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Introduction

Breast cancer is one of the most common cancers in women 
worldwide and alone accounts for 30% of all new cancer 
cases in women (1,2). The incidence rates of breast cancer 

increased from 2006 to 2015 by approximately 0.3–0.4% 

per year among non-Hispanic white and Hispanic women 

and by 1.8% per year among Asian/Pacific Islander women. 

From 1990 to 2016, the mortality rate of breast cancer in 
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Background: The successful recognition of benign and malignant breast nodules using ultrasound images 
is based mainly on supervised learning that requires a large number of labeled images. However, because 
high-quality labeling is expensive and time-consuming, we hypothesized that semi-supervised learning 
could provide a low-cost and powerful alternative approach. This study aimed to develop an accurate semi-
supervised recognition method and compared its performance with supervised methods and sonographers. 
Methods: The faster region-based convolutional neural network was used for nodule detection from 
ultrasound images. A semi-supervised classifier based on the mean teacher model was proposed to recognize 
benign and malignant nodule images. The general performance of the proposed method on two datasets 
(8,966 nodules) was reported. 
Results: The detection accuracy was 0.88±0.03 and 0.86±0.02, respectively, on two testing sets (1,350 and 
2,220 nodules). When 800 labeled training nodules were available, the proposed semi-supervised model 
plus 4,396 unlabeled nodules performed better than the supervised learning model (area under the curve 
(AUC): 0.934±0.026 vs. 0.83±0.050; 0.916±0.022 vs. 0.815±0.049). The performance of the semi-supervised 
model trained on 800 labeled and 4,396 unlabeled nodules was close to that of the supervised learning model 
trained on a massive number of labeled nodules (n=5,196) (AUC: 0.934±0.026 vs. 0.952±0.027; 0.916±0.022 
vs. 0.918±0.017). Moreover, the semi-supervised model was better than the average accuracy of five human 
sonographers (AUC: 0.922 vs. 0.889). 
Conclusions: The semi-supervised model can achieve excellent performance for nodule recognition and 
be useful for medical sciences. The method reduced the number of labeled images required for training, thus 
significantly alleviating the difficulty in data preparation of medical artificial intelligence.
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the USA decreased from approximately 30% to 20%, and 
the decline in breast cancer mortality over the past three 
decades is primarily due to early detection and treatment (1). 

Although the pathological examination is considered 
the gold standard for breast cancer, it is inefficient and 
inconvenient (3). X-ray mammography is recommended 
for women, beginning at the age of 40 years (4). However, 
mammographic density is associated with a higher risk 
of breast cancer (5), and more than 50% of women have 
dense breast tissue (6,7). X-ray mammography’s sensitivity 
is reduced to 57–71% for women with dense breast 
tissue (8). Personalized breast cancer screening has been 
proposed, with tiered use of different imaging modalities 
and techniques (9). Further studies may prove that 
ultrasonographic breast screening is efficient and beneficial, 
especially for women with dense breast tissue (10).

The challenges in breast ultrasound stem from the 
complexity of images, including noise, artifacts, and low 
contrast. Manual analysis by sonographers is time-consuming, 
subjective, and can lead to unintended misdiagnoses due to 
fatigue (10). Thus, computer-aided detection or artificial 
intelligence (AI) is essential for improving both the false 
positives and false negatives of screening breast ultrasound 
and reducing the biopsy rate (11). 

Computer-aided diagnosis of breast cancer based on 
traditional image analysis has been studied for decades (12); 
for example, fractal dimension estimation (13), computation 
of the area of breast lesions based on region growth (14), and 
classification of breast tumors (15). However, these traditional 
methods lack robustness because they rely on hand-crafted 
features. Recently, deep learning powered by advances in 
large labeled datasets and computing capability has achieved 
revolutionary breakthroughs in ultrasound image analysis,  
including classification (16), image quality assessment (17), 
standard plane detection (18), localization (19), image 
segmentation (20) and so on. 

In breast ultrasound studies, Byra et al. (21) and Yap  
et al. (22) proposed a convolutional neural network for 
breast lesion detection, and Cheng et al. applied the 
denoising autoencoders for classifying breast lesions in 
ultrasound images (23). Han et al. also proposed a deep 
learning framework to differentiate malignant and benign 
nodules (24). Recently, Qi et al. proposed a state-of-the-
art method with multiscale kernels and skip connections to 
diagnose breast nodules on ultrasonography images (25). 

