node metastasis 
(TNM) staging pathology standard; (II) poor image quality 
or GGNs that were difficult to measure; (III) a history of 
malignant tumors in the previous 5 years; and (IV) severe 
liver disease or diabetes. In total, 170 patients met the 
eligibility criteria, and 58 patients were excluded. The data 
of the included patients were collected by reviewing the 
cases or follow-up via phone calls. The patient selection 
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process is shown in Figure 1. 

Image collection

A Biograph mCT [64] type PET/CT scanner (Siemens, 
Erlangen, Germany) was used for whole-body imaging. 
The patients fasted for 4–6 hours before imaging, with 
blood glucose ≤11 mmol/L. 18F-FDG was then injected 
intravenously at approximately 4.44 MBq/kg for about  
60 minutes prior to PET/CT imaging. A low-dose localized 
CT scan was performed first, followed by a whole-body 
PET acquisition, with 2 min/bed. The reconstruction 
method was performed as follows: TrueX + time-of-flight 
(TOF) (ultraHD-PET) with two iterations and 21 subsets, 
and Gaussian filtering with a full-width at a half maximum 
of 2.0 mm; matrix (pixels) 200×200, zoom 1.00, and a 3D 
image acquisition mode. Respiratory gating was not used. 
The image was evaluated using TrueD software (Siemens, 
Germany). 

Following the PET/CT scan, we immediately performed 
a breath-holding HRCT scan of the lung nodule with 
the following settings: tube voltage 140 kV, tube current 
automatically adjusted according to human anatomy, tissue 

density using the automatic exposure control (CARE Dose 
4D, Siemens Healthcare, Germany), rotation time 0.5 s, 
thread pitch 0.6, layer thickness 1.0 mm, layer interval 0.5 mm,  
matrix 512×512, lung window (window width: 1,200 HU, 
window level: −600 HU), and mediastinum window (window 
width: 350 HU, window level: 40 HU).

Image analysis 

Imaging features were collected and reviewed separately 
by two experienced nuclear medicine physicians with 
more than 7 years of experience (R Niu, X Shao). Cases 
of inconsistent opinions were resolved by discussion and 
consensus. PET image parameters included following: 
the maximum standardized uptake value (SUVmax) of the 
pulmonary nodule, liver SUVmean, and the SUV index 
(the ratio of nodule SUVmax to liver SUVmean). A more 
detailed description of the measurement methods can be 
found in our previous study (14).

CT image parameters included nodule number (solitary, 
multifocal), nodule type (pGGN, mGGN), location 
(peripheral, center), shape (round/oval, irregular), margin 
(smooth, lobulated), bronchial sign, vacuole sign, pleural 

Patients with GGN who underwent PET/CT and HRCT scans
(n=228, included)

Diagnosis confirmed by surgical pathology or clinical follow-up
(n=201, included)

GGNs diameter >3 cm
(n=24 excluded)

GGNs cannot be measured
(n=1, excluded)

Data analysis
(n=170)

Lymph node metastasis or hematogenous metastasis
(n=4, excluded)

Mucinous adenocarcinoma
(n=2, excluded)

Patients with benign GGN
(n=21, included)

Patients with malignant GGN
(n=149, included)

Etiology analysis
(n=176, included)

Patients lost to follow-up
(n=27, excluded)

Figure 1 Patient selection flowchart. GGN, ground-glass nodule.
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indentation, vessel convergence sign, DGGN (maximum 
diameter of the nodules), Dsolid (maximum diameter of the 
solid components), CTR (ratio of Dsolid to DGGN), CTGGO 
(average attenuation value of the ground glass components), 
CTLP (average attenuation value of the normal lung 
parenchyma around the nodule), and ΔCTGGO-LP (difference 
between CTGGO and CTLP). The above parameters were 
measured under 3–8 times magnification, and all of the 
data were averaged from the measurements of the two 
physicians.

