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Background: It is challenging to differentiate between phyllodes tumors (PTs) and fibroadenomas (FAs). 
Artificial intelligence (AI) can provide quantitative information regarding the morphology and textural 
features of lesions. This study attempted to use AI to evaluate the ultrasonic images of PTs and FAs and to 
explore the diagnostic performance of AI features in the differential diagnosis of PTs and FAs.
Methods: A total of 40 PTs and 290 FAs <5 cm in maximum diameter found in female patients were 
retrospectively analyzed. All tumors were segmented by doctors, and the features of the lesions were collated, 
including circularity, height-to-width ratio, margin spicules, margin coarseness (MC), margin indistinctness, 
margin lobulation (ML), internal calcification, angle between the long axis of the lesion and skin, energy, 
grey entropy, and grey mean. The differences between PTs and FAs were analyzed, and the diagnostic 
performance of AI features in the differential diagnosis of PTs and FAs was evaluated.
Results: Statistically significant differences (P<0.05) were found in the height-to-width ratio, ML, energy, 
and grey entropy between the PTs and FAs. Receiver operating characteristic (ROC) curve analysis of single 
features showed that the area under the curve [(AUC) 0.759] of grey entropy was the largest among the four 
features with statistically significant differences, and the sensitivity, specificity, positive predictive value (PPV), 
and negative predictive value (NPV) were 0.925, 0.459, 0.978, and 0.190, respectively. When considering the 
combinations of the features, the combination of height-to-width ratio, margin indistinctness, ML, energy, 
grey entropy, and internal calcification was the most optimal of the combinations of features with an AUC of 
0.868, and a sensitivity, specificity, PPV, and NPV of 0.734, 0.900, 0.982, and 0.316, respectively. 
Conclusions: Quantitative analysis of AI can identify subtle differences in the morphology and textural 
features between small PTs and FAs. Comprehensive consideration of multiple features is important for the 
differential diagnosis of PTs and FAs.
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Introduction

Phyllodes tumors (PTs) and fibroadenomas (FAs) are both 
biphasic fibroepithelial tumors with similar histological 
characteristics. Occurring mostly in young women, FAs are 
the most common benign breast tumors. Comparatively, 
PTs are rare, and account for ~0.3–1% of breast tumors (1).  
The age of onset for PTs is later than that of FAs, and the 
volume of PTs is often greater than that of FAs. PTs can 
reach an average size of 6.4 cm (2) and have abundant 
stromal cells and typically leaf-like structures. According to 
histological characteristics such as the number of stromal 
cells, mitotic figures, cell atypia, overgrowth of stroma, and 
the nature of the tumor border, PTs can be divided into 3 
pathological types: benign, borderline, and malignant (3). 
Benign PTs have a large quantity of stromal cells, while in 
malignant PTs, increased mitotic figures of stromal cells and 
marginal infiltration are commonly seen. The characteristics 
of borderline PTs are somewhere between those of benign 
and malignant PTs (3). After surgery, recurrence may occur 
in benign, borderline, and malignant PTs at rates of 14–
17%, 14–25%, and 23–30%, respectively (4,5), with 22% of 
patients being reported experiencing metastasis or death (5). 
Therefore, the correct diagnosis of PTs is critical for the 
treatment and prognosis of patients.

Mammography, magnetic resonance imaging (MRI), 
and ultrasonography are commonly used to diagnose breast 
lesions (6,7). Among these methods, ultrasonography 
is more commonly used in China for diagnosing breast 
lesions through the observation of features such as size, 
shape, orientation, margin, and echo pattern. Both PTs 
and FAs can present as regular or irregular solid masses 
in images, and it is challenging to differentiate PTs from 
FAs using radiologic features (2,3,8). Both PTs and FAs 
can be classified into the Breast Imaging Reporting and 
Data System (BI-RADS) 3 or 4A categories according to 
the ACR BI-RADS® Atlas Fifth Edition, which reflects 
the risk stratification of breast lesions. BI-RADS 3 lesions 
are probably benign, and BI-RADS 4A lesions have low 
suspicion for malignancy (9). According to the literature, 
50% of PTs are initially misdiagnosed as FAs (2), and 
some cases eventually require biopsy. However, due to the 
different biological behaviors of PTs and FAs, PTs require 
local extended resection (tumors should be resected with  
≥1 cm margins), while FAs can be treated non-surgically 
or by simple enucleation (only the tumor is resected). 
Therefore, differential diagnosis is particularly important 
when considering treatment.