Deep learning has achieved high accuracy, but the 
methods above are all based on supervised learning, which 
requires a large number of labeled images (26). However, 

the reality in clinical practice is that only a small number of 
labeled images and a larger number of unlabeled images are 
available. Data annotation always requires much time and 
careful preparation, thus greatly increasing the time and 
economic costs. More importantly, it is often necessary to 
label the data differently according to the specific medical 
application, further resulting in less labeled data. Therefore, 
reducing the dependence on labeled data of thousands 
or millions of images and developing medical AI more 
efficiently are still difficult (27).

For example, more efficient learning methods, semi-
supervised learning not requiring a lot of labeled data are 
assumed to provide a low-cost and powerful alternative 
approach (27). However, whether semi-supervised methods 
can be applied to medical images on a large scale is unclear. 
If semi-supervised learning is as accurate as supervised 
learning in the medical domain, then medical AI trained by 
semi-supervised learning may be more economical and faster 
in development by reducing the amount of data annotations 
needed. Further exploration is needed to determine whether 
semi-supervised learning using a small number of labeled 
images and a large number of unlabeled images can achieve 
satisfactory performance in medical image analysis, such as 
based on semi-supervised detection (28), magnetic resonance 
imaging image segmentation (29,30), data augmentation (31), 
and histology image classification (32).  

In this study, two datasets comprising 8,966 breast 
nodules from two hospitals were used to confirm that the 
semi-supervised method could be applied to ultrasound 
images with large noise issues. The proposed semi-
supervised method’s performance was compared with that 
of an existing supervised learning method and five human 
sonographers. The proposed method had two stages. The 
first was locating the bounding box of nodules from the 
ultrasound images using a faster region-based convolutional 
neural network (Faster R-CNN) (33), and the located image 
was then inputted to a semi-supervised classifier called 
the mean teacher model (34) for recognition. The main 
contributions were as follows:

(I) An accurate semi-supervised recognition method for 
breast nodules was developed, and its performance 
was compared with that of supervised methods and 
sonographers; 

(II) The study proved that the semi-supervised 
method and 4,396 unlabeled nodules could always 
achieve higher performance than the supervised 
method when the number of labeled images (800 
labeled nodules) was insufficient. Moreover, the 
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semi-supervised method was comparable to the 
supervised learning method trained on a massive 
labeled dataset (5,196 labeled nodules); 

(III) The semi-supervised method might also develop 
an expert-level recognition system for benign and 
malignant nodules, thus significantly reducing 
the cost of data annotation and demonstrated 
the potential of semi-supervised deep learning in 
medical applications.

Methods

Dataset

The dataset was collected from two hospitals: The Third 
Affiliated Hospital of Xi’an Jiaotong University (Dataset-A) 
and The First Affiliated Hospital of Xi’an Jiaotong University 
(Dataset-B). The institutional review boards approved the 
two hospital’s study, and a general research authorization 
was obtained, allowing for retrospective reviews. From the 
hospital information systems, technicians randomly selected 

ultrasound images of patients who underwent ultrasound 
breast examination in the two hospitals and had a pathological 
diagnosis during 2010–2019. The number of images from 
each week did not exceed 50 to ensure the randomness of the 
data, and the images of 9,012 nodules were obtained. The 
technicians did not participate in the follow-up study. The 
histopathological findings are shown in Table 1.