Statistical analysis

Continuous variables are expressed as mean ± standard 
deviation (SD) when they were normally distributed; 
otherwise they are expressed as P50 (P25–P75). Categorical 
variables are expressed as a frequency (%). For comparison 
between groups, continuous variables were analyzed using 
the unpaired Student’s t-test or the Mann-Whitney U 
nonparametric test, and categorical variables were tested 
using the Pearson chi-square test or Fisher’s exact test. The 
intraclass correlation coefficient (ICC) was used to analyze 
the consistency of the measurements between the two 
observers.

The splitSample function automatically divided the 
original dataset into a derivation set and validation set at 
a ratio of 1:1. Multivariate logistic regression was used to 
establish the prediction model in the derivation set. The 
variable introduction standard was P<0.3. The independent 
variable was screened by collinearity (variation inflation 
factor, VIF), and the elimination criterion was VIF >10. 
The minimum Akaike’s information criterion (AIC) was 
used to select the optimal model parameters and calculate 
the odds ratio (OR) and 95% confidence interval (CI). 
We also plotted the nomogram of the prediction model, 
which could visually display the prediction results of each 
GGN, and a calibration curve was also plotted to show the 
prediction accuracy of the nomogram. A receiver operating 
characteristic (ROC) curve of the prediction model was 
plotted, and the area under the curve (AUC) and its 95% CI 
were calculated. The AUCs of the derivation and validation 
sets were compared using z-statistics and Hanley and 
McNeil programs (18). All of the statistical analyses were 
performed using R3.4.3 (http://www.R-project.org; software 
packages: glmnet, pROC, rms). All statistical tests were 
two-sided, and P value <0.05 was considered statistically 
significant.

Results

Study populations

This study included 170 patients with GGNs, including  
56 males and 114 females, with an average age of 60.7±9.2 years  
(ranging from 31 to 81 years). Among these patients, 157 
(92.4%) underwent video-assisted thoracic surgery (VATS), 
11 (6.5%) underwent thoracotomy, and 2 (1.2%) were 
confirmed to have benign GGNs during CT follow-up. 
The patients were divided into a benign group (21 cases) 
and an adenocarcinoma group (149 cases).

Among the 170 patients, 113 had a solitary GGN, 
and 57 had multifocal GGNs (with a median number 
of 4, ranging from 2 to 50). A total of 507 GGNs were 
detected, and 197 GGNs were confirmed via postoperative 
pathological examination or clinical follow-up. Owing 
to the stepwise protocol for the treatment of multifocal 
GGNs (6,19), 310 GGNs without a definite diagnosis 
by pathological examination or follow-up were excluded 
from the analysis because of the lack of information on 
the radiological-pathological correlation. There were  
27 GGNs in the benign group, including 4 fungal 
infections, 3 granulomatous inflammations, 2 organizing 
pneumonias, 1 sclerosing alveolar cell tumor, 1 specific 
interstitial pneumonia, 1 pulmonary alveoli epithelium 
bronchial metaplasia, and 15 other inflammatory lesions. 
There were 170 GGNs in the adenocarcinoma group, 
including 5 atypical adenomatous hyperplasia (AAH), 5 in 
situ carcinomas (AIS), 17 microinvasive adenocarcinomas 
(MIA), and 143 invasive adenocarcinomas (IAC). The 
pathological classification of the adenocarcinoma group 
followed the latest classification standards for lung 
adenocarcinoma from 2011, which were amended by the 
International Association for Oncology/American Thoracic 
Society/European Respiratory Society (20). Patients with 
multiple nodules had the same etiology.