   Deep learning and other technologies of artificial 

intelligence (AI) can accurately identify lesions in images, 
calculate and obtain quantitative information on the 
morphology and textural features of lesions, and thus 
provide a basis for differentiating breast diseases (10,11).

Presently, studies on AI for differentiating PTs from 
FAs are limited and have mainly focused on MRI and 
ultrasonic images (12-14). Research has shown that the 
textural features on MRI T2-weighted short-tau inversion 
recovery (T2W-STIR) have higher diagnostic performance 
compared with clinical and conventional MRI features for 
distinguishing between PTs and FAs (12). Deep learning 
software has the capability to differentiate between PTs 
and FAs with good diagnostic accuracy and high negative 
predictive value (NPV) (14). Previous studies have focused 
on other imaging modalities or comparison with doctors' 
diagnostic efficacy, and AI studies on ultrasound images 
have only compared differences between PTs, complex FAs, 
and simple FAs (13). Thus far, however, further evaluation 
of the diagnostic performance of each ultrasonic feature 
and consideration of the influence of lesion size on the 
differential diagnosis has not been undertaken. 

An overlap exists between the size and ultrasonic features 
of PTs and FAs. A large volume can indicate the possibility 
of PTs, whereas for small PTs, it is difficult to make an 
ultrasonic diagnosis with the naked eye. Thus, in our study, 
we attempted to use AI to compare differences between 
small PTs and FAs, determine the morphology and textural 
features with diagnostic value, and evaluate the diagnostic 
performance of those features.

Methods

Participants

All participants were patients at the Peking University 
People’s Hospital, Southeast University Zhongda Hospital, 
and the First Affiliated Hospital of Guangxi University of 
Traditional Chinese Medicine. This study was approved 
by the ethics board of the Peking University People’s 
Hospital (No. 2018PHB179-01), and informed consent was 
provided by all participants. We reviewed all of the original 
ultrasonic images of the participants diagnosed with PTs or 
FAs from January to December 2019. The inclusion criteria 
were as follows: (I) the tumors were able to be shown in a 
linear-array probe, and considering that the width of the 
probes used in our research was ≤5 cm, lesions <5 cm were 
regarded as small tumors and included in our study; (II) 
there were no measurement labels in the greyscale images; 
(III) all cases were surgically resected and pathologically 
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diagnosed; and (IV) clear definitions of benign, malignant, 
and borderline in the pathological diagnosis of PTs were 
able to be obtained. The exclusion criteria were as follows: 
(I) tumors were shown in color Doppler flow images; (II) 
there were measurement labels in greyscale images; (III) 
the tumors could not be displayed in a linear-array probe; 
and (IV) no clear definitions of benign, malignant, and 
borderline lesions in the pathological diagnosis of PTs were 
available. According to the inclusion and exclusion criteria, 
40 cases of PTs and 290 cases of FAs from female patients 
were finally enrolled in our study. The data came from the 
ultrasonic images of participants, and features were taken 
from those images and output as tabular data by AI.

Instruments

The ultrasound instruments used in this study comprised an 
Aplio 500 system (Canon Medical Systems Corp., Tochigi, 
Japan) with a 14L5 transducer, a Logic E9 system (GE 
Healthcare, Chicago, IL, USA) with a L12-5 transducer, 
an IU22 scanner (Philips, Amsterdam, Netherlands) with a 
L12-5 transducer, and a Siemens S3000 (Siemens, Munich, 
Germany) system with a 9L4 transducer.

