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Intravoxel incoherent motion (IVIM) theory in MRI was 
proposed by Le Bihan et al. in 1986 to account for the effect 
of vessel/capillary perfusion on the aggregate diffusion 
weighted MR signal. The fast component of diffusion is 
related to micro-perfusion, whereas the slow component 
is linked to molecular diffusion. Three parameters can 
be computed. Dslow (or D) is the diffusion coefficient 
representing the slow ‘pure’ molecular diffusion (unaffected 
by perfusion). The perfusion fraction (f or PF) represents 
the fraction of the compartment related to (micro)
circulation, which can be understood as the proportional 
‘incoherently flowing fluid’ (i.e., blood) volume. Dfast (or D*) 
is the perfusion-related diffusion coefficient representing 
the incoherent microcirculation within the voxel, which 
holds information for blood perfusion’s speed. The 
diffusion weighted image signal is prevalently modelled by a 
biexponential decay function [1]: 

( ) ( ) ( ) ( ) ( )/ exp expslow fastb 0SI SI 1 PF b D PF b D= − × − × + × − ×

( ) ( ) ( ) ( ) ( )/ exp expslow fastb 0SI SI 1 PF b D PF b D= − × − × + × − ×
  [1]

where SI(b) and SI(0) denote the image signal intensity 
acquired with the b-factor value of b and b=0 s/mm2, 
respectively. 

In addition to intense research activities, a recent survey 
suggested IVIM has been applied in clinical practice in a 
small portion of institutions (1,2). 

Recently we reported that, for the liver, IVIM modeling 
of the perfusion component is constrained by the diffusion 
component, and a reduced Dslow measure leads to artificially 

higher PF and Dfast measures (3). In this study of 26 male 
volunteers (age: 22–69 years) and 36 female volunteers 
(age: 20–71 years), we demonstrated an age-dependent 
liver Dslow decline, which is expected to be caused by an age-
dependent iron deposition increase, an age-dependent fat 
deposition increase, and also a reduction of vasculature in 
the healthy aging livers. The age-dependent reduction in 
liver blood flow has been well documented using a variety 
of technical methods including histology, dye dilution, 
and indicator clearance (4-6). Using an MRI based micro-
perfusion volume biomarker diffusion-derived vessel density 
(DDVD) (7,8), we also observed age-dependent DDVD 
decline. However, the observed PF and Dfast results gave 
contradictory results compared with DDVD and known 
vessel physiology of the liver aging, with both PF and 
Dfast measures showed age-dependent elevation. This was 
observed when we used segmentation fitting or full fitting, 
and observed when we performed bi-exponential decay 
fitting included or excluded b=0 data (3). We concluded that 
the quantification of both PF and Dfast is constrained by Dslow, 
i.e., lower Dslow leads to higher PF and Dfast measurements, 
even PF and Dfast did not increase or even declined. Our 
point is further supported by literature analysis that liver 
steatosis IVIM studies show a decreased Dslow and an 
artificially elevated PF (9). Despite the limited sample 
size, in the brain, a reduction of PF leads to an artificial 
elevation of Dslow measure and an elevation of PF leads to 
an artificial lowering of Dslow measure is illustrated by the 
example of McKinstry et al. (10). By moderating arterial 
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carbon dioxide pressure (PaCO2), McKinstry et al. (10) 
induced brain grey matter perfusion changes in three dogs. 
The results show, under various PaCO2, PF and D changed 
toward the opposition directions (Figure 1). This constrain 
is not absolute. For example, acute cerebral stroke can cause 
the reduction of all PF, Dslow, and Dfast in the ischemic core 
(11,12), thus being all proportionally smaller. Overall, we 
observed that, according to the published IVIM data, if one 
component’s measure, being that of perfusion component 
or diffusion component, changes toward one direction (i.e., 
increase or decrease), the other component’s measure is 
constrained to change toward the opposite direction. In this 
letter, I discuss some clinical data of liver IVIM imaging 
which substantiate this observation, and postulate one of 
the possible causes for this paradox. 

