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Background: To investigate the feasibility of using a stacked generative adversarial network (sGAN) to 
synthesize pseudo computed tomography (CT) images based on ultrasound (US) images.
Methods: The pre-radiotherapy US and CT images of 75 patients with cervical cancer were selected 
for the training set of pseudo-image synthesis. In the first stage, labeled US images were used as the first 
conditional GAN input to obtain low-resolution pseudo CT images, and in the second stage, a super-
resolution reconstruction GAN was used. The pseudo CT image obtained in the first stage was used as 
an input, following which a high-resolution pseudo CT image with clear texture and accurate grayscale 
information was obtained. Five cross validation tests were performed to verify our model. The mean absolute 
error (MAE) was used to compare each pseudo CT with the same patient’s real CT image. Also, another 
10 cases of patients with cervical cancer, before radiotherapy, were selected for testing, and the pseudo CT 
image obtained using the neural style transfer (NSF) and CycleGAN methods were compared with that 
obtained using the sGAN method proposed in this study. Finally, the dosimetric accuracy of pseudo CT 
images was verified by phantom experiments.
Results: The MAE metric values between the pseudo CT obtained based on sGAN, and the real CT 
in five-fold cross validation are 66.82±1.59 HU, 66.36±1.85 HU, 67.26±2.37 HU, 66.34±1.75 HU, and 
67.22±1.30 HU, respectively. The results of the metrics, namely, normalized mutual information (NMI), 
structural similarity index (SSIM), and peak signal-to-noise ratio (PSNR), between the pseudo CT images 
obtained using the sGAN method and the ground truth CT (CTgt) images were compared with those of the 
other two methods via the paired t-test, and the differences were statistically significant. The dice similarity 
coefficient (DSC) measurement results showed that the pseudo CT images obtained using the sGAN method 
were more similar to the CTgt images of organs at risk. The dosimetric phantom experiments also showed 
that the dose distribution between the pseudo CT images synthesized by the new method was similar to that 
of the CTgt images.
Conclusions: Compared with NSF and CycleGAN methods, the sGAN method can obtain more accurate 
pseudo CT images, thereby providing a new method for image guidance in radiotherapy for cervical cancer.
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Introduction

As one of the most common gynecological tumors, cervical 
cancer seriously endangers women’s health and lives (1,2). 
The current treatment methods include surgery or a 
combination of radiotherapy and chemotherapy, of which 
radiotherapy is suitable for the treatment of various cancer 
stages, and its therapeutic effect has been confirmed. 
Radiotherapy is becoming increasingly accurate due to the 
gradual advancement of precision techniques from two-
dimensional (2D) traditional to image-guided radiotherapy.

Image guided devices used in the medical linear 
accelerator for the radiotherapy of cervical cancer include 
an electronic portal imaging device (EPID), cone beam CT 
(CBCT), and ultrasound (US). EPID is a two-dimensional 
image guidance device with the advantages of fast scanning 
speed and convenient operation, but the resolution of soft 
tissue is low, and its MV level energy increases radiation 
exposure (3,4). CBCT image guidance mainly uses rigid 
or affine registration between the CT image obtained 
in the simulation stage and the CBCT image obtained 
in the treatment stage based on bony landmarks or gray 
image information to verify positioning between the 
fractional treatment. However, it too has the disadvantage 
of the low resolution of soft tissue and radiation, and the 
artifacts caused by the radiation hardening effect and 
electron scattering reduce the image quality after image 
reconstruction (5-7). Compared with EPID- and CBCT-
based image-guided devices, US-based image-guided 
devices offer the advantages of portability, non-radiation, 
and real-time operation, while effectively locating the 
position of the applicator (8) and have a good effect in the 
application of cervical cancer radiotherapy (9). Presently, 
the US can only assist CBCT images or independently 
carry out positioning verification before radiotherapy and 
cannot formulate and modify radiotherapy plans directly 
on US images. Therefore, in this study, we introduced a 
pseudo CT image synthesis technology based on US images 
to solve the problems mentioned above. 

The conventional methods for obtaining pseudo CT 
images based on US images are mainly divided into two 
categories, the deformation-field registration method, 
and the image-synthesis method. The deformation field is 
obtained via registration between the US images scanned 
in the simulation stage, and those scanned in the treatment 
stage, and it is applied to the CT images scanned in the 
simulation stage to obtain the virtual CT image (10-12). 
However, the deformation field obtained using this method 

is discontinuous, resulting in the inaccurate connection of 
tissues and organs at the critical points of different regions 
of interest (ROIs). Although this problem can be solved 
through smooth filter processing, it reduces the image 
definition, yet the deformation-field method’s limitation 
can be overcome via image synthesis. The image-synthesis 
method involves the use of machine-learning or deep-
learning algorithms to extract the image features of CT and 
other modal images, pair the features of the same region, 
consider the matching results as the training set, add the 
images of other modes in the test phase, and predict the 
corresponding pseudo CT images. Presently, scholars 
mostly use magnetic resonance imaging (MRI) and positron 
emission tomography (PET) images to synthesize pseudo 
CT images, and existing research on the synthesis of pseudo 
CT images based on US images is not profound (13-15).