The AI system used in our study was the Breast 
Ultrasound Intelligent Diagnosis System from the Harbin 
Institute of Technology. The system diagnosed tumors in 

breast ultrasonic images using automatic segmentation and 
identification. The diagnostic sensitivity and specificity 
were both >90%. All lesions in the ultrasonic images were 
manually segmented by Sihua Niu and Xue Wang from the 
Peking University People’s Hospital, both of whom have 
been engaged in the diagnosis of breast diseases diagnosis 
for more than 10 years. The manually segmented region 
was studied using grey-level gradient co-occurrence matrix 
analysis to acquire the morphology and textural features. 
Statistical analysis was then conducted among these 
features. An overview of the methods and procedures is 
provided in Figure 1.

Quantitative analysis

A total of 8 morphology features were enrolled in our study, 
which comprised circularity, height-to-width ratio, margin 
spicules, margin coarseness (MC), margin indistinctness, 
margin lobulation (ML), internal calcification, and angle 
between the long axis of the lesion and skin. The features 
were specified as follows (15):

Circularity (Cir)
Cir represented the state of lesions being similar to circles, 
and its calculation is shown in Eq. [1]:

2C
S

Cir =
 

[1]

C was defined as the pixel number on the boundary of a 
lesion, which represented the perimeter of the lesion. S was 
the pixel number within the tumor, and it was considered as 
the lesion area. When the size of a perimeter was determined, 
the area of a circle in the plane geometry was the largest, so the 
closer the tumor was to a circle, the smaller the Cir was and the 
more regular was the tumor.

Height-to-width ratio
First, we calculated the circumscribed rectangle of the 
lesion and then obtained its height and width. The height 
(H)-to-width (W) ratio (HWR) was calculated as depicted 
in Eq. [2]:

HHWR
W

=

 

[2]

Margin spicules (MS)
MS are linearly hypoechoic structures protruding from a 
lesion to the periphery that are common malignant signs 

Figure 1 Overview of the methods and procedures. AI, artificial 
intelligence.
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of breast cancer. First, the coordinates of the margin 
pixels (CMPs) were converted to polar coordinates (PCs) 
according to centroid coordinates (CCs). The CCs 
referred to the position of a point relative to the centroid 
in a geometric structure. The PCs were determined by 
1 pole and 1 polar axis. The centroid of a lesion was 
considered as the pole of the PC. Next, the coordinates 
were rearranged clockwise or anticlockwise, with the aim 
of all procedures being performed in the same direction. 
Fourier transformation was then performed to decompose 
the signal into the frequency spectrum. The calculation of 
MS is displayed in Eq. [3]:
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[3]

MC
Margin referred to the border between the lesion and 
surrounding tissue. MC reflected the irregularity grade of 
the lesion margin, which is shown in Eq. [4]:
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[4]

Here, N refers to the number of all pixels on the margin, 
and di is the distance of the ith pixel on the edge to the 
tumor centroid in CCs. We arranged and calculated di on 
the basis of the clockwise (or anticlockwise) direction of the 
corresponding pixels on the margin. Both clockwise and 
anticlockwise could be used, and all procedures were ideally 
performed in the same direction.

Margin indistinctness
In the original greyscale ultrasound image, the coarse 
boundary of the tumor was analyzed using manually contoured 
images. The area around the lesion was considered as the 
margin region. The Sobel operator was used for calculating 
the pixel gradients of the margin region. The calculation of 
margin indistinctness (MI) is described in Eq. [5]:
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[5]

m and n represent the lesion sizes, and dx and dy represent 
the pixel gradients on the tumor margin in the horizontal 
and vertical directions, respectively.

ML
The PCs were constructed taking the lesion centroid as the 

pole. We converted the CMPs to PCs, and created a PC 
sequence along the clockwise (or anticlockwise) direction. 
Both clockwise and anticlockwise direction could be used, and 
all procedures were ideally performed in the same direction. 
In order to reduce the influence of image noise, the median 
filter of frame size 21 was employed, and a polynomial of 20 
degrees was used to fit the sequence. A frame size of 21 and 
a polynomial of 20 degrees were determined by experiments 
as the best choices to balance the accuracy of margin curve 
fitting and the complexity of calculation. By reducing the 
influence of image noise, we were able to obtain accurate 
ML. The total of the maximum and minimum values was 
regarded as the result of ML shown in Eq. [6]:

( )( )max minML sum f sum f= +
 

[6]

Internal calcification
The region surrounding a lesion was set to 0 pixels, and the 
grey level of the lesion was binarized according to the average 
grey level. Internal calcifications (IC) lay in regions with 
the maximum grey level. Then, the interference pixels were 
removed from the binarized image. Connected white regions 
in the binarized image were considered as IC of the lesion. For 
example, if there were 3 connected regions of white spots, the 
IC of the lesion was 3.