Figure 2 shows PF and Dslow measures in 18 young healthy 
volunteers (mean ± SD: 24.1±3.2 yrs; range, 18–31 years) (13).  
A moderate and close to statistically significant negative 
correlation is observed between Dslow and PF (Figure 2A). 
If males and females subjects are separated, this negative 
correlation trend can be still observed (Figure 2B,C). In 
the study by Riexinger et al. (14) investigating the 1.5 T 
vs. 3T field strength’s effect on IVIM quantification with 
20 healthy volunteers (age: 19–28 years) and an extensive 
array of 24 b-values: 0.2, 0.4, 0.7, 0.8, 1.1, 1.7, 3, 3.8, 4.1, 
4.3, 4.4, 4.5, 4.9, 10, 15, 20, 30, 50, 60, 90, 95, 150, 180 and 
500 s/mm2, they reported liver Dslow= 1.22/1.00 ×10-3mm2/s  
at 1.5/3T, PF = 0.286/0.303 at 1.5/3T, thus also showing 
1.5T scanner’s results had higher Dslow and lower PF, while 
3.0T scanner’s results had lower Dslow and higher PF. It 

Figure 1 Variations in Dslow and PF following the changes of PaCO2. Under various PaCO2, PF and Dslow changed toward the opposition 
directions. In this study, segmented fitting was applied, and PF is considered to change initially. PaCO2: arterial carbon dioxide pressure (unit 
in torr). Adapted from reference (10). 

Figure 2 Measured correlations between PF and Dslow in 18 young 
healthy volunteers. The data are from reference (13). To only look 
at the measures of young subjects, two volunteers aged 38 yrs (male) 
and 58 yrs (female) respectively are not included. (A) data with bi-
exponential fitting included b=0 data. (B) data for male subjects 
only. (C) data for female subjects only. Images were acquired at 3T 
with 16 b-values of 0, 2, 5, 10, 15, 20, 25, 30, 40, 60, 80, 100, 150, 
200, 400, and 600 s/mm2, and analyzed by segmented fitting with 
threshold b-value of 60 s/mm2.
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is possible that the results of Riexinger et al.’s study also 
suggests a trend of mutual constraining of diffusion measure 
and perfusion measure. 

We can make a simplistic estimation on how much 
measured PF can be artificially elevated if Dslow is truly 
decreased by 10%. We use the data from Huang et al.’s 
study (3), and we only choose those of very clean and good 
quality, i.e., those had two good quality IVIM scans and 
we were able to use the mean values from these two scans, 
which included 17 healthy men and 27 healthy women. 
We assume age of the subjects is the initial independent 
variable, and physiologically aging causes both Dslow and PF 
to decrease (3). We make a plot to study the relationship 
between Dslow and PF (Figure 3A). We then assume Dslow is 
the independent variable and PF is the dependent variable. 

The mean Dslow is 1.06×10-3 mm2/s in this study (Dslow value is 
the same for the analyses included or excluded b=0 data). If 
PF is stable across different age groups (i.e., without aging 
interference), then a 10% reduction of Dslow (i.e., a decrease 
of X in the linear fitting formula by 0.1) causes 11.6% 
artificial increase of PF (i.e., an increase of Y in the linear 
fitting formula by 0.022). In the case here, Dslow can also be 
considered as a surrogate of age, with older age associated 
with lower Dslow value (3). In the study of Huang et al. (3), 
we used DDVD as a micro-perfusion volume biomarker, 
and demonstrated an aging related reduction of DDVD.  
Figure 3B shows, a 10% reduction of Dslow (i.e., a decrease of 
X in the linear fitting formula by 0.1) cause 12.3% reduction 
of micro-perfusion volume biomarker DDVD (i.e., a 
reduction of Y in the linear fitting formula by 2.14). For the 

