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Coronary computed tomography angiography (CCTA) is an 
effective imaging modality increasingly accepted as a first-
line test to diagnose coronary artery disease (CAD). CCTA 
stands out among other diagnostic modalities with an ability 
to image various stages of atherosclerosis, including plaque 
progression and rupture. Plaque burden and characteristics 
by CCTA have been shown to have prognostic implications 
for patient management (1). Also, detecting early subclinical 
CAD may allow for interventions aimed at preventing the 
progression of coronary plaque and reducing coronary 
events (2). The aim of this article is to discuss the innovative 
tools derived from CCTA using artificial intelligence (AI) 
which would aid in risk stratification and medical decision 
making for patients with CAD. For many observers, 
machine learning is treated as a “black box” in which data 
are analyzed and results produced, without attempting to 
understand how or why. This has the potential to cause 
significant issues if systematic biases are introduced and not 
recognized.

Automated plaque characterization software 
and detecting culprit lesions

AI has been used to develop deep convolutional neural 
networks (CNN) to classify CCTA in the correct Coronary 
Artery Disease Reporting and Data System (CAD-RADS) 
category and this was shown to be accurate and less time-
consuming (3). Some of the emerging technologies 
which use histologically validated, application-based 
tissue quantification to characterize atherosclerosis 
include the commercial software applications vascuCAP 
(Elucid Bioimaging, Boston, Massachusetts, USA) and 

SureplaqueTM (V7.5; Vital Images, MN, USA). 
SureplaqueTM software: SUREPlaque software (V7.5; 

Vital Images, MN, USA) uses color defined Hounsfield unit 
(HU) ranges to define plaque characteristics (Figure 1). The 
software is based on curved multiplanar reconstructions. 
It has shown good correlation to the morphometric 
parameters of atheroma, but fair correlation with regard to 
the relative plaque composition (4-6). 

vascuCAPTM software: model-based quantification 
algorithms, as used by vascuCAP, aim to reduce interscan 
and interobserver variability and allow for detailed 
characterization of morphological features including 
positive remodeling, lipid-rich necrotic core, and coronary 
artery plaque burden (7,8). van Assen et al. retrospectively 
studied 45 patients with suspected CAD of which 16 
(36%) experienced major adverse cardiac events within  
12 months. The software was used to evaluate lumen 
area, wall area, stenosis percentage, wall thickness, plaque 
burden, remodeling ratio, calcified area, lipid rich necrotic 
core area and matrix area. Regression analysis using clinical 
risk factors resulted in a prognostic accuracy of 63% with a 
corresponding area under the curve (AUC) of 0.587. The 
use of morphologic features alone resulted in an increased 
accuracy of 77% with an AUC of 0.94. Combining 
both clinical risk factors and morphological features in 
a multivariate logistic regression analysis increased the 
accuracy to 87% with a similar AUC of 0.924.

QAngioTM software: a semiautomated plaque analysis 
software (QAngio CT Research Edition v2.02, Medis 
Medical Imaging Systems, Leiden, the Netherlands), 
which has been validated for accuracy (9). This software 
was used in the study by Park et al. to evaluate the 
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association between atherosclerotic plaque characteristics 
by computed tomography angiography (CTA), and lesion 
ischemia by fractional flow reserve (FFR). High-risk plaque 
characteristics by coronary CTA were defined as: (I) positive 
remodeling, lesion diameter/reference diameter >1.10; 
(II) low attenuation plaque, any voxel <30 HU; and (III) 
spotty calcifications, nodular calcified plaque <3 mm. In 
multivariable analyses, a stepwise increased risk of ischemia 
was observed for 1 [odds ratio (OR): 4.0, P<0.001] and ≥2 
(OR: 12.1, P<0.001) high-risk features. These findings were 
risk feature dependent, with positive remodeling (OR: 5.3, 
P<0.001) and low attenuation plaque (OR: 2.1, P=0.038) 
associated with ischemia, but not spotty calcification (10). 