The comparison of clinical characteristics between the 
two groups is shown in Table 1. The proportion of females 
in the adenocarcinoma group was significantly higher 
than that in the benign group (P=0.012). There were no 
significant differences in age, smoking history, fasting 
blood glucose, ratio of multifocal GGNs, GGN number, 
and tumor markers [carcinoembryonic antigen (CEA), 
cytokeratin 19 fragments (CYFRA21-1), carbohydrate 
antigen (CA) 199, neonatal status epilepticus (NSE), 
squamous cell carcinoma antigen (SCCAg)] between the 
two groups (all P>0.05).

http://www.R-project.org; software packages: glmnet, pROC, rms
http://www.R-project.org; software packages: glmnet, pROC, rms
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Comparison of baseline data between derivation and 
validation sets

The 197 GGNs were randomly divided into a derivation 
set (n=97) and a verification set (n=100) at a 1: 1 ratio 
by statistical software. The comparison of baseline data 
between the two sets is shown in Table 2. The clinical data 
and PET/CT image features were not significantly different 
between the derivation and verification sets (all P>0.05). 
The two observers exhibited perfect consistency in the 
results of PET/CT and HRCT parameter measurement 
(ICC: 0.908–0.999, all P<0.001).

Univariate analysis of benign and malignant GGNs in the 
derivation set

We performed univariate logistic analysis on benign and 
malignant GGNs in the derivation set. As shown in Table 3,  

there were notable differences in sex, nodule type, 
SUVmax, and SUV index between benign and malignant 
GGNs (all P<0.05). In contrast, no significant differences 
were observed in age, smoking history, multifocal, location, 
shape, margin, bronchial sign, vacuole sign, pleural 
indentation, vessel convergence sign, DGGN, Dsolid, CTR, 
CTGGO, and ΔCTGGO-LP between benign and malignant 
GGNs (all P>0.05). 

The ROC curves of the quantitative indicators including 
DGGN, Dsolid, CTR, CTGGO, ΔCTGGO-LP, SUVmax, and SUV-
index were plotted separately, with AUCs of 0.485 (95% 
CI: 0.289–0.682; P=0.884), 0.654 (95% CI: 0.500–0.809; 
P=0.051), 0.600 (95% CI: 0.417–0.783; P=0.285), 0.458 
(95% CI: 0.261–0.655; P=0.678), 0.549 (95% CI: 0.343–
0.754; P=0.644), 0.631 (95% CI: 0.443–0.820; P=0.158), and 
0.606 (95% CI: 0.409–0.803; P=0.276), respectively. These 
results demonstrated that no single quantitative indicator 
could effectively distinguish between benign and malignant 
GGNs (all P>0.05).

Development and verification of the PET/CT multivariate 
model

Using malignant GGNs as the dependent variable, and the 
19 aforementioned indices as independent variables, we 
performed a binary multivariate logistic regression analysis 
to establish a regression model. With this model, we 
obtained the independent factors for identifying malignant 
GGNs, ORs, and 95% CIs (Table 4). From the analysis, we 
found that sex, nodule location, margin, pleural indentation, 
and SUV index were all independent factors for predicting 
malignant GGNs.

The formula of the prediction model was as follows: 
Logit (P) = 2.376 − 1.795 × (female = 0, male = 1) – 3.758 × 
(peripheral = 0, center = 1) + 1.968 × (smooth = 0, lobulated 
= 1) + 2.134 × (pleural indentation) – 0.816 × SUV index, 
where P denotes probability.

The ROC curve of the prediction model in the derivation 
set was plotted; the AUC was 0.875 (95% CI: 0.773–0.976; 
P<0.001), with a sensitivity of 0.702 and a specificity of 
0.923. The positive likelihood ratio was 9.131, and the 
negative likelihood ratio was 0.322. The ROC curve of the 
prediction model in the verification set was also plotted; the 
AUC was 0.874 (95% CI: 0.770–0.977; P<0.001), with a 
sensitivity of 0.826, and a specificity of 0.857. The positive 
likelihood ratio was 5.779, and the negative likelihood ratio 
was 0.204. The AUC of the derivation set and the validation 
set were very similar (0.875 vs. 0.874), and the difference 

Table 1 Comparison of clinical characteristics between benign and 
adenocarcinoma patient groups 

Clinical  
characteristics

Benign  
(n=21)

Adenocarcinoma 
(n=149)

P value

Age (years) 57.8±10.9 61.1±8.9 0.115

Sex 0.012*

Female 9 (42.9) 105 (70.5)

Male 12 (57.1) 44 (29.5)