Angle between the long axis of the lesion and skin (ALS)
The ellipse-fitting algorithm was used to fit the lesion margin 
to an ellipse. The intersection of two symmetrical axes was 
considered the ellipse center. The long axis, short axis, fitted 
ellipse center, and angle between the long axis and horizontal 
(ALS, θ) were definite. The transformations were conducted 
as shown in Eq. [7]:
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A total of 3 textural features were enrolled in our 
research, which comprised energy, grey entropy, and grey 
mean. First, we converted greyscale images to gradient 
images. LS was the maximum grey value of the grey 
image. Lg was the maximum gradient value of the gradient 
image. H(i, j) was defined as pixels with a grey level of i 
and a gradient level of j simultaneously. H(i, j) was then 
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normalized and converted to P(i, j), and P(i, j) was used to 
calculate energy, grey entropy, and grey mean, which are 
shown in Eqs. [8], [9], and [10], respectively (15):

Energy (E)
E was the square sum of the elements in the region of 
interest. It reflected the coarseness of the texture in the 
lesions. E was calculated according to Eq. [8]:

( )2

1 1

,
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i j

E P i j
= =

=∑∑
 

[8]

Grey entropy (GE)
GE measured the amount of information in an image. 
The more scattering there was, the less information 
was detected, and the smaller was the GE. The GE was 
calculated using Eq. [9]:
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Grey mean (GM)
GM described the average grey level of an image. The 
larger the GM, the brighter the whole image was. The GM 
was calculated according to Eq. [10]:
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[10]

Statistical analysis

The statistical software SPSS version 17.0 software (IBM 
Corp., Armonk, NY, USA) was used for data analyses. 
The normality test showed that the data of morphology 
and textural features were abnormally distributed. The 
median, 25th percentile, and 75th percentile were used to 
describe the data. A nonparametric test (Mann-Whitney) 
was employed to compare all morphology and textural 
features between PTs and FAs and determine the features 
with statistical significance. Our data were dichotomous, 

so receiver operating characteristic (ROC) curve analysis 
was used to calculate the area under curve (AUC), which 
could evaluate the diagnostic performance of the features. 
According to the biggest Youden index, we determined the 
cutoff values on ROC curves for the differential diagnosis 
of PTs and FAs and recorded their sensitivity, specificity, 
positive predictive value (PPV), and NPV. Sensitivity 
reflected the rate of PT diagnosis among the true PTs, and 
specificity reflected the rate of not diagnosing PTs among 
those which were not PTs using the cutoff value. The PPV 
represented the rate of true PTs for tumors diagnosed 
as PTs by features. The NPV represented the rate of 
diagnosis as not true PTs for tumors also diagnosed as not 
PTs by features. Cutoff values were important, and they 
supplied quantitative diagnosis information. A P value 
<0.05 was considered to indicate a statistically significant 
difference.

Results

A total of 40 cases were PTs, with a median age of 39 years 
[28–52], and a median size of 3.1 cm [1.5–4.8]. Among the 
40 PTs, 26 were benign PTs, 12 were borderline PTs, and 2 
cases were malignant PTs. Some 290 participants had FAs, 
with a median age of 38 years [21–53], and a median size of 
1.4 cm [0.6–3.8].

We used 4 kinds of ultrasound instruments in our 
research. Cases of each kind of ultrasound instrument 
are shown in Table 1. Most cases (295/330, 89.4%) were 
scanned with the Logio E9 instrument. 