Figure 3 Approximate estimation of Dslow induced PF elevation. The data are from the study published in reference (3). The equations 
denote the linear fit of the data. (A) correlation between Dslow and PF computed included b=0 data. (B) correlation between Dslow and DDVD. 
DDVD used here is the mean of DDVD(b0b2) and DDVD(b0b10). DDVD(b0b2) refers to the liver parenchyma signal difference between 
b=0 and b=2 s/mm2 images, with signal of visible vessels removed. DDVD(b0b10) refers to the liver parenchyma signal difference between 
b=0 and b=10 s/mm2 images, with signal of visible vessels removed. (C) illustration. Blue line-a2 assumes no change in PF along aging, if 
so, a reduction of Dslow along aging elevates line-a2 to line-a4. Line-a1 indicates actual reduction of perfusion along aging; in this case, a 
reduction of Dslow along aging elevates line-a1 to line-a3. Line-a3 is thus the observed result, which is elevated by the magnitude of h1+h2. (D) 
correlation between Dslow and PF with PF computed without b=0 data. au: arbitrary unit. DDVD, diffusion derived vessel density. 
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results seen in Figure 3A, it can be considered that, besides 
the apparent observed PF reduction, the real PF has already 
been additionally suppressed by the scale of 12.3% per 10% 
reduction of Dslow due to aging. Thus, 10% Dslow decrease 
causes 23.9% (=11.6% + 12.3%, 23.9% of the original PF 
value) artificial increase of measured PF (see Figure 3C).  
Figure 3D shows IVIM analysis without b=0 data. In 
this case (3D), a 10% reduction of Dslow (i.e., a decrease 
of X in the linear fitting formula by 0.1) causes 10.8% 
observed artificial increase of PF (i.e., an increase of Y in 
the linear fitting formula by 0.013), which is similar to the 
result with b=0 data included in the analysis (Figure 3A). 
The same estimation can be made for the relationship 
between Dslow and Dfast (Figure 4). Figure 4A shows, a 10% 
reduction of Dslow (i.e., a decrease of X in the linear fitting 
formula by 0.1) causes 11.6% observed increase of Dfast 
(i.e., an increase of Y in the linear fitting formula by 16.7). 
Figure 4B shows, a 10% reduction of Dslow (i.e., a decrease 
of X in the linear fitting formula by 0.1) causes 11.1% 
observed increase of Dfast (i.e., an increase of Y in the 
linear fitting formula by 6.3). We consider PF and DDVD 
are perfusion (blood) volume biomarkers, and Dfast as a 
perfusion (blood flow) speed biomarker. Though smaller 
vessel diameters can hinder blood flow speed, it is more 
likely that, in the data of the study of Huang et al. (3), 
with aging blood flow speed did not change substantially, 
and the observed Dfast elevation due to aging is more 
of an artifact due to the reduced Dslow. Guiu et al. (15)  
reported mean measured Dslow values in steatotic livers (n=40) 
and nonsteatotic livers (n=68) were 1.03 (±0.23) and 1.24 

(±0.15) ×10-3mm2/s respectively, while mean measured PF 
values in steatotic livers and nonsteatotic livers were 0.33 
(±0.09) and 0.27 (±0.09) respectively. From the Figure 3 
in Guiu et al.’s study (15), we can assume their steatotic 
livers had on average 13% more fat content than the non-
steatotic livers, and if we assume pure fat tissue requires 
little perfusion (16), then according to the data of Guiu  
et al., a 10% reduction of Dslow may lead to a 18% PF 
elevation. If the patients with steatotic livers were older 
than the patients with non-steatotic livers (which is likely to 
be true), then a 10% reduction of Dslow may lead to >18% PF 
elevation. Therefore, magnitude of PF artificial elevation in 
the data of Guiu et al. seems to agree with our estimation 
for our own data. We reviewed the published results 
on IVIM-derived PF of steatotic livers. Most of papers 
reported elevated PF (9), a small portion of papers (17)  
reported PF similar to normal liver which also indicate PF 
was artificially elevated since steatotic livers should have 
reduced true PF. 

In liver fibrosis, it is generally reported PF is the most 
sensitive biomarker, Dfast is more difficult to be qualified 
accurately (18,19). Despite Dslow can be measured with 
high reproducibility, it is considered being not sensitive 
to fibrotic change. Luciani et al. (20) compared 25 healthy 
liver cases and 12 cirrhotic liver cases with similar age and 
gender mixing, despite the patients had METAVIR score 
F4 liver cirrhosis, they obtained similar Dslow values for 
healthy livers [(1.10±0.7)×10-3 mm2/s] and cirrhotic livers 
[(1.19±0.5) ×10-3 mm2/s, P>0.05]. Our own published results 
also showed Dslow values of METAVIR score F3-4 fibrotic 

Figure 4 Estimation of observed Dfast elevation following Dslow reduction. The data are from the study published in reference (3). (A) contains 
values derived from analysis including b=0 data. (B) contains values derived from analysis excluding b=0 data. The equation denotes the linear 
fit of the data.
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livers could overlap with those of the healthy young livers 
(13,21,22) (Figure 5). This is puzzling considering the very 
substantial liver histopathological changes associated with 
cirrhosis. Figure 6 shows the mutual constraining of Dslow 
measure and PF measure in cirrhotic livers. We believe 

that Dslow measure was promoted in fibrotic livers due to the 
decreased perfusion measure (Figure 7), published IVIM 
data are insensitive to slow diffusion restriction associated 
with fibrosis. In fact, since a true lowering of Dslow can 
induce artificial elevation of PF, and a true lowering of PF 
can induce artificial elevation of Dslow, it is possible for the 
published IVIM liver fibrosis studies, the magnitudes of 
reduction for PF and Dslow have been both underestimated. 