Dataset review and annotation

Two sonographers reviewed Dataset-A and Dataset-B with 
10 years of clinical experience. They manually labeled the 
location of the breast nodule with bounding boxes and 
marked them as benign (non-cancer) or malignant (cancer) 
using a label software, LabelImg (35). The intersection 
of their labeled bounding boxes was used for the nodule’s 
labeled location, and the benign or malignant status of the 
nodule was obtained from pathological reports for type 
annotations. In total, 4,100 labeled malignant nodules and 
4,866 labeled benign nodules (non-cancer) were included in 

Table 1 Histopathologic findings of breast nodules in Dataset-A and Dataset-B

Nodule type on histopathologic examination
No. of nodules

Dataset-A Dataset-B

Benign 3,937 (100%) 929 (100%)

Fibroadenoma 2,710 (68.8%) 545 (58.7%)

Adenosis 596 (15.1%) 198 (21.3%)

Papilloma 472 (12%) 130 (14%)

Other benign 159 (4%) 56 (6%)

Malignant 2,809 (100%) 1,291 (100%)

DCIS 112 (4%) 23 (1.8%)

NOS invasive carcinoma

Grade 1 126 (4.5%) 121 (9.4%)

Grade 2 1,307 (46.5%) 633 (49%)

Grade 3 327 (11.6%) 155 (12%)

Grade not recorded 800 (28.5%) 266 (20.6%)

Invasive lobular carcinoma 56 (2%) 52 (4%)

Mucinous carcinoma 50 (1.8%) 0 (0%)

Other malignant 31 (1.1%) 41 (3.2%)

Total 6,746 2,220

Other benign: inflammation, adenoma, etc. Other malignant: malignant phyllodes tumor, lymphoma, metaplastic carcinoma, etc. DCIS, 
ductal carcinoma in situ; NOS, no special type.
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the two datasets, and 46 nodules were removed because of 
poor image quality (Table 2).

Proposed network framework

The proposed network framework consisted of two parts: 
a detection network for breast nodules and a classifier 
network for benign and malignant nodules. Considering 
that nodules exist only in a small section of the ultrasound 
images, the Faster R-CNN was first used to detect the 
nodules’ bounding boxes. The Faster R-CNN included a 
feature extractor network and a regional proposal network 
(RPN). The network of 16 layers from the Visual Geometry 
Group (VGG16) was selected as the feature extractor 
because of its excellent feature learning performance (36). 

The original ultrasound image (>1,000×1,000 pixels) was 
input to VGG16, and then the RPN was used to generate 
possible bounding boxes of the nodules (Figure 1). 

The bounding box’s nodule image was scaled to 128×128 
pixels and input to the subsequent classifier network. 
The classifier network was composed of a multilayer 
convolutional neural network including three consecutive 
modules, where each module included some convolution 
layers, a maximum pooling layer, and a dropout layer, as 
shown in Figure 2. The network output included benign 
and malignant categories.

SSL and SL were used to represent semi-supervised 
learning and supervised learning, respectively. Three versions 
of the classifier network (Figure 2) were obtained based on 
different training datasets and learning methods (SSL and SL), 

Table 2 Dataset-A and Dataset-B of breast nodules

Dataset
Malignant Benign Total

Participants Nodules Participants Nodules Participants Nodules

Dataset-A 2,809 2,809 3,937 3,937 6,746 6,746

Dataset-B 1,291 1,291 929 929 2,220 2,220

Total 4,100 4,100 4,866 4,866 8,966 8,966

Conv 3x3, 64/1

Maxpool 2x2

Conv 3x3, 128/1

Conv 3x3, 64/1

Conv 3x3, 128/1

Maxpool 2x2

Conv 3x3, 256/1
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Input layer
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Figure 1 Network configurations of the Faster R-CNN, which was used for image preprocessing to find the breast nodule region in the 
ultrasound image. The convolutional layer is denoted as conv, kernel size, and the number of channels/stride size. The max. pooling layer is 
denoted as maxpool and kernel size. The fully connection layer is denoted as FC and its dimensions. The ReLU and dropout layer after the 
convolutional layers are not shown for brevity, but can be obtained from references (33) and (36). 
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including two SL versions (SL-1 and SL-2) and an SSL version. 
Dataset-A was randomly divided into a training set, validation 
set, and testing set (Tables 3,4). Table 4 lists the 3 cases of the 
classifiers’ training, including a small number of labeled nodule 
images, a small number of nodule images plus a large number 
of unlabeled images, and a large number of labeled nodule 
images. The 20% of the data in Dataset-A and all in Dataset-B 
(as an independent testing set) were used for testing. 