Owing to the increased prevalence of deep learning, 
Gatys et al. proposed the neural style transfer (NST) 
method based on the convolutional neural network 
(CNN) and has been gradually used in image synthesis. 
The working principle of the method is to define the 
image-content-loss function and style-loss function. 
Simultaneously, both the content abstract-feature and style 
abstract-feature of two kinds of modal images are extracted 
using the deep-learning network model. Subsequently, one 
of the modal images is used as the reference image, and the 
other is reconstructed via iterative optimization (16). This 
method utilizes the advantage of CNNs to extract high-
level features of images, artificially separates image style 
and content, and performs iterative optimization. Following 
Johnson et al. proposed the image method named fast NSF, 
wherein the forward convolution neural network replaced 
back propagation to expedite the optimization of the model 
to achieve real-time image-style transfer (17). Although the 
fast NSF method can stylize images in real time using GPU, 
owing to obvious differences among the styles of different 
modal images, a separate model must be trained for each 
style in advance, causing many manual operations to suffer 
from significant limitations. However, because the NSF 
method takes the pixel of the image as input, it judges the 
loss of each pixel one by one in the pixel space then averages 
the total loss of all the pixels to obtain blurred synthetic 
images. A method based on the generative adversarial 
network (GAN) model initially proposed by Goodfellow 
et al. has been developed for medical-image synthesis to 
achieve satisfactory results (18-21). This method utilizes 
the idea of confrontation to learn the generative model, 
automatically defines the potential loss function, and learns 
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the original real sample set’s data distribution so that the 
sample distribution generated using the generator can 
approach the real-number sample distribution and possesses 
satisfactory generalization ability. As the training mode is 
antagonistic, the demand for training samples for the model 
is considerably reduced (22). The methods of synthesizing 
medical images based on GAN are mainly divided into 
supervised and unsupervised methods. The former method 
is based on the GAN model that contains conditional 
information. By learning the correspondence between the 
source images and target images, the mapping method of 
GAN through random vector is changed (23). Ben-cohen  
et al. established a model to synthesize PET images obtained 
by abdominal CT using the conditional GAN (cGAN) 
that contained the full convolutional network (FCN). The 
experimental results showed that the model could detect 
malignant tumors in the liver region and that it could 
replace the conventional PET–CT scan as the evaluation 
image for estimating the efficacy of drug treatment (24).

The latter is based on a coupled GAN model, which 
searches for the nonlinear mapping relationship between 
the two image domains or the nonlinear mapping 
relationship from different image domains to the same 
shared potential intermediate domain. The weight sharing, 
image reconstruction, and cyclic consistency constraints 
are used to replace the constraints on the synthesized 
images’ contents, thereby limiting the learning range of 
the generator. Owing to the lack of explicit supervision 
information in the training process, this method can be used 
to synthesize unpaired source images and target images. 
Usually, the DualGAN or CycleGAN models are used in 
this process (25-28). Wolterink et al. used the CycleGAN 
model to train unpaired brain CT and MRI data by using 
a pair of mirror-symmetric GANs to establish a mapping 
relationship between the two modal images’ data. The 
results showed that the pseudo CT images synthesized using 
the model were similar to real brain CT images in terms of 
anatomical structure (29). Also, Wang et al. added a deform 
convolutional network layer to the classical CycleGAN 
generator. They normalized the mutual information loss 
to the entire circulation network’s loss function, thereby 
proving that the improved CycleGAN could be used for the 
mutual synthesis of the brain or abdominal MRI images and 
CT images with inconsistent imaging range (30). However, 
in CycleGAN-based image synthesis, the mapping difficulty 
between the two modal images is not consistent; therefore, 
it is difficult to completely reverse the entire cyclic 
network, which complicates the total objective function’s 

optimization. On this basis, the synthesis model between 
the two modal images also requires more time for training.

A single GAN cannot effectively process tasks, so we 
used Zhang et al.’s idea to synthesize high-resolution pseudo 
images based on stacked generative adversarial network 
(sGAN), and used multiple GANs to independently solve 
different tasks in the image-synthesis process (31). In this 
study, the synthetic process of pseudo CT was divided 
into two stages. In the first stage, labeled US images were 
input to the improved cGAN, and the corresponding 
mapping relationship with the CT image was established. 
This meant that both the main texture information and 
grayscale information of the target images were obtained, 
and low-resolution (LR) blurred pseudo CT images were 
synthesized. In the second stage, the LR blurred pseudo 
CT images obtained in the first stage were taken as the 
input of the super-resolution GAN (SRGAN). Also, ResNet 
and FCN were used to correct the results of the first stage 
obtaining pseudo CT images with clear texture and accurate 
grayscale information.

Methods

To the best of our knowledge, this is the first application of 
GANs to synthesize US and CT images. We adopted cGAN 
in the supervised mode for image synthesis. A considerable 
advantage to this method is that by simultaneously 
conducting both procedures, the patient does not have to be 
moved. This means the relative position of the abdominal 
organs, including organs at risk (OARs), remains the same, 
reducing image guidance error and satisfying conditions for 
pairing training sets in image synthesis. In this study, the 
labeled US images obtained using the U-Net segmentation 
method were used as the input of cGAN. Also, pseudo 
CT images were synthesized using the generator of the 
encoder–decoder model that was based on both residual 
networks (ResNet) and the discriminator of FCN. 
Subsequently, the improved SRGAN was used further to 
enhance the imaging quality of the pseudo CT images, 
and the 3D pseudo CT images were synthesized using a 
reconstruction algorithm. The flow chart of the synthesis of 
pseudo CT images is depicted in Figure 1.