Smoking history 7 (33.3) 26 (17.4) 0.085

Fasting  
blood-glucose  
(mmol/L)

6.6±1.9 6.7±1.7 0.825

Multifocality 4 (19.0) 53 (35.6) 0.133

GGN number 1.0 (1.0–1.0) 1.0 (1.0–3.0) 0.586

CEA (ng/mL) 1.9 (1.1–2.6) 1.8 (1.2–2.8) 0.603

CYFRA21-1 (ng/mL) 2.2 (1.7–2.7) 2.2 (1.8–2.9) 0.356

CA199 (U/mL) 9.1 (6.5–14.0) 9.0 (5.4–12.5) 0.959

NSE (ng/mL) 12.5 (10.9–17.1) 13.7 (11.6–17.1) 0.829

SCCAg (ng/mL) 0.9 (0.7–1.1) 0.7 (0.5–1.0) 0.136

Data were presented as mean ± SD/P50 (P25–P75)/N (%). 
*, P<0.05. Normal range of tumor markers: CEA: 0–5 ng/mL,  
CYFRA21-1: 0–3.3 ng/mL, CA199: 0–37 U/mL, NSE: 0–17 ng/mL,  
SCCAg: 0–1.5 ng/mL. GGN, ground-glass nodule; CEA,  
carcinoembryonic antigen; CYFRA21-1, cytokeratin 19 fragments; 
CA199, carbohydrate antigen 199; NSE, neonatal status epilepticus;  
SCCAg, squamous cell carcinoma antigen.



1715Quantitative Imaging in Medicine and Surgery, Vol 11, No 5 May 2021

© Quantitative Imaging in Medicine and Surgery. All rights reserved.   Quant Imaging Med Surg 2021;11(5):1710-1722 | http://dx.doi.org/10.21037/qims-20-840

Table 2 Comparison of baseline GGN data between derivation set and verification set

Index Total (n=197) Derivation set (n=97) Verification set (n=100) P value

Age (years) 60.1±9.0 60.8±8.2 59.4±9.8 0.309

Sex 0.543

Female 132 (67.0) 67 (69.1) 65 (65.0)

Male 65 (33.0) 30 (30.9) 35 (35.0)

Smoking history 38 (19.3) 18 (18.6) 20 (20.0) 0.797

Multifocality 84 (42.6) 44 (45.4) 40 (40.0) 0.447

Nodule type 0.649

pGGN 68 (34.5) 35 (36.1) 33 (33.0)

mGGN 129 (65.5) 62 (63.9) 67 (67.0)

Location 0.768

Peripheral 188 (95.4) 93 (95.9) 95 (95.0)

Center 9 (4.6) 4 (4.1) 5 (5.0)

Shape 0.540

Round/oval 116 (58.9) 55 (56.7) 61 (61.0)

Irregular 81 (41.1) 42 (43.3) 39 (39.0)

Margin 0.925

Smooth 109 (55.3) 54 (55.7) 55 (55.0)

Lobulated 88 (44.7) 43 (44.3) 45 (45.0)

Bronchial sign 144 (73.1) 66 (68.0) 78 (78.0) 0.115

Vacuole sign 32 (16.2) 17 (17.5) 15 (15.0) 0.631

Pleural indentation 113 (57.4) 55 (56.7) 58 (58.0) 0.854

Vessel convergence sign 184 (93.4) 91 (93.8) 93 (93.0) 0.818

DGGN (mm) 19.1 (13.4–25.0) 18.0 (12.9–24.8) 20.8 (14.1–25.3) 0.131

Dsolid (mm) 5.8 (0.0–12.0) 5.7 (0.0–12.0) 5.9 (0.0–12.0) 0.915

CTR 0.3 (0.0–0.6) 0.4 (0.0–0.6) 0.3 (0.0–0.6) 0.648

CTGGO (HU) −451.0 (−562.0 to −368.0) −444.0 (–572.0 to −368.0) −457.0 (−558.8 to −376.8) 0.977