The SL-1 model was trained on a small number of 
labeled nodule images (15%, 1,000) for SL. The labeled 
nodules were divided into a training set (800 nodules) and a 
validation set (200 nodules). However, the SL-2 model was 
trained on a large number of labeled nodule images (80%, 
5,396 nodules), which were also divided into a training set 
(n=5,196) and a validation set (n=200). The SSL model was 
the proposed semi-supervised model trained on the same 
training set (n=800) and validation set (n=200) with SL-1. 
However, the remaining nodules (4,396 nodules) were also 
used for SSL, but their labels were ignored (as unlabeled). 

The SSL model was trained using the mean teacher 
learning strategy (34), including a student network and 
a teacher network (Figure 3). The teacher network was 
considered as the SSL model to recognize breast nodules. 
The two networks had the same network architecture as the 
classifier network (SL-1 and SL-2). The teacher network 
provided the pseudo-labels for unlabeled nodules, which were 
used to calculate mean square error (consistency cost) with 
predicted labels by the student network. The cross-entropy 
between the predicted labels by the student network and the 
real labels was calculated as the classification cost. The sum of 
consistency cost and classification cost, as the total cost, was 
used to train the student network in each iteration. However, 
the weights '

tθ  of teacher network at training step t were 
updated by way of the exponential moving average. We defined  

( )' '
1 1t t t−= + −θ αθ α θ , where θt was the weights of the student 

network at training step t, and α was the smoothing coefficient. 

Figure 2 Network configurations of the classifier. The dropout layer is denoted as dropout and probability setting. The kernel size of the 
average pooling layer is one-eighth the size of the feature map from the previous layer. The output of the average pooling layer was flattened 
and then connected to the fully connected layer for output.
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Table 3 Training, validation, and testing sets for faster R-CNN

Training, validation, and testing sets Number

Training set

Malignant 400

Benign 400

Validation set

Malignant 100

Benign 100

Dataset-A (test)

Malignant 562

Benign 788

Dataset-B

Malignant 1,291

Benign 929
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Faster R-CNN fine-tuning for ultrasound images

The training, validation, and testing sets of the Faster 
R-CNN are shown in Table 3. The bounding boxes of 800 
labeled nodules were used to train the Faster R-CNN (these 
nodules came from the training set in Dataset-A, shown 
in Table 4). The network was initialized using a Faster 
R-CNN pre-trained model, which was trained on ImageNet, 
downloaded from the link on the Faster R-CNN website (37),  
and then fine-tuned by ultrasound images. 

The ultrasound images in the validation set were used for 
hyperparameter selection. We followed the tuning process 
to achieve the generalized performance and tried some 
different parameter values, including learning rate (0.01, 
0.001, 0.0005), batch size (16, 64, 128), and L2 decay (0.001, 
0.0005, 0.000). Other parameter values were consistent 
with the recently published Faster R-CNN code. The 

hyperparameter settings with the highest average similarity 
on the validation set were selected. 

The hyperparameters are listed in Table 5. In order 
to prevent the model from overfitting early, the training 
was divided into two stages. Firstly, the feature extraction 
layers of the VGG16 network were frozen, while the 
ultrasound images updated the weights of the RPN. After 
5,000 iterations, the VGG16 was allowed to be updated. 
The initial learning rate was set to 0.001, which decreased 
exponentially. The batch size was 128, the optimizer was 
a gradient descent optimizer, momentum was 0.9, and the 
number of iterations was 70,000. 

Classifier network training

The classifier networks (SL-1 and SL-2 models) performed 

Table 4 Training, validation and testing sets for classifiers

Datasets/models SSL SL-1 SL-2

Dataset-A (6,746 nodules)

Training set

Malignant 400 400 2,147

Benign 400 400 3,049

Total 800/12% 800/12% 5,196/77%

Expanded training set (not using labels)

Malignant 1,747 – –

Benign 2,649 – –

Total 4,396/65% – –

Validation set

Malignant 100 100 100

Benign 100 100 100

Total 200/3% 200/3% 200/3%

Testing set

Malignant 562 562 562

Benign 788 788 788

Total 1,350/20% 1,350/20% 1,350/20%

Dataset-B (independent testing set, 2,220 nodules)

