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Background: Reducing contrast media volume in coronary computed tomography angiography minimizes 
the risk of adverse events but may compromise diagnostic image quality. We aimed to evaluate coronary 
computed tomography angiography’s diagnostic image quality while using 30 mL of contrast media in 
patients with a body surface area <1.7 m2. 
Methods: This prospective study included patients who underwent coronary computed tomography 
angiography from May 2018 to June 2019. The patients were divided into a low-dose group, who received  
30 mL of contrast media, and a routine-dose group, who received contrast media based on body weight. 
Patient characteristics, coronary computed tomography angiography results, and quantitative and qualitative 
image results were assessed and compared. 
Results: In total, 103 patients with a body surface area <1.7 m2 were 53 in the low-dose group and 50 in 
the routine-dose group. Sex, age, body surface area, body weight, and heart rate were similar between the 
groups (P>0.05). A contrast media volume of 30±0 mL was used for the low-dose group, and 41.62±4.59 mL 
was used for the routine-dose group. The low-dose group’s computed tomography values were significantly 
different from those of the routine-dose group (P<0.05). The radiologists demonstrated agreement regarding 
diagnostic image quality and accuracy (kappa =0.91 and 0.85, respectively). 
Conclusions: Using 30 mL of contrast media for coronary computed tomography angiography in patients 
with a body surface area <1.7 m2 provided a suitable diagnostic image quality for coronary artery disease 
diagnosis. Although radiation doses were similar between the groups, the decreased contrast media volume 
was likely beneficial for the patients.
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Introduction

Advances in computed tomography (CT) imaging have 
allowed coronary CT angiography (CCTA) to become a 
reliable, noninvasive method to assess coronary anatomy, 
coronary artery disease, and cardiac function (1). Iodinated 
contrast media (ICM) are extensively used and are 
indispensable in CCTA and other types of radiologic 
imaging (2). Optimal vascular attenuation during CCTA is 
important for obtaining an accurate estimation of the degree 
of stenosis (3); however, ICM may cause post-contrast 
acute kidney injury, which is an important consideration 
in patients at risk of acute hypersensitivity reactions that 
may occur within 1 hour of injection (2,4). Additionally, an 
appropriate volume of contrast media (CM) delivered at a 
specific injection flow rate (IFR) to maintain a constant dose 
during CT should be used to avoid CM waste and to save 
costs associated with the fast scan times afforded by modern 
CT equipment (5). Decreasing both the amount of CM 
and the injection rate would be advantageous for patients; 
therefore, the optimal dosage of ICM in CCTA imaging is a 
topic of ongoing interest (6,7).

The primary challenge related to reduced CM dosage is 
the effect on diagnostic image quality (DIQ). Lowering the 
CM dose while maintaining a constant injection duration 
lowers the IFR, decreasing the iodinated delivery rate 
(IDR), directly influencing the DIQ of CCTA images (5). 
Maintaining DIQ within a satisfactory range while using 
a relatively low dose of ICM has been the subject of many 
studies (3,8-17). Vascular attenuation during CCTA is 
influenced by several patient-specific factors, including 
body mass, blood volume, cardiac output, and factors 
related to the procedure, such as the administered CM 
concentration and injection rate (18). Both blood volume 
and cardiac output are closely correlated with body surface 
area (BSA) rather than body weight (10,19), and BSA-
adapted CM administration protocols have been suggested 
accordingly (20); however, few studies have administered 
CM based on the BSA. As previous studies have shown 
that administration of 40mL of CM to patients with a BSA 
<1.7 m2, based on a BSA-adapted protocol (19), showed 
suitable coronary contrast enhancement, we speculated that 
it might be possible further to decrease the CM volume 
to below 40 mL. Previous studies have suggested that  
30 mL of CM can be used for prospective electrocardiogram 
(ECG)-triggered high-pitch CCTA (8,14,21), suggesting a 
low CM volume in high-pitch CCTA imaging may also be 
feasible. To date, there have been no investigations of low-
volume CM administration in patients with a BSA <1.7 m2 

who undergo CCTA with the prospective ECG-triggered 
sequence acquisition scan mode [step-and-shoot (SAS), 
CCTA]. SAS acquisition has a longer scan time and allows 
for a higher heart rate (HR) than high-pitch scanning 
(22,23).