CardIQ Xpress Pro: de Graaf et al. studied the feasibility 
of this fully automatic software (CardIQ Xpress Pro, GE) 
in 57 patients who underwent CCTA prior to intravascular 
ultrasound virtual histology. CCTA plaque volume was 
characterized in four different plaque types; necrotic core, 
dense calcium, fibrotic and fibro-fatty tissue. Assessment 
of plaque volume using the software in 108 lesions showed 
excellent correlation with intravascular ultrasound virtual 
histology (r=0.928, P<0.001) (11). 

Al’Aref et al. pioneered the task of putting the large 
volume of data obtained by plaque analysis software 
into a practical algorithm using machine learning. The 
investigators combined the data from quantitative and visual 
coronary CCTA analysis in order to identify culprit lesions 
in patients with subsequent acute coronary syndrome (12). 

This research was a secondary analysis of the ICONIC 
(Incident COroNary Syndromes Identified by Computed 
Tomography) study, a nested case-control study from 
the CONFIRM (Coronary CT Angiography Evaluation 
for Clinical Outcomes: An International Multicenter) 
registry (13). In the ICONIC study, 234 patients who 
had undergone CCTA and subsequently developed an 
acute coronary syndrome were matched with 234 control 
subjects without acute coronary syndrome, and quantitative 
CCTA plaque analysis was performed. Al’Aref et al. trained 
and tested a machine learning model using data on 46 
plaque variables from 124 patients with invasive coronary 
angiography-confirmed culprit lesions. The resulting 
model had an AUC for detecting culprit lesions of 0.774 
(95% confidence interval: 0.758 to 0.790). The model had a 
specificity of 89% for predicting non-culprit lesions in the 
234 patients without acute coronary syndrome. The most 
important parameter was the distance between the start of 
the lesion and the minimal lumen diameter, followed by 
plaque volume and luminal area stenosis. Among the top  
20 features used by the model, there were several 
quantitative CCTA measures, including the volume of 
dense calcium, fibrous plaque, and fibrous-fatty plaque. 
However, low-attenuation plaque and visually assessed high-
risk plaque features were not among the top 20 features. 
This machine learning model has not undergone external 
validation yet.

Some issues must be resolved before these automated 

Figure 1 Examples of sureplaqueTM software analysis of plaque composition and vessel volume.



2210 Benjamin and Rabbat. Machine learning-based advances in CCTA

© Quantitative Imaging in Medicine and Surgery. All rights reserved.   Quant Imaging Med Surg 2021;11(6):2208-2213 | http://dx.doi.org/10.21037/qims-21-99

software products can be adopted into every-day clinical 
practice. The most pressing is high reproducibility which 
needs to be firmly established. Second, many of these 
applications are limited by pre-specified thresholds that 
do not consider various technical limitations, including 
different scanners and scan protocols. Third, the accuracy 
of the software has to be defined for different components 
of plaque. While CCTA automated software was shown 
to reliably differentiate noncalcified, mixed, and calcified 
plaques (14), further subclassification of noncalcified plaque 
into fibrous or fatty components using CT attenuation 
values is less reliable (15). CCTA has a relatively low 
soft tissue contrast resolution, so attenuation differences 
between varying plaque components can be challenging.

 

CCTA-derived FFR (FFRCT)

The Achilles heel of CCTA alone is not being able to define 
the hemodynamic significance of coronary lesions. Only 35–
40% of patients undergoing invasive coronary angiography 
are found to have anatomically obstructive CAD (16). Thus, 
identifying patients with both anatomically and functionally 

significant CAD before catheterization using noninvasive 
testing could dramatically reduce the need for unnecessary 
invasive and downstream testing. Machine-learning CCTA 
applications have allowed for noninvasive assessment of 
the functional significance of atherosclerotic lesions from 
CCTA-derived models. FFRCT (HeartFlow, Redwood City, 
California, USA) is a technology whereby patient-specific 
models of blood flow are constructed from CCTA images 
and used to noninvasively derive FFR (Figure 2) and has 
been validated in multiple prospective multicenter clinical 
trials (17,18). The technology uses deep learning algorithms 
to extract lumen boundaries from CCTA using an approach 
validated against optical coherence tomography (OCT), 
and it creates a patient-specific physiologic model based on 
form-function principles and computational fluid dynamic 
analysis to compute the blood flow solution (19,20). 