Data acquisition and image preprocessing

The image data selected in the experiment were all 3D 
volume data of preoperative cervical cancer patients under 
Volumetric Modulated Arc Therapy (VMAT), of which  
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75 cases were used for model training and 10 used for model 
testing. The US and CT images obtained were collected 
during the patients’ normal treatment, and informed 
consent was obtained from all individual participants. The 
ethics association approved the study of the Second People’s 
Hospital of Changzhou, Nanjing Medical University 
(2017-002-01). The CT images were obtained by Optima 
CT520 produced by the GE Corporation (United States). 
The scanning conditions were as follows: tube voltage  
120 kv, tube current 220 mA, image size 512×512×(196–
239), voxel spacing 0.97653×0.97653×1 mm3. The CT 
images of 85 patients were scanned with the Clarity 
Ultrasound device produced by the Elekta Corporation 
(Sweden). The scanning conditions were as follows: C5-
2/60 US probe, center frequency 3.5 MHz, image size 
400×400×(220–295), and voxel spacing 1×1×1 mm3. Each 
patient was required to empty their bladder then 300 mL 
of water was delivered through a catheter to ensure the 
bladder was full before scanning. Before collecting US data, 
technicians calibrated the indoor laser lamp coordinate 
system and US probe with a calibration phantom. The 3D 
US probe has an infrared light refraction device similar to 
the shape of Octopus which reflects infrared light through 
eight different points and is received by the infrared device 

above the scanning bed. The position of the probe, which 
represents the position of the scanned single frame image, 
is calculated according to its infrared receiving frequency. 
The 3D US is then reconstructed by interpolation based on 
each frame image’s position by clarity system image. These 
calibrations ensure that the coordinate position of each 
3D US voxel collected by the system is known relative to 
the indoor laser light coordinate system. When collecting 
patients’ US data, the US probe is installed on the self-
developed ultrasonic robotic arm, which can avoid the 
pressing error caused by manual data acquisition. 

A US device is different from a CT device in terms 
of its scanning conditions and imaging principles. The 
original US and CT images required preprocessing before 
they could be used for pseudo image synthesis. While 
the advantage of US imaging is that it can satisfactorily 
distinguish the contour and relative position of OARs, 
the image noise is high, and it does not form a linear 
correction with the grayscale information of the CT image. 
This means it cannot be directly used in the synthesis of 
pseudo CT images and the region of the US image must be 
divided on the basis of semantic information. In addition, 
we performed affine registration between the original 
3D US images and CT images to ensure their sizes and 

Figure 1 Flow chart of pseudo CT image synthesis based on sGAN. GAN1 is the conditional GAN, which is used for the coarse synthesis 
of pseudo CT images. GAN2 is a super-resolution GAN, which is used to improve the resolution of pseudo CT images. sGAN, stacked 
generative adversarial network.
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resolutions were consistent. The size of the processed US 
and CT image data sets was 256×256×100, and the voxel 
resolution was 1×1×1 mm3. Subsequently, we created 
labeled US images using the semantic information as the 
input of cGAN. The labeled US images refer to the results 
obtained by labeling different OARs in the original US 
images based on the image segmentation method. Each 
labeled region’s grayscale value is a certain number, but the 
values are different among different labeled regions. The 
image quality of the original US images was low, and the 
grayscale information in the images could not form a linear 
correlation with tissue density. Therefore, we referred to 
the method of Isola et al. (32), which sees the original US 
images replaced by the labeled US images with Gaussian 
noise as the input of the sGAN model. The labeled US 
images retain the edge information of tissues and organs 
and have relative position information between different 
OARs. There were four acquisition steps in the labeling of 
US images. In the first step, the ImageJ software was used 
to reslice the 2D slices of the 3D US and CT images after 
registration to ensure that the 2D slices of the two modal 
images within the registration range were aligned one by 
one. The 3D volume data was then divided into 100 2D 
layers. In the second step, binary masks were made, and the 
2D US and CT images of the same slice were multiplied 
by pixels to obtain the overlapping region. The pixel value 
of the overlapping region was set to 1, while the remaining 
region was the background, whose pixel value was set to 0. 
The third step saw the binary masks obtained in the second 

step, respectively processed with the original US and CT 
images for pixel calculation. The redundant pixels in the 
original images were then removed to ensure that the two 
modalities’ imaging regions were the same. Using the U-Net 
method, the US images were segmented into multi-target 
regions to obtain labeled US images in the fourth step. 
Also, to reduce the bladder region’s deformation due to US 
probe compression, we connected the upper two vertices 
of the bladder region in the US images to compensate for 
the partial absence of the region from the images. The flow 
chart of the acquisition of the labeled US images is depicted 
in Figure 2.

Supervised deep conditional convolutional adversarial 
network

CNN with ResNet has been proven to perform satisfactorily 
in a variety of image-processing tasks (33-35). Through 
identity shortcut connection, the network’s output is 
expressed as a linear superposition between the input and 
a nonlinear transformation thereof. Notably, the most 
significant difference between ResNet and direct-connected 
CNN is that the former provides some protection to 
information integrity because it can directly transmit it from 
input to output along with the shortcut. This makes the 
target of model learning more concise and solves the problem 
of gradient disappearance in the training process (36). 

The generator is an improved U-Net to which a residual 
connection has been added. This means each deconvolution 

Figure 2 Acquisition of labeled US images.
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layer’s input is the linear superposition between the previous 
layer’s output and the output of the symmetric convolutional 
layer, effectively doubling the feature maps (37). This 
method retains the image feature information at different 
resolutions, ensuring the encoder’s feature information 
can be continuously re-remembered during the decoder 
operation and that the synthesized pseudo images can retain 
the feature information of the original input images to the 
greatest extent. Also, z is the input of random Gaussian noise 
distribution. The parameters of the network model after 
training have been determined. If the inputs are the labeled 
US images without adding noise, the output results of pseudo 
CT images will be unchanged, making them different from 
the real CT images. The structure of the generator with 
residual connections is depicted in Figure 3.