Malignant 1,291 1,291 1,291

Benign 929 929 929

Total 2,220 2,220 2,220



2271Quantitative Imaging in Medicine and Surgery, Vol 11, No 6 June 2021

© Quantitative Imaging in Medicine and Surgery. All rights reserved.   Quant Imaging Med Surg 2021;11(6):2265-2278 | http://dx.doi.org/10.21037/qims-20-12b

SL using 800 and 5,196 labeled nodules, respectively, 
while the SSL model used 800 labeled and 4,396 unlabeled 
nodules, as shown in Table 4. In SSL, the teacher network 
was initialized with the student network. By closing the 
teacher network pipeline for calculating pseudo-labels with 
unlabeled data, supervised training can be achieved. The 
200 labeled nodules in the validation set were used for the 
hyperparameter selection. 

The hyperparameters near the hyperparameter settings 
provided by Tarvainen (34,38) were used to obtain 
satisfactory results in the validation set. Data augmentation 
such as image flipping with uniform distribution (0.0, 2.0) 
and random translation with scale 2 was used. Some different 
parameter values were tried, including learning rate (0.005, 
0.003, 0.001), batch size (64.0, 128.0), iteration number 
(40,000.0, 100,000.0), ramp-up length (5,000.0, 25,000.0, 

40,000.0), and ramp-down length (5,000.0, 25,000.0, 
40,000.0). Other parameters were consistent with the 
previously published study (34), in which the convolutional 
kernels were initialized by Gaussian distribution with a mean 
of 0 and a standard deviation of 0.05.

The optimal parameters with the highest recognition 
accuracy in the validation set were selected. The parameter 
values are listed in Table 6. The batch size was set to 128. 
The maximum learning rate was set to 0.003, and the ramp-
up and down strategies were used in training. The learning 
rate slowly grew to the maximum, was maintained, and then 
started to decline. The change in the learning rate speed was 
determined by the parameters: ramp-up length, ramp-down 
length, the total number of iterations, and current training 

Figure 3 Flow chart of mean teacher strategy, where the two networks are trained simultaneously. The student and teacher networks have 
the same network structure, as shown in Figure 2.  

Classification cost

Consistency cost

Student network

Teacher network Pseudo label

Real label

Table 5 Hyperparameters used in Faster R-CNN

Hyperparameters Value

Learning rate 0.001

Learning rate decay Exponential/step size 50,000

Optimizer Gradient descent

Momentum 0.9

Batch size 128

L2 decay 5e-4

Total number of iterations 70,000

Gamma 0.1

Proposal method gt

RPN batch size 256

Table 6 Hyperparameters used in mean teacher model

Hyperparameters Value

Max. learning rate 0.003

Optimizer Adam

Batch size 128

Total number of iterations 100,000

Ramp-up length 25,000

Ramp-down length 40,000

Standard deviation of input noise 0.15

Student dropout probability 0.5

Teacher dropout probability 0.5

Weighting of supervised and unsupervised loss [1, 1]

Smoothing coefficient of exponential moving 
average

0.99
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step (38). The total number of iterations was initially set 
to 100,000, but the training would be stopped early if the 
validation set’s accuracy could not be improved. In SSL, 
the same proportion of labeled and unlabeled nodules was 
maintained in each batch because of the imbalance between 
the labeled and unlabeled images. The student network 
weights were updated in each step, but the teacher network 
used the exponential moving average to update the weights, 
and the smoothing coefficient was set to 0.99. The training 
curves of the SSL model are shown in Figure 4.

These codes were implemented in Python version 3.6.9 (39)  
and Tensorflow version 1.15.0 (40) and were trained and 
tested on the servers with an NVIDIA Tesla V00 Graphic 
Processing Unit, 128 GB memory, and two Intel Xeon Gold 
5122 central processing units.

Results

The 20% data of Dataset-A and all the data of Dataset-B 
were used for performance evaluation. The results included 
the detection accuracy of nodule location, and sensitivity 
[true positive/(true positive + false negative)], specificity [true 
negative/(true negative + false positive)], accuracy [(true 
positive + true negative)/all samples], and area under the curve 
(AUC) of the recognition of benign or malignant status.