ΔCTGGO-LP (HU) 413.0 (305.0–490.0) 420.0 (305.0–499.0) 408.5 (309.0–479.8) 0.777

SUVmax 2.2 (1.2–3.3) 2.2 (1.1–3.4) 2.2 (1.2–3.2) 0.916

SUVindex 0.9 (0.5–1.4) 0.8 (0.4–1.4) 0.9 (0.5–1.3) 0.686

Pathology 0.982

Benign* 27 (13.7) 13 (13.4) 14 (14.0)

Preinvasive-MIA 27 (13.7) 13 (13.4) 14 (14.0)

IAC 143 (72.6) 71 (73.2) 72 (72.0)

Data were presented as mean ± SD/P50 (P25–P75)/N (%). GGN, ground-glass nodule; pGGN, pure GGN; mGGN, mixed GGN; DGGN, 
diameter of the GGN; Dsolid, diameter of the solid component; CTR, the ratio of Dsolid to DGGN; CTGGO, attenuation value of the GGO com-
ponent on CT; ΔCTGGO-LP, the difference between CTGGO and CTLP; SUVmax, maximum standardized uptake value; SUVindex, ratio of the 
nodule SUVmax to liver SUVmean; MIA, microinvasive adenocarcinoma; IAC, invasive adenocarcinomas; GGO, ground-glass opacity; LP, 
lung parenchyma. *, benign GGNs were defined as either pathologic examination of tissue obtained via surgery or GGNs resolving during 
follow-up.
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Table 3 Univariate analysis of distinguishing benign and malignant GGNs in the derivation set

Factor Benign (n=13) Adenocarcinoma (n=84) OR (95% CI) P value

Age (years) 59.2±9.6 61.0±8.0 1.0 (1.0–1.1) 0.472

Sex 0.015

Female 5 (38.5) 62 (73.8) 1.0

Male 8 (61.5) 22 (26.2) 0.2 (0.1–0.8)

Smoking history 5 (38.5) 13 (15.5) 0.3 (0.1–1.0) 0.057

Multifocality 5 (38.5) 39 (46.4) 1.4 (0.4–4.6) 0.592

Nodule type 0.048

pGGN 8 (61.5) 27 (32.1) 1.0

mGGN 5 (38.5) 57 (67.9) 3.4 (1.0–11.3)

Location 0.056

Peripheral 11 (84.6) 82 (97.6) 1.0

Center 2 (15.4) 2 (2.4) 0.1 (0.0–1.1)

Shape 0.332

Round/oval 9 (69.2) 46 (54.8) 1.0

Irregular 4 (30.8) 38 (45.2) 1.9 (0.5–6.5)

Margin 0.296

Smooth 9 (69.2) 45 (53.6) 1.0

Lobulated 4 (30.8) 39 (46.4) 1.9 (0.6–6.8)

Bronchial sign 7 (53.8) 59 (70.2) 2.0 (0.6–6.6) 0.245

Vacuole sign 2 (15.4) 15 (17.9) 1.2 (0.2–6.0) 0.827

Pleural indentation 4 (30.8) 51 (60.7) 3.5 (1.0–12.2) 0.052

Vessel convergence sign 12 (92.3) 79 (94.0) 1.3 (0.1–12.3) 0.809

DGGN (mm) 17.1 (11.8–24.8) 18.0 (13.0–24.5) 1.0 (0.9–1.0) 0.250

Dsolid (mm) 0.0 (0.0–8.9) 6.4 (0.0–12.4) 1.1 (1.0–1.2) 0.096

CTR 0.0 (0.0–0.6) 0.4 (0.0–0.6) 3.5 (0.5–26.9) 0.224

CTGGO (HU) −419.0 (–614.0 to −368.0) −445.0 (−563.2 to −368.0) 1.0 (1.0–1.0) 0.362