The input of the network is the labeled US images. The 
nodes from each network layer in each encoder part to the 
next include the convolution layer, batch-normalization 
(BN) layer, and LReLU activation layer. Also, each node 
to the next in the decoder part includes the deconvolution 
layer, BN layer, and ReLU activation layer. The network 
layers of both the encoder and decoder are symmetrically 
distributed, and the loss function of the generator includes 
content loss and counter loss. The mean square error (MSE) 
loss function can be used to train the network to obtain a 
high peak signal-to-noise ratio (PSNR), so the calculation 
of the MSE is determined by the MSE (LMSE) between 
the pseudo CT images [G(x, z)] synthesized using the US 
images (x) and ground truth CT (CTgt) images (y), where z 

is the noise. Calculation of the PSNR uses the binary cross 
entropy (LBCE) as the loss where α is the LBCE loss term’s 
weight coefficient in the loss function. In following the 
experimental results of Isola et al., we set this to 0.5 (32). 
The loss function of the generator is given as follows:

( )( ) ( )( )
1

, , 1, , ( , )G MSE BCEL L G x z y L D x G x zα= +
 

[1]

This study also used a Markov discriminator, an FCN 
that comprises five convolutional layers and one Sigmoid 
activation layer. The input passes through one node, 
including the convolution and LReLU activation layers, 
then through three nodes, including the convolution, 
BN, and ReLU activation layers, and the output is finally 
obtained through the convolution layer and fully connected 
layer. The discriminator’s output size is a probability 
matrix with the dimensions of 30×30×1 mm3. The result of 
averaging the matrix is the final output of the discriminator. 
This architecture can make the model retain more image 
details during training. The network structure of the 
discriminator is depicted in Figure 4.

To calculate the loss function, the discriminator includes 
two inputs and two corresponding outputs. It takes as one 
input the labeled US image (x) and pseudo CT image [G(x, 
z)] generated using the generator to obtain the output  
{D[x, G(x,z)]} and takes as another output the labeled US 
image (x) and CTgt images (y) to obtain the output [D(x,y)]. 
The loss function of the discriminator is given as follows:

( )( ) ( )( )( )1
1, , 0, , ,D BCE BCEL L D x y L D x G x z= +  [2]

Figure 3 The generator of cGAN. cGAN, conditional generative adversarial network.
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Figure 4 The discriminator of cGAN. cGAN, conditional generative adversarial network.

Super-resolution reconstruction of pseudo CT images

LR CT images are converted into high-resolution ones 
via certain algorithms, and the resulting images are super-
resolution CT images. Super-resolution CT images 
have high pixel density and detailed information. As the 
resolution of the pseudo CT images obtained using cGAN 
was not high, their texture information was blurred, so 
we used the SRGAN to obtain more abundant texture 
information of the pseudo CT images. 

The generated network contained five residual blocks, 
and each contained two convolution layers with a kernel 
size of 3×3. Each convolution layer was connected to a 
BN layer and PReLU activation layer. Subsequently, four 
deconvolution layers were connected, and each contained 
deconvolution, BN, and ReLU activation operations. The 
second to fourth deconvolution layers’ inputs were the 
linear superposition of the output of the previous layer 
and output of the first deconvolution layer. Subsequently, 
two Pixelshuffle layers and one deconvolution layer were 
connected, and the Pixelshuffle layer improved the image 
resolution via sub-pixel operation. The feature maps of 
r2 channels were obtained via convolution, then high-
resolution pseudo CT images were obtained via periodic 
screening, wherein r was the upscaling factor, i.e., the 
expansion rate of the images (38). The network structure of 
the generator is depicted in Figure 5.

The loss function of the SRGAN generator also includes 
content loss and adversarial loss. The content loss is the 
MSE (LMSE) between the super-resolution pseudo CT 
image [G(a)] synthesized using the LR pseudo CT image 
and CTgt image (b). The adversarial loss is the binary 
cross entropy (LBCE) between probability 1, and probability 
D[G(a)] that G(a) is identified as a real image (39) and β is 
the weight coefficient of LBCE loss term in the loss function. 
This is an empirical value, which we also set to 0.5. The loss 
function of the generator is given as follows:

( )( ) ( )( )( )2
, 1,G MSE BCEL L G a b L D G aβ= +

 
[3]

The discriminator is a CNN with 10 convolution layers, 
three fully connected layers, and one sigmoid activation 
layer. The convolution layer includes convolution, BN, and 
LReLU activation operations. The first two fully connected 
layers use LReLU as the activation function, and the third 
fully connected layer uses the Sigmoid activation function 
to obtain the judgment result of the discriminator. For a 
convolutional layer, the size of the convolutional kernel is 
3×3; the number of convolutional kernels is 32, 32, 64, 128, 
128, 256, 512, and 512; the step size is 1, 2, 1, 2, 1, 2, 1, 2, 
and 2, and the Padding is SAME. The output obtained after 
convolution is reconstructed into a 1D tensor and taken 
as the fully connected layer’s input. Also, the number of 
nodes in all three fully connected layers is 1024, 512, and 1, 
respectively. The structure of the discriminator is depicted 
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Figure 5 The generator of SRGAN. SRGAN, super-resolution generative adversarial network.