We hypothesized that 30 mL of CM would provide a 
sufficient DIQ for CCTA images in patients with a BSA 
<1.7 m2. This study aimed to investigate the effects of  
30 mL of CM on the DIQ of SAS CCTA images in patients 
with a BSA <1.7 m2.

Methods

Patient population

A total of 103 patients were prospectively enrolled at 
our hospital from May 2018 to June 2019. This study 
was approved by the Ethics Committee of Huadong 
Hospital (No. 2019K005) and was conducted following the 
Declaration of Helsinki (1964). Written informed consent 
was obtained from all patients. The inclusion criteria 
were as follows: age 18 years or older, clinically suspected 
coronary heart disease in patients who had undergone 
CCTA, and a BSA <1.7 m2. The exclusion criteria were as 
follows: cardiopulmonary insufficiency, renal insufficiency, 
allergy to CM, prior stent or coronary artery bypass graft, 
inability to complete breath-holding for 10 s, and a history 
of using medicine to control HR (Figure 1).

BSA was calculated according to the Stevenson formula: 
BSA (m2) = 0.0061 × height (cm) + 0.0128 × weight (kg) — 
0.1529 (24). The first 53 patients were enrolled in the low-
dose (LD) group, and the next 50 participants were enrolled 
in the routine-dose (RD) group. The LD group received  
30 mL of CM and 60 mL of saline at an IFR of 3.5 mL/s;  
the RD group was administered CM according to their 
weight (0.7 mL/kg) (11). The IFR of the CM for the 
RD group was calculated as the volume divided by  
10 s, consistent with the IFR of saline. Beta-blockers and 
nitroglycerin were not administered before scanning.

Image acquisition

A third-generation dual-source CT scanner (Somatom 
Force, Siemens Healthcare) was used for the CCTA scans. 
A prospective ECG-triggered sequence acquisition mode, 
SAS, was used to scan in a cranial-to-caudal direction. The 
automated anatomical tube current modulation technique 
with 320 mA (CARE Dose 4DTM, Siemens Healthineers) 
and automatic tube voltage selection with 100 kV (ATVS, 
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CAREkVTM, Siemens Healthineers) were used. The 
exposure dose (ECG-pulsing) range was set at 30–80% for 
the R-R interval. The collimator was 2*(64-96)*0.6 mm, 
and the gantry rotation time was 0.25 s/rotation. The bolus 
tracking technique was used for threshold monitoring at 
the aortic root, with an enhancement threshold of 80 HU  
and a delay time of 7 s. The slice thickness and image 
reconstruction interval were both 0.75 mm, and the kernel 
used was Bv36. Pre-warmed CM [iobitridol, 350 mg iodine 
(mgI)/mL] was injected using an 18-G closed intravenous 
catheter system with an Ulrich high-pressure syringe. 
The IDR was defined as the iodine concentration of CM 
multiplied by the IFR when injected into the vessel (5).

Quantitative and qualitative analyses

The CT values and standard deviations (SDs) of the 
luminal segment of the aortic root (AO), proximal left main 
coronary artery (LMCA-P), middle left anterior descending 
artery (LAD-M), distal left anterior descending artery 
(LAD-D), middle left circumflex artery (LCX-M), distal left 
circumflex artery (LCX-D), proximal right coronary artery 
(RCA-P), middle right coronary artery (RCA-M), distal 
right coronary artery (RCA-D), and perivascular adipose 
tissues (PVAT) were separately measured. The SD of the 
AO was considered as image noise. The size of the region 
of interest (ROI) of the AO was set at 90 mm2, and the 

others at 1 mm2. The following equations were used: signal-
to-noise ratio (SNR) = CT value of the ROI/noise; and 
contrast-to-noise ratio (CNR) = (CT value within the ROI 
− CT value of the PVAT)/SD of the PVAT.