ΔCTGGO-LP (HU) 380.0 (241.0–508.0) 421.0 (309.8–492.2) 1.0 (1.0–1.0) 0.423

SUVmax 3.0 (1.5–5.8) 2.0 (1.1–3.2) 0.8 (0.6–0.9) 0.012

SUVindex 1.2 (0.4–2.5) 0.8 (0.4–1.4) 0.6 (0.4–0.9) 0.015

Data were presented as mean ± SD/P50 (P25–P75)/N (%). GGN, ground-glass nodule; pGGN, pure GGN; mGGN, mixed GGN; DGGN,  
diameter of the GGN; Dsolid, diameter of the solid component; CTR, the ratio of Dsolid to DGGN; CTGGO, attenuation value of the GGO  
component on CT; ΔCTGGO-LP, the difference between CTGGO and CTLP; SUVmax, maximum standardized uptake value; SUVindex, ratio of 
the nodule SUVmax to liver SUVmean; GGO, ground-glass opacity; LP, lung parenchyma.
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between them was not statistically significant (P=0.989) 
(Figure 2).

We also plotted the nomogram (Figure 3A) and a 
calibration curve (Figure 3B,C) of the PET/CT prediction 

model to identify benign and malignant GGNs. The 
calibration curve displayed the predicted and observed 
values of the prediction model in the derivation and 
verification sets, which had a good consistency.

Next, we further divided the adenocarcinoma group into 
a preinvasive-MIA group and an IAC group based on the 
degree of invasion. We analyzed the identification power 
of the prediction model between the benign group and 
these two adenocarcinoma subgroups. The results showed 
that, for benign GGN and preinvasive-MIA, the AUC was 
0.876 (95% CI: 0.740–1.000; P<0.001), with a sensitivity 
of 0.923, and a specificity of 0.769. The positive likelihood 
ratio was 4.000, and the negative likelihood ratio was 0.100. 
For benign GGNs and IAC, the AUC was 0.874 (95% 
CI: 0.771–0.978; P<0.001), with a sensitivity of 0.732, and 
a specificity of 0.923. The positive likelihood ratio was 
9.521, and the negative likelihood ratio was 0.290. After 
ROC analysis and verification (Figure 4A,B), the efficacy of 
the model in distinguishing benign from preinvasive MIA 
was not markedly different between the derivation and 
verification sets (AUC: 0.876 vs. 0.827, z=0.458, P=0.647). 
Similarly, the efficacy of the model in distinguishing 
benign GGNs from IAC was also not significantly different 

Table 4 Univariate and Multivariate analysis of distinguishing benign and malignant GGNs in the derivation set

Variable
Univariate analysis Multivariate analysis 

OR (95% CI) P value OR (95% CI) P value

Sex 0.222 (0.066–0.750) 0.015 0.166 (0.037–0.755) 0.020

Smoking history 0.293 (0.083–1.037) 0.057 – –

Nodule type 3.378 (1.010–11.300) 0.048 – –

Location 0.134 (0.017–1.051) 0.056 0.023 (0.001–0.544) 0.019

Margin 1.950 (0.557–6.829) 0.296 7.156 (1.104–46.384) 0.039

Bronchial sign 2.023 (0.618–6.626) 0.245 – –

Pleural indentation 3.477 (0.990–12.217) 0.052 8.451 (1.382–51.674) 0.021

DGGN (mm) 0.960 (0.894–1.030) 0.250 – –

Dsolid (mm) 1.094 (0.984–1.216) 0.096 – –

CTR 3.529 (0.463–26.894) 0.224 – –

SUVmax 0.782 (0.645–0.948) 0.012 – –

SUVindex 0.586 (0.381–0.902) 0.015 0.442 (0.243–0.804) 0.008

Intercept – – 10.766 (3.018–38.409) <0.001

Intercept was the constant term of the model. GGN, ground-glass nodule; OR, odds ratio; CI, confidence interval; DGGN, diameter of the 
GGN; Dsolid, diameter of the solid component; CTR, the ratio of Dsolid to DGGN; SUVmax, maximum standardized uptake value; SUVindex,  
ratio of the nodule SUVmax to liver SUVmean.
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Figure 2 The ROC curve of the PET/CT prediction model for 
identifying early lung adenocarcinoma. AUC, area under the curve; 
ROC, receiver operating characteristic; PET, positron emission 
tomography; CT, computed tomography.
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between the two sets (AUC: 0.874 vs. 0.883, z=–0.127, 
P=0.899).