Our analysis will have implications in interpreting 
IVIM data of other organs and pathologies as well. For 
example, in the cases of tumor characterization by IVIM, 
most malignant tumors have low diffusion (due to higher 
cellularity etc.), this will lead to their IVIM derived 
perfusion can ‘always’ be high as PF is artificially promoted 
due to low Dslow. On the other hand, since malignant tumors 
tend to have high blood perfusion and therefore high PF, 
their Dslow will be ‘always’ measured lower (the opposite to 
the scenario in liver fibrosis). However, the points discussed  
here do not necessarily disapprove the clinical usefulness 
of the current IVIM analysis approach. Examples (23-28), 
including those of our own (13,21,22), demonstrated the 
value of IVIM metrics as useful approximations in some 
scenarios (but not in all scenarios). However, our analysis 
highlights the importance of a combined analysis of all 

Figure 5 A comparison of Dslow measure of young healthy livers (Hth-F0) and middle-aged/elderly subjects’ stage-3/4 fibrotic livers (F3-4). Data 
are from reference (22). There are 25 young healthy subjects (mean age: 23.2 yrs, range: 20–29 yrs; 14 men males, 11 women), with one female 
volunteer of 41 yrs old not included. There are four stage-3 liver fibrosis patients (Male/59 yrs, Male/62 yrs, Female/46 yrs, Female/67 yrs) and one 
stage-4 liver fibrosis patient (Male/60 yrs). As the patients were older than the healthy subjects, the patients are expected to have lower liver Dslow 
measure. (A) shows, though the mean Dslow of the patients is lower than that of the healthy subjects, individually still the patient’ values overlap with 
the normal Dslow range. (B) is a histological image of a stage-3 fibrosis liver (HE staining, original magnification ×100). (C) is a histological image of 
a stage-(3+) fibrosis liver (Sirius staining, original magnification ×100). Considering the substantial structural changes of the stage-3, stage-4 fibrotic 
livers, it is unlikely the true Dslow measure of these livers would be normal. We consider Dslow measure was artificially promoted in these patients. 
Note that, we paid high attention to ensure the quality of data fitting for IVIM measures. 

Figure 6 Relationship between Dslow and PF in five stage-4 
cirrhotic livers. Data are from reference (13). A very strong 
negative correlation is observed between Dslow and PF (r=−0.94). 
The equation denotes the linear fit of the five data points. The 
reference values are those of young healthy subjects. Data 
acquisition and analysis are the same as in Figure 7. 
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IVIM parameters (8,21) and validating IVIM measures 
with other imaging or non-imaging measures. In the 
latter regard, many encouraging results, though not very 
strong correlation, have been reported. For example, 
Togao et al. (29) evaluated PF in a comparison with 
histological immunostainted vascular density (%Vessel) in 
29 consecutive meningiomas. The 90-percentile PF-value 
and average PF in the tumor had significant correlations 
(r=0.69, P<0.0001; r=0.82, P<0.0001) with the %Vessel 
of the tumors. Lee et al. (30) reported 25 nude mice with 
HT29 colorectal cancer cells implantation had IVIM-MRI 
and histological micro-vessel density (MVD) assessment, 
Spearman’s rank correlation with MVD was 0.782 (P<0.001) 
for Dfast, and 0.749 (P<0.001) for PF. Luo et al. (31) studied 

35 male Sprague–Dawley rats induced with 106 cirrhosis-
related nodules and reported moderate negative correlations 
between Dslow and cell density (r=–0.624, P<0.01). Wirestam 
et al. (32) correlated brain IVIM parameters with dynamic 
susceptibility-contrast MRI (cerebral blood volume and 
flow, CBV and CBF) in 28 volunteers. They demonstrated 
a moderate and significant correlation between PF and 
CBV (r=0.56, P<0.001). Federau et al. (33) acquired IVIM 
parameters in 21 brain gliomas, reported that PF correlated 
moderately with dynamic susceptibility contrast relative 
CBV (r=0.59). Mayer et al. (34) studied IVIM and CT 
perfusion in 19 cases of pancreatic ductal adenocarcinoma, 
with the CT perfusion parameters blood flow (BF) and 
blood volume (BV) estimated. In ten patients, intra-