Comparison of all morphology and textural features 
between PTs and FAs

Data of the morphology and textural features of PTs and 
FAs are shown in Table 2. Statistically significant differences 
(P<0.05) were found in the HWR, ML, E, and GE between 
PTs and FAs. The PTs had a larger HWR and E, more 
MLs, and smaller GE than FAs (Figures 2,3). No statistically 
significant differences existed in Cir, MS, MC, MI, GM, IC, 

Table 1 Cases of each kind of ultrasound instruments.

Tumors Logio E9 Philips IU22 Aplo 500 Siemens S3000 Total

PTs 30 9 0 1 40

FAs 265 6 18 1 290

Total 295 15 18 2 330

PTs, phyllodes tumours; FAs, fibroadenomas.
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and ALS between PTs and FAs.

Evaluation of the diagnostic performance of morphology 
and textural features in differentiating PTs and FAs

Data of the diagnostic performance of single features for the 
differentiation between PTs and FAs are shown in Table 3  
and Figure 4. The ROC curve analysis of single features 
showed that the AUC of GE (0.759) was the largest of the 
four features with a statistical difference. When the cutoff 
value was 2.295, the sensitivity, specificity, PPV, and NPV 
of GE were 0.925, 0.459, 0.978, and 0.190, respectively. To 
balance the complexity of models and improve the AUC 
due to increasing the features and the results of single 
feature, we obtained the optimal 3 combinations among the 
features, which are shown in Table 4 and Figure 4. The AUC 
of the combination of HWR, MI, ML, E, GE, and IC was 
0.868, and the sensitivity, specificity, PPV, and NPV were 
0.734, 0.900, 0.982, and 0.316, respectively.
Discussion

Our research showed that there was a statistically significant 
difference in HWR (P<0.001), which was likely due to the 
rapid growth of PTs (2,16). The HWR of PTs was relatively 
larger than that of FAs. The specific value of the HWR 

could be devised using AI as opposed to simply stating 
whether the HWR was greater or less than 1. From this 
perspective, AI exceeds the performance of human eyes.

In our study, quantitative analysis of AI indicated that the 
ML of PTs was different from that of FAs. The cause for 
this may be that PTs showed more leaf-like architectures 
and much faster growth (12). The ML was a main ultrasonic 
feature of PTs (17). Our findings were consistent with 
previous reports (12,17).

The E and GE reflect the heterogeneity of echoes in 
the lesions. The E is the square sum of the elements of the 
grey-level gradient co-occurrence matrix. The greater the 
E, the more heterogeneous the echo. The GE reflects the 
complexity and nonuniformity of image texture. A greater 
GE means more information in an image, which is more 
homogeneous (18). In our study, PTs showed a larger E 
and a smaller GE than did FAs. Compared with FAs, PTs 
are more likely to present with cystic areas (12,17), and the 
internal echo of PTs is more heterogeneous. If the internal 
components are more complex, the scatter will increase, 
causing backscatter variation and reducing GE. It has been 
reported that the presence of a cystic area indicates that 
the risk of PTs is 16.5 times higher than that of FAs (4). 
In one report, the cystic area was used to differentiate PTs 

Table 2 Comparison of morphology and textural features between PTs and FAs

Features
PTs FAs

P
Median 25th percentile 75th percentile Median 25th percentile 75th percentile

Cir 18.805 16.945 21.250 20.015 17.583 22.880 0.109

HWR 0.635 0.553 0.708 0.520 0.430 0.623 <0.001

MS 18.525 11.815 27.043 18.780 13.168 25.835 0.818

MC (pixel) 1.340 1.063 1.803 1.490 1.198 1.940 0.082

MI (E6) 2.019 1.433 3.011 1.854 1.288 2.429 0.122

ML 7.000 5.500 9.000 7.000 5.000 9.000 0.021

E 0.050 0.030 0.080 0.030 0.020 0.040 <0.001

GE 2.120 1.993 2.238 2.280 2.160 2.363 <0.001

GM 0.465 0.350 0.750 0.485 0.388 0.630 0.731

IC 1.500 0.000 5.750 1.000 0.000 3.000 0.423

ALS (degree) 7.050 1.710 14.063 5.605 2.120 11.385 0.701

The results are presented as medians, 25th percentiles, and 75th percentiles. The P values are for the nonparametric test results of the 
morphology and textural features of 40 PTs and 290 FAs. Values in italic denote statistically significant features. PTs, phyllodes tumors; 
FAs, fibroadenomas; Cir, circularity; HWR, height-to-width ratio; MS, margin spicules; MC, margin coarseness; MI, margin indistinctness; 
ML, margin lobulation; E, energy; GE, grey entropy; GM, grey mean; IC, internal calcification; ALS, angle between the long axis of the 
lesion and skin.
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A