Detecting the position of breast nodules

The average similarity criterion (ASC) was used to 
evaluate the detection accuracy, which was defined as 

( )1 2 1 2( ) /R R R R  ,  where R1 was the location of the 

bounding box given by the sonographers, but R2 was the 
bounding box predicted by Faster R-CNN. The ASC was 
the intersection of R1 and R2, divided by their union. The 
mean and standard deviation of ASC on the testing sets in 
Dataset-A (testing set, 1,350) and Dataset-B (2,220) were 
0.88±0.03 and 0.86±0.02, respectively.

The mean value of ASC on the two testing sets was 
higher than 0.85, indicating that the detection network 
locations were very consistent with the locations given by 
the sonographers. Figure 5 shows some bounding boxes 
of nodules, where the yellow bounding box represents 
the box given by the sonographers, and the red represents 
the box predicted by Faster R-CNN, which could achieve 
accurate detection of breast nodules in ultrasound images. 
This detection network was also effective for normal breast 
images, as shown in Figure 6.

Recognition of benign or malignant type nodules

The training set, validation set, and the testing set from 
Dataset-A were repeatedly and randomly allocated 10 
times to estimate the statistics of classifier networks’ 
performance according to the proportions shown in Table 4.  
Dataset-B was used for independent testing to evaluate 
the generalization ability of classification accuracy across 
multiple medical centers.

The SSL, SL-1 and SL-2 models in two testing sets 
shown in Table 4 were tested, as shown in Table 7. The SSL 
model used the teacher network of mean teacher model 
as the recognition model, which had the same network 
structure as the SL-1 and SL-2 models. When 800 labeled 

Figure 4 Real-time cost curves (A) and accuracy curves (B) during the training process of the semi-supervised learning model. Every 10 data 
points on these curves were averaged for optimal display.
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Figure 5 Bounding boxes of breast nodules in some representative ultrasound images. The surrounding pixels in the images were removed 
for optimal display.

Figure 6 Breast nodule detection on some normal breast images. The upper row shows three normal breast images without breast nodules, 
and the lower row shows the detection results, where no bounding box of the breast nodules was found using Faster R-CNN.
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nodules were used for supervised training, the AUC of SL-1 
was 0.83±0.050, making it difficult to achieve satisfactory 
clinical practice performance. In contrast, when a large 
number of unlabeled nodules (4,396.0) were added to SSL 
for semi-supervised training, the AUC of the SSL model 
was significantly increased to 0.934±0.026. Moreover, the 
SSL model’s performance was comparable to that of the 
SL-2 model trained on 5,196 labeled nodules (0.934±0.026 
vs. 0.952±0.027).

The tests on Dataset-B are shown in Table 7, demonstrating 
whether the conclusions above were still applicable to 

the independent testing set. The performance of the 
SSL model was better than that of the SL-1 model 
(0.916±0.022 vs. 0.815±0.049) and close to that of the SL-2 
model (0.916±0.022 vs. 0.918±0.017). The generalization 
performance of the SSL model across different datasets was 
also maintained. 

The results showed that when 4,396 unlabeled nodules 
were added for training, the SSL achieved a significant 
improvement in performance over the SL-1 model without 
using unlabeled data (P<10−5). Moreover, no significant 
difference (P=0.11) was found between SSL using a small 
number of labeled nodules (800.0) plus a larger number of 
unlabeled nodules (4,396.0), and the SL-2 model using a 
massive set of labeled nodules (5,196.0).

Human-AI comparison

Five sonographers (A–E) were recruited to evaluate the 
performance of SSL in clinical applications, and their years 
of clinical experience were 3–15 (A: 3 years, B: 4 years, C: 
7 years, D: 10 years, and E: 15 years). They independently 
diagnosed 2,220 breast nodules from Dataset-B. 

The AUCs of the five human sonographers, average 
AUC, and SSL were ranked. The AUC of SSL was 0.922, 
ranked as second; it was lower only than that of sonographer 
D. The average AUC of the five sonographers was 0.889, 
indicating that the diagnostic ability of SSL was better than 
the average ability of the human sonographers. The SSL 
could achieve excellent accuracy and was practically useful 
for breast cancer diagnosis (Figure 7, Table 8).

Comparison with related studies

The SSL was compared with three previous deep learning 
methods of breast ultrasound analysis; the results are shown 
in Table 9: SSL performance was comparable to that of 
previous SL methods. 