Figure 6 The discriminator of SRGAN. SRGAN, super-resolution generative adversarial network.

in Figure 6. This discriminator also includes two inputs and 
two outputs. It takes as one input the G(a) of the super-
resolution pseudo CT image generated using the generator 
to obtain the output D[G(a)], and takes b (CTgt image) as 
another input to obtain the output D(b). The loss function 
of the discriminator is given as follows:

( )( ) ( )( )( )2
1, 0,D BCE BCEL L D b L D G a= +  [4]

Technical details

All networks are optimized with the Adam optimizer, where 
cGAN is trained from scratch with a learning rate of 10−6 
with a batch size of 1. SRGAN is trained from scratch with 
a learning rate of 10−4, and the batch size is also 1. The 
two GAN networks’ epochs are both 100, and the code is 

implemented using the TensorFlow library. We performed 
experiments on a personal computer equipped with a GPU 
(Nvidia GeForce RTX 2080Ti) and a CPU (Intel Core i9-
9900K).

Evaluation

To verify the model’s performance, a five-fold cross-
validation technique was used in the training and testing 
steps. The 75 cases were randomly divided into five groups, 
and four groups (including 60 cases) were selected for each 
experiment to test the trained model. After training, the 
model was applied to the CBCT images of the remaining 
15 subjects to generate pseudo CT. To verify the accuracy 
of the pseudo CT images obtained based on the improved 
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sGAN, pseudo CT synthesized based on the NSF and 
CycleGAN methods were selected as control experiments, 
and the CTgt was the actual CT image.

The accuracy of the HU value of pseudo CT and real 
CT of each subject is evaluated by calculating the mean 
absolute error (MAE) of voxels in the pelvic region:

( ) ( ) ( )
1

1MAE ,
N

re ps re ps
i

CT CT CT i CT i
N =

= −∑
 

[5]

where N is the total number of voxels in the CT pelvic 
region. CTre is a real image scanned by a CT machine, and 
CTps is the pseudo CT obtained by different methods. The 
smaller the MAE value, the closer the pseudo CT images’ 
HU value to the real CT images.

To test the results of 10 cervical cancer patients in the 
testing phase, the accuracy of the image-synthesis algorithm 
was evaluated using the following three quantitative metrics: 
NMI (40), SSIM (41), and PSNR (42).

The first metric is NMI, which is used to evaluate the 
similarity between CTgt images and pseudo CT images, 
and was obtained using different methods. The function 
expression is as follows:

( ) ( )
( ) ( )
2 ,

NMI , gt ps
gt ps

gt ps

I CT CT
CT CT

H CT H CT
=

+
 

[6]

( ) ( )
( )

I , ( | )

( | )

gt ps gt gt ps

ps ps gt

CT CT H CT H CT CT

H CT H CT CT

= −

= −

	 [7]

where I(CTgt,CTps) denotes the mutual information value 
between the pseudo CT and CTgt images, and H(CTgt) and 
H(CTps) denote the information entropy. The closer the 
NMI metric value is to 1, the better the registration result.

The second metric is SSIM, and its mathematical 
definition is as follows:

( )( )
( )( )

( ) ( )

1 2

2 2 2 2
1

2 2
1 1 2 2

2 2
SSIM

,

g p g p

g p g p

I I I I

I I I I

C C

C

C k L C k L

µ µ σ

µ µ σ σ

+ +
=

+ + +

= =  

[8]

where gIµ and pIµ  denote the mean grayscale values of 
the CTgt image and pseudo CT image, respectively; gIσ

and pIσ  denote the variances of the grayscale value of the 
CTgt and pseudo CT images, respectively; g pI Iσ  denotes the 
covariance; C1 and C2 denote constants to maintain stability; 
L denotes the dynamic range of the CT image grayscale; 
and k1=0.01 and k2=0.03. The SSIM value lies in the range 

of [0, 1], and the closer the SSIM value is to 1, the greater 
the similarity between the two images.

The mathematical definition of the PSNR measurement 
method is as follows:
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where Igt and Ips denote the CTgt and pseudo CT images, 
respectively. Also, X, Y, and Z denote the size of the image, 
and MAXI denotes the maximum grayscale value of the CT 
images. The lower the MAE value and higher the PSNR 
value, the more similar the synthetic pseudo CT image is to 
the CTgt image. The calculation of the three measurements 
mentioned above methods is related to the grayscale of CT 
images, and the grayscale range of the CT images is unified 
into the range of [0, 4,000] (43).

The DSC was used to evaluate bladder and uterine 
regions’ segmentation accuracy in the pseudo CT  
images (44). In this study, the distinct curve guided FCN 
proposed was used to segment the OARs in the pelvic region 
of the pseudo and real CT images (45). Calculating the 
volume overlap of bladder and uterus between CT images, 
the accurate segmentation results should have a high organ 
volume overlap rate. Notably, DSC is given as follows:

2
DSC gt ps

gt ps

CT CT

CT CT

L L

L L

∩
=

+
 

[10]

where gtCTL  and psCTL  denote the bladder or uterus’s 
binary segmentation results in the CTgt and pseudo CT 
images, respectively, which were obtained using the method 
proposed in this study. The closer the DSC value is to 1, 
the higher is the similarity between the bladder and uterine 
regions in the pseudo CT image and the CTgt image.