A quality evaluation was performed by two radiologists 
(a radiologist with 8 years of experience performing 
cardiovascular diagnosis and a senior radiologist with more 
than 15 years of experience). Double-blinded scoring was 
performed using a scale from 1 to 5: 1, poor opacification 
insufficient for diagnosis; 2, suboptimal opacification with 
low diagnostic confidence; 3, acceptable opacification 
sufficient for diagnosis; 4, good opacification of proximal 
and distal segments; and 5, excellent opacification of 
proximal and distal segments. Scores for the RCA, LCA 
(including LMCA-P, LAD-M, and LAD-D), and LCX 
were integrated, and subjective scores of ≥3 points were 
considered sufficient DIQ standard.

Diagnostic accuracy

The presence of stenosis >50% in the three main coronary 
arteries (LAD, LCX, and RCA) was assessed by the two 
radiologists mentioned above on a per-segment, per-vessel, 
and per-patient level using the 16-segment American 
Heart Association classification. A final consensus read was 
performed to evaluate the consistency in interpretation 
between the two observers.

The first 53 patients were enrolled in the 
low-dose group

The after coming 50 patients were 
enrolled in the routine-dose group

Exclusion criteria: 
a)	 Cardiopulmonary insufficiency
b)	Renal insufficiency 
c)	 Allergy to contrast media
d)	Having undergone a stent or coronary 

artery bypass graft 
e)	 Inability to complete breath-holding for 

10 seconds 
f)	 History of using medicine to control 

heart rate

Patients over 18 years old with BSA <1.7 m2 
underwent CCTA with suspected coronary heart 

disease between May 2018 and June 2019

Quantitative and qualitative analysis after image 
acquisition

Statistical comparison between groups

A total of 103 patients were enrolled

Figure 1 Flow diagram of the patients involved in this study. CCTA, coronary computed tomography angiography; CM, contrast media.
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Radiation dose

CCTA radiation dose was recorded, while the radiation 
doses associated with the scout view, calcium score scan, 
and the automatic bolus tracking technique were omitted. 
The dose-length product (DLP) and volume CT dose index 
(CTDIvol) were automatically provided by the CT scanner. 
The effective dose was estimated by multiplying the DLP 
by a factor of 0.014 mSv/(mGy × cm) (8).

Statistical analysis 

SPSS 22.0 statistical software (IBM, Armonk, NY) was used 
for analyses. Quantitative indexes were presented as mean ± 
SD or as a median (minimum, maximum). The independent 
samples t-test or Mann-Whitney U test was performed 
to analyze statistically significant differences between 
groups. Categorical data were presented as frequencies and 
percentages and were compared using the chi-squared test. 
Linear regression analysis was performed to correlate BSA 
and CT values of all coronary segments in each group. All 
statistical tests were two-sided, and P values <0.05 were 
considered statistically significant. Kappa statistics were 
used to evaluate the consistency of the observers. The 
kappa values were categorized as follows: <0.20, almost 
inconsistent; 0.21–0.40, slightly consistent; 0.41–0.60, 
medium consistency; 0.61–0.80, good consistency; and 
0.81–1.00, almost perfect consistency (25).

Results

Patient characteristics are shown in Table 1. The volume 
(30 mL) and IFR (3.5 mL/s) of CM, volume (60 mL) 
and IFR (3.5 mL/s) of saline, and IDR (1.23 gI/s) of the 
LD group were significantly lower than those of the RD 
group (41.62±4.59 mL, 30 mL, 4.13±0.45 mL/s, and  
1.45±0.16 gI/s, respectively; P<0.001). 

CT values of all measured vessel segments of the LD 
group were significantly different from those of the RD 
group (P<0.05). SNR values of the LMCA-P [12.71 (0.57, 
64.46)], LAD-D [5.79 (1.59, 15.15)], and LCX-D [7.52 
(1.55, 30.98)] were significantly lower in the LD group than 
in the RD group [21.31 (8.25, 57.80), 9.26 (2.96, 20.74), and 
12.19 (4.20, 33.71), respectively]. Inter-rater reliability for 
the experienced radiologist showed almost perfect scoring 
consistency for quality (kappa =0.91), and the results of the 
senior radiologist were used for further analyses. Qualitative 
analysis of the RCA, LCA, and LCX showed significant 

differences between groups, but the images showed 
sufficient DIQ (Table 2).