Moreover, in the derivation set, the AUC of distinguishing  
benign from preinvasive MIA was similar to the AUC 
of distinguishing benign from IAC (0.876 vs. 0.874, 
z=0.023, P=0.981), and these two AUCs were similar to 
the AUC of distinguishing the benign group from the 
whole adenocarcinoma group (z was 0.012 and –0.014, 
respectively; P was 0.991 and 0.989, respectively).

Discussion

The identification of benign and malignant GGNs has 
garnered increase attention in clinical practice in recent 

years, yet there is still no unified and recognized effective 
imaging method (21). This study retrospectively analyzed 
the clinical and imaging data of 197 GGNs and developed 
a prediction model for distinguishing benign from 
malignant GGNs based on 18F-FDG PET/CT. This model 
was verified to be feasible and straightforward, and the 
diagnostic efficacy was relatively high (AUC =0.875, 95% 
CI: 0.773–0.976).

The univariate analysis showed that the proportion of 
female patients in the adenocarcinoma group was higher than 
that in the benign group, and sex (female) was also found to 
be an independent risk factor for malignant GGNs in the 
multivariate analysis. The probability of malignant GGNs 
in females was six times higher than that in males, which 
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Figure 3 The nomogram and calibration curves. (A) The nomogram of the PET/CT prediction model for identifying benign and malignant 
GGNs. (B) The calibration curve in the derivation set. (C) The calibration curve in the verification set. The horizontal axis is the predicted 
incidence of adenocarcinoma, and the vertical axis is the observed incidence of adenocarcinoma. The red line on the diagonal is the reference 
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is consistent with the results reported by Zheng et al. (22).  
We also found that the proportion of mGGN in the 
adenocarcinoma group was significantly higher than that in 
the benign group. However, this parameter was not included 
in the prediction model, which may be attributable to the 
overlap in the imaging manifestation of solid components 
between benign and malignant GGNs, and thus mGGN is 
not unique to IAC. It is more likely that mGGN correlates 
with another feature with stronger discriminatory power 
and so it was not retained. In this study, we also found that 
the proportion of smoking patients in the benign group was 
higher than that in the adenocarcinoma group, which may 
be related to the higher proportion of males in the benign 
group; however, no significant effect of smoking status 
was observed. Moreover, there was no notable difference 
in the tumor markers (serum) between the benign and 
adenocarcinoma groups, which resulted in low sensitivity, 
suggesting that these markers have limited identification 
value for GGNs. This result might be attributable to the 
fact that patients with malignant GGNs were mostly in 
the early stage of lung cancer, when tumor markers had 
not yet been released into peripheral blood, or were at low 
concentrations (23). The above results further confirmed 
that GGN-based lung tumors are different from traditional 
lung cancer and have different epidemiological, clinical, and 
biological characteristics.

Also, nodule location was included in the model as 
an independent factor, suggesting that a GGN located 
peripherally or subpleurally is more likely to be malignant 