B

Figure 2 A phyllodes tumor in a 41-year-old woman. The 
original ultrasonic image of the lesion is shown in (A). The data of 
morphology and textural features of the lesion are shown in (B).

A

B

Figure 3 A fibroadenoma in a 32-year-old woman. The original 
ultrasonic image of the lesion is shown in (A). The data of 
morphology and textural features of the lesion are shown in (B).

Table 3 Diagnostic performance analysis of the four statistically significant features for the differentiation between PTs and FAs

Features AUC Cutoff value Sensitivity Specificity PPV NPV

HWR 0.733 0.525 0.875 0.534 0.969 0.206

ML 0.610 6.000 0.750 0.445 0.928 0.157

E 0.758 0.035 0.725 0.662 0.946 0.228

GE 0.759 2.295 0.925 0.459 0.978 0.190

PTs, phyllodes tumors; FAs, fibroadenomas; HWR, height-to-width ratio; ML, margin lobulation; E, energy; GE, grey entropy; AUC, area 
under the curve; PPV, positive predictive value; NPV, negative predictive value.

from FAs, yielding a sensitivity of 21.8% and a specificity of 
98.3% (4). Therefore, the more heterogeneous the lesion, 
the more likely it is to be a PT, particularly when a cystic 
area is present.

We aimed to provide an exploratory reference for the 
differential diagnosis of PTs and FAs using AI. In this 
study, when using ROC curve analysis of the HWR, ML, 
E, and GE, we found that the AUC of GE was the largest. 
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C:/Users/sings/AppData/Local/youdao/dict/Application/8.9.4.0/resultui/html/index.html#/javascript:;
C:/Users/sings/AppData/Local/youdao/dict/Application/8.9.4.0/resultui/html/index.html#/javascript:;


2059Quantitative Imaging in Medicine and Surgery, Vol 11, No 5 May 2021

© Quantitative Imaging in Medicine and Surgery. All rights reserved.   Quant Imaging Med Surg 2021;11(5):2052-2061 | http://dx.doi.org/10.21037/qims-20-919

At a cutoff value of 2.295, the sensitivity and PPV of GE 
for the diagnosis of PTs were high but the specificity and 
NPV were very low. This result might have been caused 
by the great overlap of GE values between PTs and FAs. 
It is obviously difficult to diagnose a disease based on a 
solitary feature. Our results showed that the optimal AUC 
existed in combination A (HWR, MI, ML, E, GE and IC). 
Combination A improved the specificity, PPV, and NPV, but 
the NPV was still low. This was also potentially due to the 
overlap of features between the two kinds of tumors. Using 
GE and combination A to diagnose PTs, we could detect the 
maximum number of PTs to reduce the omission diagnosis 
of PTs, allowing active treatment to be initiated to reduce 
recurrence and metastasis of PTs. Meanwhile, the specificity 
and NPV were low for non-PT lesions. In this case, the low 

specificity and NPV were acceptable, because many FAs 
required surgery to thoroughly remove the lesions. 

Comparison with other studies

There are many similarities between PT and FA tumors. 
The pathological difference between them usually lies in 
the more obvious intraductal growth, leaf-like architectures, 
and abundant cellular stroma in PTs (19). However, 
challenges remain in differentiating PTs from FAs by 
imaging (2,8,14,16,20,21). 