To compare the diagnostic accuracy of stenosis between 
groups, four patients (five main coronary arteries) in the LD 
group and seven patients (seven main coronary arteries) in 
the RD group were assessed. As there was good inter-rater 
reliability between the two radiologists for image accuracy 
(kappa =0.85), the senior radiologist’s results were used for 
further analyses. 

Discussion

Despite recent reports that CM risk may be overstated (26), 
the updated guidelines recommend using the lowest CM 
dose (27). Previous studies have demonstrated that lower 
CM volumes and injection speeds reduce the incidence of 
acute hypersensitivity reactions to non-ionic ICM (4,28). 
The present study demonstrated that CM volume could 
be reduced to 30 mL in patients with a relatively low BSA 
while retaining 100% acceptable DIQ (Figure 2). This is 
consistent with the findings of previous studies worldwide 
(3,9-12,14-16,29-32), which have focused on optimizing 
CM dosage to achieve DIQ with CCTA. Feng et al. (15) 
demonstrated successful imaging using a total of 28 mL CM 
(370 mgI/mL) with an IFR of 3.5 mL/s in prospective high-
pitch CCTA; therefore, the successful use of 30 mL CM 
for CCTA imaging should not be surprising. Furthermore, 
several studies (8,14,21) have demonstrated successful 
high-pitch CCTA with 30 mL of CM. The study by Feng  
et al. (15) involved patients with a body mass index (BMI) 
<26 kg/m2 and achieved an IDR of 1.295 gI/s (370 mgI/mL  
× 3.5 mL/s). Jia et al. (8) achieved an IDR of 1.2 gI/s  
(300 mgI/mL × 4 mL/s), while Zhang et al. (21) conducted 
a study involving 44 patients and achieved an IDR of  
1.48 gI/s (370 mgI/mL × 4 mL/s). Furthermore, Wang 
et al. (14) achieved an IDR of 1.85 gI/s (370 mgI/mL ×  
5 mL/s). Our study demonstrated the lowest IFR, 3.5 mL/s,  
and achieved the second-lowest IDR, 1.225 gI/s, without 
compromising the DIQ. Furthermore, our study is the 
first to demonstrate that 30 mL of CM for SAS CCTA can 
result in a satisfactory DIQ, which has not been reported 
previously for patients with a BSA <1.7 m2. High-pitch 
CCTA is beneficial as it involves the lowest radiation 
exposure and has the fastest scan time compared to SAS 
acquisition; however, SAS acquisition can be performed for 
patients with a higher HR (<100 bpm) (23), whereas high-
pitch CCTA strictly requires an HR of <75 bpm (22).

Yi et al. designed a study that included 30 patients with 
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Table 1 Baseline characteristics of patients with a BSA <1.7 m2

Characteristic Low-dose group (N=53) Routine-dose group (N=50) P 

Sex, n (%)

Male 8 (15.1%) 13 (26%) 0.170

Female 45 (84.9%) 37 (74%)

Age (years), mean ± SD 64.18±10.82 64.62±11.33 0.844

Height (cm), mean ± SD 158.92±6.81 159.42±6.12 0.699

Weight (kg), mean ± SD 55.34±6.11 57.78±6.72 0.056

BMI (kg/m2), n (%) 0.138

<20 10 (18.9%) 7 (14.0%)

20–25 36 (67.9%) 35 (70%)

25–30 7 (13.2%) 7 (14%)

≥30 0 (0%) 1 (2%)

BSA (m2), mean ± SD 1.52±0.10 1.56±0.10 0.110

Heart rate (bpm), mean ± SD 69.47±10.78 72.24±10.63 0.421

<75 35 (66.0%) 29 (58%)

≥75 18 (34.0%) 21 (42%)

Contrast medium (mL), mean ± SD 30±0 41.62±4.59 <0.001*

Saline (mL), mean ± SD 60±0 30±0 NA

Flow rate (mL/s), mean ± SD 3.50±0 4.13±0.45 <0.001*

Iodine delivery rate (gI/s), mean ± SD 1.23±0 1.45±0.16 <0.001*

Tube voltage (kV) 0.306

70 27 (50.9%) 27 (54%) 0.240

80 21 (39.6%) 13 (26%)