than one located in the central lung parenchyma, which 
is consistent with previous reports (24). Lobulation 
and pleural indentation were also common features of 
malignant GGNs (25,26) and were included in the model 
as CT morphological parameters, making the model more 
reliable. The PET metabolic parameter, SUV index, is 
also a helpful factor in the model, with higher SUV index 
values indicating a greater likelihood that the GGN is 
benign. This may be due to the fact that the benign group 
in this study mainly consisted of inflammatory lesions, and 
18F-FDG, as a glucose analog imaging agent, accumulates 
both in tumor and inflammatory tissue. When inflammation 
occurs, vascular permeability increases and inflammatory 
cells accumulate, with an increase in glucose utilization 
by cells. Numerous lung diseases, such as tuberculosis, 
cryptococcal infection, and organizing pneumonia can 
show abnormally high imaging agent uptake (27,28). On 
the other hand, GGN lung adenocarcinoma has a lower 
degree of nuclear abnormality, fewer tumor cells, a longer 
doubling time, a lower metabolism rate, and less 18F FDG 
uptake, which is consistent with previous reports by Scott 
et al. and Chang et al. (16,29). In our study, the SUVmax 
was not included in the model, likely because the SUV 
index (SUVmax of lesion/SUVmean of liver) is strongly 
correlated with SUVmax. Thus, the information contained 
within the SUVmax was incorporated into the model in its 
normalized form (normalized by liver uptake), and not in its 
raw form. 
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lung nodules are not uncommon, yet only the Herder and 
BIMC models are widely accepted and include 18F-FDG 
metabolic factors. The morphological parameters in the 
Herder model come from chest radiographs or thick-slice 
CT, and some cases lack pathological results. The image 
parameters of our model came from HRCT, which had 
a more accurate analysis of nodular features, and 99% of 
the GGNs had pathological diagnosis. Meanwhile, the 
BIMC model includes factors such as the degree of tumor 
enhancement; however, for GGNs with limited or no 
solid component, enhanced CT offers no advantages. The 
above models are all based on solid nodules and on an 
increased probability of malignancy with increasing SUV 
values. However, in GGNs, we observed the opposite. A 
prospective study by Nomori et al. (30) showed that the 
biological metabolic activity of GGNs were significantly 
different from that of solid nodules. They found that 90% of 
malignant GGNs were false negative on FDG PET images 
and 80% of benign nodules (focal pneumonia) were false 
positive. The sensitivity and specificity for GGNs were 10% 
and 20%, respectively, and the sensitivity and specificity for 
solid nodules were 90% and 71%, respectively (P<0.001), 
which confirmed that the solid nodule prediction model 
did not work effectively. Another study showed that glucose 
transporters, which facilitate the diffusion of 18F-FDG 
into cancer cells, are not overexpressed in early-stage lung 
adenocarcinoma. However, sodium glucose transporter 2, 
which does not transport 18F-FDG, is present in early-stage 
carcinoma (31). This may be the molecular cause for the 
poor performance, and even the reverse association (higher 
SUVmax; lower probability of malignancy) of 18F-FDG in 
early-stage lung adenocarcinoma.

Also, the present study plotted a nomogram of 
the prediction model that combined clinical, PET, 
and CT information, which may be superior to using 
advanced CT alone. The calibration curve showed that 
the model had good prediction accuracy in both the 
derivation and verification sets. Following stratification 
of the adenocarcinoma group according to the degree 
of invasiveness, the model was still robust. Moreover, as 
the degree of invasiveness (malignancy) increased, the 
robustness of the model was also increased, which may be 
related to the more typical malignant characteristics of IAC.

This study also has some limitations that should be 
noted: (I) the included cases were patients with clinically 
suspected malignant GGNs, so the proportion and sample 
size of the benign group was small, which may have resulted 
in selection bias; (II) although we conducted preliminary 

verification of the model, this study was a single-center 
retrospective study, and thus it is still necessary to conduct 
a multicenter study to expand the sample size further, 
optimize the prediction model, and perform external 
verification; (III) this model may be suitable for the 
differential diagnosis of patients with clinically suspected 
malignant GGNs, but it is not suitable for screening; and 
(IV) this study preliminarily demonstrated the potential 
of the radiomics model; in the future, machine learning 
or deep learning models should be established in order to 
improve the predictive performance.

Conclusions

In summary, this study developed and validated a 
prediction model based on 18F-FDG PET/CT imaging for 
distinguishing malignant from benign GGNs. Sex, nodule 
location, margin, pleural indentation, and SUV index were 
independent factors for predicting malignant GGNs. This 
model considered the clinical characteristics of patients, CT 
morphological parameters, and PET metabolic parameters. 
It showed good diagnostic efficacy and high specificity, 
which can reduce the misdiagnosis of benign GGNs, 
avoid unnecessary surgery, and improve the preoperative 
diagnosis of high-risk GGNs.
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