To verify the accuracy of the pseudo-CT image based on 
US image synthesis in dose calculation, this study conducted 
a phantom experiment and selected real scanned CT images 
as the ground truth images for dosimetry verification. 
Medical physicists define and outline the planning target 
volume (PTV) and organs at risk (OARs) on CTgt images 
and copy them to the pseudo CT images synthesized 
based on different deep learning methods. The VMAT 
radiotherapy plan was made on the CTgt images, and the 
Monte Carlo algorithm calculated a dose of 4,500 cGy/25 F. 
After the optimized plan met the clinical requirements, the 
plan was copied to different pseudo CT images. To compare 
the difference between pseudo CT and CTgt images in the 
radiotherapy plan, the 4,500 cGy prescription dose with 
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95% PTV was used as the plan’s passing criterion. The 
doses in PTV and OARs of cervical cancer patients, which 
were obtained based on pseudo CT and CTgt images under 
the same optimization conditions of VMAT treatment in 
the Monacao planning system, were compared. Dosimetry 
evaluation indexes mainly include dose volume histogram 
(DVH), maximum dose (Dmax), average dose (Dmean), and 
minimum dose (Dmin). 

Results

Table 1 shows the MAE measurement results between the 
real CT images and the pseudo CT images synthesized by 

different methods. Compared with NSF’s method, sGAN 
has a lower MAE value, which indicates that the pseudo 
CT image synthesized by SGAN is closer to the real CT 
image. Compared with CycleGAN, SGAN does not have 
obvious advantages, although on the premise of ensuring 
image quality, the SGAN method has more stable training 
results than the CycleGAN method and is also universal for 
training volume data.

Figure 7 depicts the pseudo CT image obtained using 
three different image-synthesis methods. Although the 
NSF-based method can roughly obtain pseudo CT images, 
it blurs the edge information between different tissues 
and organs, resulting in the mismatching of CT values 

Table 1 The MAE metric results computed between real CT image and different pseudo CT images for five-fold cross validation

Fold1 Fold2 Fold3 Fold4 Fold5

sGAN (HU) 66.82±1.59 66.36±1.85 67.26±2.37 66.34±1.75 67.22±1.30 

NSF (HU) 77.11±2.99 77.21±2.30 75.33±4.30 75.87±3.56 76.87±2.04 

CycleGAN (HU) 65.61±2.48 64.58±2.79 66.24±4.28 67.05±4.31 65.53±2.44 

sGAN, stacked generative adversarial network; NSF, neural style transfer.

Figure 7 Pseudo CT image results based on three different image-synthesis methods. CTGT, the ground truth CT; CTsGAN, pseudo CT 
image obtained using sGAN; CTNSF, pseudo CT image obtained using neural style transfer; CTCycleGAN, pseudo CT image obtained 
using CycleGAN.
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in different imaging regions. Compared with the NST 
method, the pseudo CT images obtained using CycleGAN 
are more accurate; however, the resulting images are not 
stable because of the difference between the two modal 
images to be synthesized. If the difference is considerable, 
the synthesized image data is poor; otherwise, the result 
is satisfactory. The sGAN method proposed in this study 
ensures that each organ’s relative position in the image 
remains unchanged and provides accurate organ contour 
and grayscale information. Also, the result of image 
synthesis is relatively stable, indicating a more favorable 
outcome compared with the other methods. The NMI, 
SSIM, and PSNR measurement results for the pseudo CT 
images synthesized using three different image-synthesis 
methods, and CTgt images are depicted in Figure 8. 
According to the comparison results, the CTgt and pseudo 
CT images obtained using the method proposed in this 

study are significantly different from those obtained using 
the other two methods (tNMI(sGAN-NSF) =13.594, tNMI(sGAN-

CycelGAN) =3.053, tSSIM(sGAN-NSF) =10.621, tSSIM(sGAN-CycelGAN) 

=2.914, tPSNR(sGAN-NSF) =8.999, tPSNR(sGAN-CycleGAN) =2.530, and 
P<0.05).

The difference between the contour of the OARs in the 
CTgt image and pseudo CT image is depicted in Figure 9. 
The contour is obtained via the automatic segmentation 
method of region growth. The yellow region in Figure 9A  
represents the contour of the OARs in the pseudo CT 
image obtained using SGAN; the blue region in Figure 9B  
represents the contour of the OARs in the pseudo CT image 
obtained using NSF, and the white region in Figure 9C  
represents the contour of the OARs in the pseudo CT 
image obtained using CycleGAN. The red region in each 
of these figures represents the contour of the OARs in the 
CTgt image, and the closer the red and other-color contour 

Figure 8 Measurement results of pseudo CT images and CTgt images using three different image-synthesis algorithms. (A) measurement 
results based on NMI; (B) measurement results based on SSIM; (C) measurement results based on PSNR. NMI, normalized mutual 
information; SSIM, structural similarity index; PSNR, peak signal-to-noise ratio. 

A B

C
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Figure 9 Contour differences of OARs between CTgt images and synthetic CT images. (A) Contour differences of OARs between CTgt 
images and pseudo CT images obtained based on sGAN. (B) Contour differences of OARs between CTgt images and pseudo CT images 
CT images obtained based on NSF. (C) Contour differences of OARs between CTgt images and pseudo CT images CT images obtained 
based on CycleGAN. The red curve shows the contour of the OARs in the CTgt images. The yellow curve represents the contour of the 
OARs in the pseudo CT images obtained using sGAN. The blue curve represents the contour of the OARs in the pseudo CT images 
obtained using NSF. The white curve represents the contour of the OARs in the pseudo CT images obtained using CycleGAN. OAR, 
organs at risk; CTgt, ground truth CT; sGAN, stacked generative adversarial network.