AI extracts meaningful information from ultrasonic images 
by quantitative analysis of morphology and textural features of 
lesions, which can not only be used to diagnose breast diseases 
but also contribute to the categorization of tumor pathological 
types (22-24). Presently, most AI studies focus on the diagnosis 
of benign and malignant breast lesions (11,25,26); only a few 
papers have focused on the differential diagnosis of PTs and 
FAs (12-14). Results from one study showed that the ML and 
homogeneity of the PTs were different from those of the FAs, 
and the combination of clinical features, MRI features, and 
textural features could improve the sensitivity and specificity of 
the differential diagnosis between PTs and FAs (12). Another 
study has shown that the deep learning of AI could improve 
the accuracy of distinguishing PTs from FAs (14). Textural 
analysis of ultrasonic images was a potential diagnostic tool 
for the differential diagnosis of benign PTs, complex FAs, and 
simple FAs, and differences existed in E and GE among the 
three types (13,14). Our results are consistent with the above-
mentioned findings. Although we chose some small PTs, ML 
and the homogeneity of the lesions were still the points of 
distinction between PTs and FAs. Regardless of lesion size, 
the biological behavior of the PT determines its ultrasonic 
characteristics.

Strengths and limitations of this study

We attempted to use AI to analyze very similar tumors 

Figure 4 The ROC curve analysis from statistically significant 
features and combined features for the differentiation between 
phyllodes tumors and fibroadenomas. Combination A: HWR, MI, 
ML, E, GE, IC. Combination B: HWR, MI, GE, IC. Combination 
C: HWR, GE. ROC, receiver operating characteristic; HWR, 
height-to-width ratio; MI, margin indistinctness; ML, margin 
lobulation; E, energy; GE, grey entropy; IC, internal calcification.

Table 4 Diagnostic performance of combined features for the differentiation between PTs and FAs

Item Combined features AUC Cutoff value Sensitivity Specificity PPV NPV

Combination A HWR, MI, ML, E, GE, IC 0.868 0.906 0.734 0.900 0.982 0.316

Combination B HWR, MI, GE, IC 0.858 0.851 0.855 0.725 0.958 0.408

Combination C HWR, GE 0.792 0.907 0.669 0.850 0.970 0.262

PTs, phyllodes tumors; FAs, fibroadenomas; HWR, height-to-width ratio; MI, margin indistinctness; ML, margin lobulation; E, energy; GE, 
grey entropy; IC, internal calcification; AUC, area under the curve; PPV, positive predictive value; NPV, negative predictive value.

C:/Users/sings/AppData/Local/youdao/dict/Application/8.9.4.0/resultui/html/index.html#/javascript:;
C:/Users/sings/AppData/Local/youdao/dict/Application/8.9.4.0/resultui/html/index.html#/javascript:;
C:/Users/sings/AppData/Local/youdao/dict/Application/8.9.4.0/resultui/html/index.html#/javascript:;


2060 Niu et al. Difference between phyllodes tumors and fibroadenomas

© Quantitative Imaging in Medicine and Surgery. All rights reserved.   Quant Imaging Med Surg 2021;11(5):2052-2061 | http://dx.doi.org/10.21037/qims-20-919

and provide quantitative information for their differential 
diagnosis. The results showed that AI could be used for the 
differential diagnosis of PTs and FAs.

Our study had some limitations. Firstly, we selected PTs 
<5 cm, and the morphology and textural features of larger 
PTs remained unexplored. In the future, we will compare 
the textural and morphological features of PTs of different 
sizes. Secondly, the sample size of 40 PTs in this study was 
relatively small, especially for the analysis of diagnostic 
efficiency. We will continue to collect PTs and investigate 
the differential diagnosis between PTs and FAs. Thirdly, 
due to the error of automatic segmentation, we explored the 
differential diagnosis between PTs and FAs using manually 
contoured images, and the diagnostic efficiency based on 
automatic recognition of the AI diagnosis system was not 
evaluated. Fourthly, on account of the small number of 
each pathological type of PT, we did not compare different 
pathological types of PTs with FAs. We will continue to 
collect different pathological types of PT, and in the future, 
these aspects will be assessed.

Conclusions

Quantitative analysis of AI can discern the subtle differences 
in morphology and textural features between PTs and 
FAs. Comprehensive consideration of multiple features 
contributes to the diagnosis of PTs and FAs. With the 
development of AI, by training with a large sample and an 
improved calculation method we may be able to supply 
more accurate information to diagnose PTs and FAs.
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