90 3 (5.7%) 4 (8%)

100 1 (1.9%) 4 (8%)

110 1 (1.9%) 0

120 0 2 (4%)

DLP (mGy × cm), mean ± SD 180.49±62.18 189.82±105.08 0.588

Effective dose (mSv), mean ± SD 2.53±0.87 2.66±1.47 0.588

CTDIvol (mGy), mean ± SD 18.90±7.08 19.70±11.59 0.671

CM injection time (s), mean ± SD 8.57±0 10±0 NA

Total injection time (s), mean ± SD 25.71±0 17.18±0.89 <0.001*

*, significant difference. BMI, body mass index; BSA, body surface area; CM, contrast media; CTDIvol, CT dose index volume; DLP, dose-
length product; SD, standard deviation.
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Table 2 Comparison of quantitative and qualitative analyses using CCTA

Low-dose group (N=53) Routine-dose group (N=50) P

CT values (HU)

AO 550.24±115.46 631.19±114.41 0.001*

LMCA-P 524.06±111.15 596.98±110.74 0.001*

LAD-M 318.22±113.6 473.19±93.58 <0.001*

LAD-D 195.48±79.26 332.93±94.65 <0.001*

LCX-M 437.32±98.09 511.75±97.18 <0.001*

LCX-D 262.63±89.29 350.92±86.08 <0.001*

RCA-P 506.13±119.93 585.31±114.38 0.001*

RCA-M 423.4±106.1 515.01±119.64 <0.001*

RCA-D 370.04±111.74 455.84±122.64 <0.001*

PVAT −130.43±21.27 −125.13±31.89 0.327

SNR values

AO 22.36 (14.38, 50.29) 21.17 (13.69, 38.25) 0.328

LMCA-P 46.03 (13.71, 145.01) 46.53 (13.86, 86.72) 0.926

LAD-M 12.71 (0.57, 64.46) 21.31 (8.25, 57.80) <0.001*

LAD-D 5.79 (1.59, 15.15) 9.26 (2.96, 20.74) <0.001*

LCX-M 22.15 (3.79, 73.24) 24.60 (7.25, 64.44) 0.370

LCX-D 7.52 (1.55, 30.98) 12.19 (4.20, 33.71) <0.001*

RCA-P 37.63 (10.00, 126.92) 45.69 (15.35, 109.84) 0.090

RCA-M 28.50 (6.99, 83.67) 29.74 (4.44, 76.72) 0.719

RCA-D 15.16 (3.75, 48.21) 19.01 (3.34, 74.70) 0.101

CNR values

AO 75.66 (19.86, 232.22) 69.47 (19.95, 177.15) 0.248

LMCA-P 75.54 (17.65, 232.80) 66.42 (18.60, 176.51) 0.233

LAD-M 51.38 (15.19, 188.05) 55.00 (15.93, 129.92) 0.539

LAD-D 37.37 (10.46, 173.87) 41.78 (12.86, 119.91) 0.356

LCX-M 64.57 (19.66, 193.97) 58.50 (15.07, 138.95) 0.352

LCX-D 43.53 (14.66, 113.25) 43.65 (10.47, 116.50) 0.978

RCA-P 73.79 (18.99, 189.31) 65.09 (19.31, 176.58) 0.240

RCA-M 63.50 (17.49, 157.53) 58.19 (16.63, 155.09) 0.399

RCA-D 56.86 (16.78, 154.02) 51.89 (15.97, 120.18) 0.362

Qualitative score (5-point scale), median (IQR)