B CA

Table 2 DSC measurement results of registration accuracy between ground truth CT images and pseudo CT images synthesized by three 
different methods

DSC (%)
Patients number

1 2 3 4 5 6 7 8 9 10

sGAN 91.7 89.4 91.2 88.7 89.8 87.9 91.0 90.5 89.7 90.4

NSF 82.6 83.8 80.9 78.4 82.2 77.1 84.2 82.7 81.9 79.7

CycleGAN 86.3 90.6 86.1 85.5 90.1 83.6 89.4 88.3 89.7 88.2

DSC, dice similarity coefficient; sGAN, stacked generative adversarial network; NSF, neural style transfer.

regions are, the more similar the regions are to one another. 
Table 2 lists the registration accuracy of the OARs evaluated 
via DSC values between CTgt and pseudo CT images 
synthesized using different methods. Compared with the 
other two methods, the registration results of the OARs 
between these images obtained using the sGAN method 
have a higher DSC value.

Also, to prove the effectiveness of SGAN in synthesizing 
pseudo CT images compared with cGAN alone, we 
compared the pseudo CT image results obtained by sGAN 
and cGAN separately, and the comparison results are 
shown in Figure 10. Figure 10A shows the real CT images;  
Figure 10B shows the pseudo CT images obtained based 
on sGAN, and Figure 10C shows the pseudo CT images 
obtained based on cGAN. The yellow square is a local 

enlarged image. This demonstrates that cGAN alone cannot 
obtain high-resolution pseudo CT images, and the results 
need to be input into SRGAN for resolution reconstruction, 
to obtain a more clear texture and better visual effects.

We used an ultrasound phantom for dosimetry 
verification. The dose distribution results of real CT and 
pseudo CT images obtained based on the SGAN method 
are shown in Figure 11, respectively. The green region is 
PTV, the pink and orange regions are OAR1 and OAR2, 
respectively, and the brown line is the outer contour. 
In Figure 11, the dose lines around the PTV region are  
4,500 cGy, 4,000 cGy, 3,500 cGy, and 3,000 cGy from 
inside to outside. This shows that the dose distribution of 
CTgt and pseudo CT obtained based on sGAN is different, 
and the pseudo CT has a better conformal degree. The 
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difference is that the relative position between OARs and 
PTV in the synthesized pseudo CT image is different from 
that of CTgt. Figure 12 shows the comparison results of 
the DVH dose difference of the same OARs and PTV in 
different CT images. The solid line is CTgt, and the dashed 
line is the pseudo CT obtained based on sGAN. This shows 
that with the exception of OAR1, the remaining dose lines 
in the DVH chart have relatively small differences, and 
their specific dose differences are shown in Table 3. Table 3 
also lists the Dmax, Dmean, and Dmin values of PTV and 
OARs under pseudo-CT and CTgt radiotherapy plans. The 

difference in most index values between the two CT images 
is within 50 cGy.

Discussion

In this study, 3D US and CT images were registered in 
the image pre-processing stage, and the 2D images were 
rearranged according to the patient’s axial direction. 
Therefore, in training data, the target was to search for the 
mapping relationship between continuous 2D images in 
ultrasound and CT image domains, reducing the problem 

B CA

Figure 10 The comparison results of pseudo CT images were obtained by sGAN and cGAN, respectively. (A) Real CT images. (B) Pseudo 
CT images obtained based on sGAN. (C) Pseudo CT images obtained based on cGAN. The yellow square is a local enlarged image. sGAN, 
stacked generative adversarial network; cGAN, conditional generative adversarial network.

BA

Figure 11 Dose distribution map of PTV based on different CT images. a: Dose distribution map based on real CT images. b: Dose 
distribution map based on pseudo CT image. 
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of mismatch during training. Also, following the pseudo 
CT image synthesis task based on sGAN, we use 3D image 
reconstruction technology to reconstruct a 2D pseudo CT 
image sequence. The reconstructed 3D volume data were 
compared with ground truth CT images (real scanning 
CT), which showed good similarity in anatomy and 
dosimetry. From the experimental results, it is evident that 
compared with other methods, sGAN can more effectively 
synthesize pseudo CT images. Within the same imaging 
range, the organs’ anatomical structure in the pseudo CT 
image obtained using the sGAN method was more similar 
to that in the CTgt image. The sGAN method used the 
image-synthesis network and the image super-resolution 
reconstruction network and trained these different GAN 
networks separately, thereby reducing the complexity of 
the total loss function and obtaining satisfactory training 
results in the local network. In the cGAN-based image 

synthesis, labeled images based on the US images were 
added to constrain the synthetic region of different organs 
in the pseudo CT images. Simultaneously, the content of 
different labels was locally matched with the corresponding 
region in the target CT image to avoid semantic mismatch. 
In the SRGAN-based image synthesis, a series of residual 
blocks and skip connection were added to the generator to 
reconstruct the LR pseudo CT image and further improve 
its texture clarity. The pseudo CT images obtained using 
the sGAN method based on the two networks were similar 
to the real CT images. Also, the NSF method suffers from 
semantic-mismatching problems, such as background-
texture migration of the style image to the foreground of 
the target image without maintaining semantic consistency 
during the transfer process, and no global linear matching 
relationship exists between US image and CT image (46).  
Therefore, the pseudo CT images obtained using this 
method differed from the CTgt images in terms of 
grayscale information and anatomical structure. Also, 
CycleGAN achieved satisfactory results in unsupervised 
image-synthesis tasks. However, for the image synthesis 
based on the complexity of different textures and 
anatomical structures, the consistent loss coefficient of the 
cycle loss used by CycleGAN was invariant. Therefore, 
although the grayscale information of the pseudo CT 
synthesized using this method was similar to that of the 
CTgt, it could not effectively and stably synthesize the 
pseudo CT image. When OARs are irregular and texture 
information complex, the pseudo CT image synthesized 
using this method would be distorted, and the contour of 
the organs within the imaging range show greater deviation 
from the real image. 