Figure 7 Expected and measured correlations between PF and Dslow. The measured data are from reference (13). Images were acquired at 
3T with 16 b-values of 0, 2, 5, 10, 15, 20, 25, 30, 40, 60, 80, 100, 150, 200, 400, and 600 s/mm2, and analyzed by segmented fitting with 
threshold b-value of 60 s/mm2. (A) Expected correlation between PF and Dslow in healthy subjects. PF and Dslow are weakly and positively 
correlated, due to perfusion’s contribution to slow diffusion measurement. (B) Expected correlation between PF and Dslow in patients. Due to 
perfusion’s contribution to slow diffusion measurement and that more severe fibrotic changes would induce lower PF and Dslow than those of 
milder fibrotic changes, thus PF and Dslow are more positively correlated than that in (A). (C) Measured negative correlation between PF and 
Dslow in healthy subjects (the same of Figure 2A). (D) Measured results of PF and Dslow in 21 cases of stage-1 and stage-2 liver fibrosis patients 
(b=0 data included for analysis). It can be explained that the interaction of the mechanism in (B) and the mechanism in (C) resulted in no 
correlation observed with the measured data in (D) for patients. The data suggest Dslow measure might have been artificially promoted in 
these fibrotic livers in (D). 
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tumoral MVD and microvessel area (MVA) were analyzed 
microscopically in resection specimens. For the tumors, 
PF significantly positively correlated with BF (r=0.668, 
P=0.002) and BV (r=0.672, P=0.002). There were significant 
positive correlations between PF and MVD/MVA (r≥0.770, 
P≤0.009). Correlation coefficients between PF and MVD/
MVA were not significantly different from correlation 
coefficients between BF and MVD/MVA. On the other 
hand, imperfection correlation or no correlation have also 
been reported. For example, Patel et al. (35) assessed 30 
subjects (16 with noncirrhotic liver, 14 with cirrhosis) with 
IVIM (n=27) and DCE (dynamic contrast enhanced)-MRI 
(n=20). They noted no correlation between IVIM and 
DCE-MRI parameters. Hectors et al. (36) studied 33 HCC 
lesions with IVIM and DCE-MRI and found no significant 
correlation between IVIM-DWI and DCE-MRI metrics in 
HCC lesions. They attribute this due to the predominant 
portal blood flow in the liver and tortuous microvasculature 
and tissue heterogeneity in HCC lesions. 

High noise level can flatten the signal decay curve 
particularly at high b-values and lead to reduced Dslow 

measure (7). We can intuitively postulate the observed 
mutual constraining of slow component and fast component 
measures may be partially related to the unavoidable image 
noises and data imperfection, particularly for echoplanar 
sequence-based diffusion weighted imaging and for liver 
imaging which is associated with physiological motions. 
If we fix the b-value for one b-image and assume SI(0) does 
not change, the equation-1 can be simplified to: SI(b) in 
left side of the equation as a dependant variable, PF, Dslow, 
and Dfast as three independent variables in right side of 
the equation, and an increase of either one of three IVIM 
independent variables induces a decrease of SI(b). If PF 
in the right side of the equation increases by 1 unit (the 
unit here has no physical meaning), we also assume the 
true Dslow and true Dfast do not change, then, following the 
increase of PF, predicted SI(b) in left side of the equation 
should decreases by 1 unit (the unit here has no physical 
meaning) accordingly so to maintain the validity of the 
equation. However, practically, due to image noises which 
do not change following the change of IVIM parameter, the 
measured SI(b) may decrease only 0.8 unit (as an example). 
To maintain the validity of the equation, either Dslow, or 
Dfast, or both Dslow and Dfast would artificially decrease (for 
example, both Dslow decrease 0.08 unit and Dfast decrease 0.08 
unit respectively), and maybe the measured PF increases 
only 0.96 unit. Thus, as observed in the study of Huang et 
al. (3), a true decrease of Dslow induced artificial increase of 

measured PF and measured Dfast. We expect there will be 
better agreement between the measured IVIM parameters 
and true IVIM parameters when noise level is low, and a 
better quantification of IVIM parameters should consider 
the image noises. 

In pathologies, it is more likely that three IVIM 
parameters truly change simultaneously. In the ischemic 
core of an acute cerebral stroke, all PF, Dslow, and Dfast have 
true reduction. In the case for liver fibrosis, a reduction of 
perfusion volume and PF can be associated with smaller 
vessel diameters and more tortuous vessel paths, thus lower 
blood flow speed and lower Dfast. Further biological studies 
with animal models to compare noise compensated IVIM 
measures with other physiological measures will surely 
be useful. We expect stronger correlation between IVIM 
measure and other reference measures can be achieved by 
better IVIM modeling.
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