QIA-RCA 5 (5, 5) 5 (4.5, 5) <0.001*

QIA-LCA 5 (4, 5) 4 (4, 4.5) 0.003*

QIA-LCX 5 (4, 5) 4.25 (4, 4.5) <0.001*

Meeting diagnostic quality 53 (100%) 50 (100%) 0.299

*, the asterisk represents a significant difference. AO, aortic root; CCTA, coronary CT angiography; CNR, contrast-to-noise ratio; CT, 
computed tomography; IQR, interquartile range; LAD-D, distal left anterior descending; LAD-M, middle left anterior descending; LCA, left 
coronary artery; LCX, left circumflex; LCX-D, distal left circumflex; LCX-M, middle left circumflex; LMCA-P, proximal left main coronary 
artery; PVAT, perivascular adipose tissue; QIA, quality image assessment; RCA, right coronary artery; RCA-D, distal coronary right artery; 
RCA-M, middle right coronary artery; RCA-P, proximal right coronary artery; SNR, signal-to-noise ratio.
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B

B1

C

C1

D

D1

A

A1

1: [473,655] mean 562.31, sd 30.32 area 90 mm2

1: [437,554] mean 503.20, sd 23.11 area 90 mm2

Figure 2 (A-D) A 67-year-old female patient with chest pain and a body surface area (BSA) of 1.60 m2, body mass index (BMI) of 28.51 kg/m2,  
30 mL of contrast media (CM), and a flow rate of 3.5 mL/s. (A) The computed tomography (CT) value of the opening of the coronary sinus 
was 562 HU. Curved planar reconstruction images of the right coronary artery (B), left anterior descending artery (C), and left circumflex 
artery (D) are shown. (A1-D1) A 43-year-old male patient with chest pain with a BSA of 1.68 m2, BMI of 28.89 kg/m2, 59.5 mL of CM, and 
a flow rate of 5.5 mL/s. (A1) The CT value of the opening of the coronary sinus was 503 HU. Curved planar reconstruction images of the 
right coronary artery (B1), left anterior descending artery (C1), and left circumflex artery (D1) are shown. 

a limited BMI (20–25 kg/m2) using 36 mL of CM with 
an IDR of 1.11 gI/s (370 mgI/mL ×3 mL/s) (9). Qu et al. 
demonstrated a shortened injection duration with 36.2 mL 
of CM and an IFR of 4.5±0.71 mL/s (12). Furthermore, 
Andreini et al. performed CCTA with an ultra-low CM 
concentration (80 mL bolus) and an IDR of 1.35 gI/s  
(iodixanol, 270 mgI/mL ×5 mL/s) (16). Therefore, our 
study demonstrated the lowest CM dose compared to recent 
studies involving SAS acquisition.

Injection protocols for CCTA involve titration of CM 
dose based on individual patient characteristics, including 
adjustments related to patient BSA and blood volume 
(10,29,30,33). Pazhenkottil et al. adapted a BSA protocol 
and demonstrated that a significantly lower amount of CM 
might help prevent contrast-induced nephropathy and 
its consequences (18,19); however, CM remained in the 
right heart chambers of patients with a BSA <1.7 m2 when 
using 40 mL, indicating that CM volume could possibly be 
reduced even further. In the present study, the CM volume 
of 40 mL was only reduced by 25% to 30 mL (19); however, 

this was a great challenge during SAS CCTA imaging, which 
requires a longer acquisition time compared to high-pitch 
helical scanning (14,15,17,22). Furthermore, 10 mL of CM 
with an IFR of 3.5 mL/s was sufficient to maintain vessel 
enhancement within 3 s, but only if the acquisition time was 
3 s longer than that reported in the study by Pazhenkottil 
et al. (19), whose 40 mL dosage for patients with a BSA 
<1.7 m2 was unsuccessful. The present study postulated 
that a further reduction in CM to less than 30 mL  
could be investigated with decreasing BSA. 

HR is another factor that influences both acquisition 
time and CCTA enhancement (23,33,34). When HR 
decreases during SAS acquisition—especially when it 
is <60 bpm—the acquisition time required for the end-
diastole phase is longer, increasing the total exposure time 
(35,36). This makes it difficult to maintain the target blood 
vessel enhancement with a CM volume of 30 mL. In the 
study by Pazhenkottil et al., the mean HR of patients who 
underwent the examination was 56±7 bpm, with a maximum 
of 74 bpm (19). The higher temporal resolution of the 
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third-generation dual-source CT used in our study (8)  
allowed for examining patients with an 18.8% higher 
average HR (69.47±10.78 bpm), with 34% of HRs in the 
LD group higher than 75 bpm. Zhu et al. reported that an 
increased HR resulted in increased cardiac output, leading 
to decreased CM attenuation in the coronary arteries, 
which was consistent with Tang et al. (37,38) findings. 
Therefore, BSA-based injection protocols’ ability to provide 
an appropriate enhancement in higher HR patients is of 
clinical interest. Our study included 18 patients (34.0%) 
in the LD group and 21 patients (38.9%) in the RD group 
with an HR >75 bpm; as the differences between groups 
were not significant between groups, we assume that this 
method was successful for patients with an HR >75 bpm. 