In the cGAN- based image synthesis, the generator’s 
structure was designed as the encoder–decoder mode 
with residual concatenation. First, the input labeled US 
image was down-sampled to reduce the image’s feature 
resolution, then the LR image features were learned via 
feature transformation. Finally, the LR image features were 
amplified in the spatial dimension via up-sampling, and the 
image was restored to the input dimension. The mode can 
compress redundant feature information and effectively 
extract it. In the decoder part of the generator, the previous 
layer’s output features and those of the image layer of the 
decoder were spliced as the input of the deconvolution 
layer, thereby ensuring that the finally generated pseudo CT 
image integrated more shallow information and provided 
accurate gradient information. The generated CT image 
had a high coincidence degree with the corresponding 

Figure 12 Comparison results of DVH dose difference of the 
same OARs and PTV in different CT images. DVH, dose volume 
histogram; OAR, organs at risk; PTV, planning target volume.

Table 3 Comparison of dose indexes of PTV and OARs in four CT 
images based on Monte Carlo optimization 

Plan name Metric PTV OAR1 OAR2

CTgt Dmax 4,730.1 4,371.6 4,155.1

Dmin 4,350.1 9.1 669.3

Dmean 4,596.5 861.8 1,591.2

CTps Dmax 4,771.6 4,427.0 4,236.0

Dmin 4,410.5 10.2 782.8

Dmean 4,598.7 923.2 1,628.4

PTV, planning target volume; OAR, organs at risk; Dmax, 
maximum dose; Dmean, mean dose; Dmin, minimum dose; 
CTgt, ground truth CT; CTps, pseudo CT obtained by sGAN.
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organ contour in the US image. In terms of discriminators, 
we used a six-layer full CNN. The labeled US image was 
connected to the pseudo CT image synthesized using 
the generator and real CT image, respectively, as two 
discriminator inputs. The discriminator’s output was a 
matrix of dimension 30×30 pixels, and each element of the 
matrix corresponding to a receptive field of 70×70 pixels 
of the original input image. This means the input image 
was divided into 900 image blocks, each of 70×70 pixels, 
to identify true and false. The discriminator’s output in 
the traditional GAN comprised the single probability of 
judging whether the input image was true or false. This 
method takes the mean value of each element in the matrix 
as the output of true/false and judges the local region of the 
input image block-by-block so that the discriminator can 
accurately judge the input image’s details. This improves 
the final generation quality of the pseudo CT image. Also, 
in the generator and discriminator, the LReLU activation 
function was used to avoid highly sparse gradients, and BN 
was used to normalize the output of the intermediate hidden 
layer, thereby stabilizing the distribution of input data in 
each layer of the network and expediting the learning speed 
of the model (47).

In SRGAN-based image super-resolution reconstruction, 
the second to sixth layers of the generator used residual 
blocks. Except for the first ResNet layer, each ResNet layer’s 
input was the sum of the outputs of the first two layers. 
We also used skip connection to transfer the input layer’s 
shallow information to deeper deconvolution layers in the 
network to ensure that the gradient information of CT 
images could be effectively transmitted with the deepening 
of the number of network layers. This enhanced the 
robustness of SRGAN and avoided the gradient-diffusion 
phenomenon in the back-propagation process. The VGG19 
network structure was adopted in the discrimination 
network, and a BN layer was added to expedite the training. 
Also, the max-pooling layer in the network was removed to 
avoid the feature-information loss. In taking the pseudo CT 
images obtained using cGAN as the input of SRGAN, their 
resolution can be improved, and after the SRGAN-based 
reconstruction, the texture information of the pseudo CT 
image became more significant and is more similar to the 
CTgt image.

The supervised-mode-based sGAN also has limitations. 
Because this method requires paired data sets in pseudo 
CT image synthesis, mismatched CT–US image pairs may 
fail synthetic images. Also, inaccurate label production 
in the preprocessing would affect the subsequent image-

synthesis results. In subsequent experiments, we will use the 
improved CycleGAN network to establish the nonlinear 
mapping relationship between US and CT images and carry 
out the pseudo CT image synthesis task. By adjusting the 
network parameters and loss function, we want to make 
the CycleGAN network training stable. Also, the image-
synthesis model used in this study is based on 2D resliced 
image data. Compared with 3D image synthesis, the 
training time is longer and spatial information is ignored. 
Since this study is a preliminary one on applying the deep-
learning method in the US- and CT-image synthesis, in the 
following experiments, we will use more patient data and 
introduce the GAN based on 3D convolution kernel further 
to improve the accuracy of pseudo CT image synthesis. 
We will also evaluate the application of pseudo CT images 
of real patients in radiotherapy from the perspective of 
dosimetry.

Conclusions

We proposed a novel method to perform the step-by-step 
synthesis of pseudo CT images based on sGAN. In this 
method, LR pseudo CT images were synthesized using 
labeled US images as the input to cGAN. Subsequently, 
the pseudo CT images’ resolution was further improved 
via SRGAN, and images with more significant texture 
information were obtained. The experimental results 
showed that the pseudo CT images obtained using the 
proposed method had high similarity with CTgt images and 
had a satisfactory radiotherapy application potential.
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