Several recent reports have examined the relationship 
between various CCTA-derived plaque characteristics 
and the ability to predict ischemia, as measured by various 
techniques including myocardial perfusion and FFR. In the 
CORE320 (Combined Noninvasive Coronary Angiography 
and Myocardial Perfusion Imaging Using 320 Detector 

Figure 2 Example of FFRCT report for a patient with CAD. FFRCT, coronary computed tomography angiography-derived fractional flow 
reserve; CAD, coronary artery disease; LCX, left circumflex artery; RCA, right coronary artery.
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Computed Tomography) study, CCTA-derived features 
including percent stenosis, percent atheroma volume, 
and the impression of “vulnerable plaque” independently 
predicted myocardial ischemia by single-photon emission 
computed tomography (SPECT) (21). Gaur et al. (22) 
investigated 254 patients and reported that noncalcified 
plaque volume predicted an FFR cutoff value of 0.80, 
independent of stenosis severity. These results were 
confirmed by a recent post hoc analysis from the single-
center PACIFIC (Prospective Comparison of Cardiac PET/
CT, SPECT/CT Perfusion Imaging and CCTA With 
Invasive Coronary Angiography) trial showing that positive 
remodeling and noncalcified atherosclerotic plaque volume 
were associated with decreased absolute myocardial blood 
flow by [15O]H2O PET and invasive FFR (23). The NXT 
(Analysis of Coronary Blood Flow Using CT Angiography: 
Next Steps) trial demonstrated that the diagnostic accuracy 
of FFRCT (AUC: 0.90; 95% confidence interval: 0.87 to 
0.94) was significantly greater than that of CCTA alone 
(0.81; 95% confidence interval: 0.76 to 0.87) (24). The 
PACIFIC study also compared the diagnostic accuracy of 
various modalities using invasive 3-vessel FFR as the gold 
standard and found that the AUC on a per-vessel basis was 
significantly greater for FFRCT (0.94) compared to CCTA 
(0.83), SPECT (0.70), and PET (0.87) (P<0.001 for all) (25). 

FFRCT is being investigated as a tool in clinical decision-
making. Rabbat et al. reported the safe deferral of invasive 
coronary angiography in patients with stable CAD using 
a diagnostic strategy of FFRCT (26). Of the 387 patients 
studied, 121 patients (32%) had at least one vessel with 
≥50% diameter stenosis; 67/121 (55%) patients had at least 
one vessel with FFRCT ≤0.80; 55/121 (45%) underwent 
invasive coronary angiography; and 34 were revascularized. 
Compared to CCTA alone, CCTA with selective FFRCT 
reduced the rates of invasive coronary angiography (45% 
vs. 80%) for those with obstructive CAD. Using coronary 
CTA with selective FFRCT, no major adverse cardiac events 
occurred over a mean follow-up of 440 days. Ongoing 
prospective, pragmatic, randomized clinic trials such as 
PRECISE (Prospective Randomized Trial of the Optimal 
Evaluation of Cardiac Symptoms and Revascularization) 
will shed light on the role of using FFRCT as a diagnostic 
strategy for patients with suspected CAD. In September 
2019, the Food and Drug Administration approved 
HeartFlow Planner, a real-time virtual modeling tool for 
CAD intervention. HeartFlow Planner provides luminal 
remodeling using computer software enabling recalculation 
of the FFR after virtual removal of coronary artery stenoses 

and prediction of post-percutaneous coronary intervention 
(PCI) FFRCT (27,28) 

Clinical perspective

The application of machine learning into day-to-day CCTA 
reading is not ready for prime time yet. Each AI-enabled 
software requires rigorous validation prior to clinical 
implementation. There are concerns about unforeseen 
biases associated with socioeconomic and racial backgrounds 
of populations (29). Also, at present, some quantitative 
plaque analysis tools are still time-consuming, and this 
limits their application in clinical practice. Fully automated 
CCTA assessment are being developed and need to be 
validated before being incorporated in clinical practice. 
Randomized controlled trials that assess whether tailoring 
therapies based on quantitative CCTA plaque assessments 
leads to more favorable plaque characteristics and improved 
clinical outcomes, are needed. Future generation CCTA-
processing software will incorporate additional information 
from quantitative plaque characteristics and machine 
learning to facilitate individualized patient management in 
order to improve clinical outcomes.
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