The body weight-adjusted protocol of the RD group has 
been used for the LD group in other studies (39-42). All 
CT values of measured vessel segments in our LD group 
were lower than those in the RD group, which may be 
explained by the significantly lower IDR (1.23 gI/s) of the 
LD group compared with the RD group (1.45 gI/s) and 
the fact that IDR is the main determinant of vessel contrast 
enhancement in CCTA (29). Our study demonstrated that 
the IDR associated with satisfactory DIQ in both groups 
was lower than 1.5–2.0 gI/s, which is usually recommended 
for CCTA (29). The SNR and CNR values showed similar 
image quality between groups, except for the SNR values 
of the LAD-M, LAD-D, and LCX-D, thus explaining why 
the CCTA images were reported to have equal DIQ even 

though the CT values were better in the RD group. The 
excellent inter-rater reliability for diagnosis of stenosis 
>50% may also explain why the LD group had comparable 
diagnostic accuracy compared to the RD group. Using 
a lower tube voltage (<80 kVp) may have also improved 
image quality because of the lower average energy closer 
to the K-edge of iodine (33.2 keV) (5,13). The distribution 
of tube voltages (Figure 3) showed that >80% of patients in 
the LD group were scanned using 80 kV with a lower IDR 
(1.23 gI/s), resulting in better CT, SNR, and CNR values 
than those reported by Feng et al., who used 28 mL with an 
IDR of 1.295 gI/s and 70 kV (15). The inverse correlation 
between CT values and BSA in the LD group showed that 
CT values of most measured segments decreased when the 
BSA increased, whereas the RD group had homogeneous 
CT values (Figure 4), indicating that patients with a BSA 
<1.7 m2 could still benefit from a personalized protocol 
based on 30 mL of CM; the smaller the BSA, the lower the 
volume required (≤30 mL). The inverse correlation between 
CNR and BSA in the RD group may explain the higher 
qualitative score of the LD group, as the CNR of the LD 
group did not decrease with increased BSA.

There were several possible limitations of our patient 
population. Patients who had undergone a coronary artery 
bypass graft were excluded because they underwent CCTA 
with a larger scanning range (usually twice that of patients 
without a bypass). Patients who were unable to hold their 
breath for 10 s were also excluded because breathing 
artifacts worsen the DIQ. Patients who had a history of 
pharmaceutical HR control were excluded because the 
present study aimed to investigate SAS acquisition, which 
allows for higher HR. 

Several other limitations existed in this study. As a 
single-center study, the sample size was small; a larger, 
multi-center study would provide stronger evidence for 
these results. The radiation doses for both groups in this 
study were slightly higher than normal because the range 
of exposure (ECG-pulsing) was set at 30–80% for the 
R-R interval; therefore, future research should reduce 
the exposure time without affecting the conclusions of 
this study. Furthermore, grouping patients with a BSA  
<1.7 m2 might not have been sufficiently personalized, and 
stratification based on BSA could be used in the future to 
explore the possibility of further contrast dose adjustment 
through both delivery rate and volume changes. More 
studies are required to establish whether a BSA-adjusted 
method might reduce the incidence of contrast-induced 
adverse events. Finally, the contrast dose associated with a 
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reduced ICM dose and/or injection speed requires further 
investigation (43,44). 

Conclusions

In conclusion, using a CM volume of 30 mL for patients 
with a BSA <1.7 m2 was appropriate for SAS CCTA with a 
third-generation dual-source CT and showed suitable DIQ 
for diagnosis.
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