Table 7 Area under the curve and 95% confidence intervals of two testing sets

Model Dataset-A (test) Dataset-B Both sets Significance level†

SSL 0.934±0.026 0.916±0.022 0.925±0.032 P<10−5

SL-1 0.83±0.050 0.815±0.049 0.822±0.052

SSL 0.934±0.026 0.916±0.022 0.925±0.032 P=0.11

SL-2 0.952±0.027 0.918±0.017 0.934±0.044
†, Wilcoxon signed-rank test. SL, supervised learning; SSL, semi-supervised learning.

Figure 7 Area under the curve (AUC) comparison of sonographers 
A–E, human average and the SSL model. The SSL model with 
median AUC among the 10 models was used for the comparisons. 
The AUC of the SSL model was 0.922, and ranked second. Refer 
to Table 8 for the sensitivity, specificity, and accuracy. SSL: semi-
supervised learning.
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Discussion

Ultrasound is an important screening method for breast 
cancer, but accurate diagnosis of breast ultrasonographic 
images requires years of training, and the challenges have 
never been overcome due to noise, artifacts, and low contrast 
in images (10). Computer-assisted systems are expected to 
provide a powerful approach to reducing the high rates of 
false positives and false negatives of breast cancer (11).

Deep learning can accurately classify breast nodules, with 
an AUC even exceeding 0.9, reaching the sonographers’ 
level (22-25). From a methodological point of view, almost 
all successful methods currently depend on SL, requiring 
thousands or more of nodule images and pathological 
results to ensure the convergence of neural networks. Data 
annotation aims to associate the samples with the ground 
truth, thus providing an optimization direction for SL. A 
huge number of images and reports must be reviewed one by 
one, followed by sonographers’ manual labeling. Moreover, 
it is more common clinically that many samples do not 
have ground truth, such as prospective studies (27). Many 
patients undergo breast ultrasound but not a pathological 
examination.

The data preparation and annotations have become 

one of the most demanding tasks in medical deep learning 
systems, not just for breast ultrasound. How to efficiently 
prepare and use medical data is an urgent issue (27). 
Recently, methods requiring less labeled data have gained 
attention, such as SSL (29-32).

Some studies have proven that when labeled data is 
limited, SSL can achieve good results in some medical 
images (29-32). However, this conclusion has not been 
evaluated on a large scale, especially for medical images 
with large amounts of noise, artifacts, and low contrast, 
for example, breast ultrasound. Whether unlabeled data 
can improve the recognition accuracy in breast nodules is 
unclear. 

This current study proved SSL performance for a 
small number of labeled nodules was close to that of SL 
in massive datasets of labeled nodules. The SSL model 
trained on 800 labeled nodules and 4,396 unlabeled nodules 
might be as good as the SL-2 model trained on 5,196 
labeled nodules. Moreover, SSL was also comparable to 
some previous studies of SL on breast ultrasound. Also, we 
compared the diagnostic accuracy of the SSL model and five 
sonographers. The SSL model surpassed four of the five 
sonographers and ranked second, revealing the feasibility of 
building an excellent expert-level system based on SSL.

Table 8 Comparison of five sonographers and the SSL model for Dataset-B

Testing 
performance

SSL model
Sonographers

A B C D E Average

Sensitivity 0.847 0.765 0.732 0.798 0.853 0.825 0.795

Specificity 0.884 0.724 0.794 0.824 0.895 0.805 0.808

Accuracy 0.859 0.747 0.757 0.809 0.87 0.816 0.799

SSL, semi-supervised learning.

Table 9 Comparison of present study with some related works

Method Learning method
Testing set Independent testing set

No. of samples AUC No. of samples AUC

Han et al. (24) SL 829 0.9 – –

Cheng et al. (23) SL 140 0.896±0.039 – –

Mt-Net (25) SL 1,359 0.979–0.982 – –

Sn-Net (25) SL 1,359 0.928–0.936 – –

SSL model SSL 1,350 0.934±0.026 2,220 0.916±0.022

The method (25) included two networks, in which Mt-Net and Sn-Net were used to classify malignant tumors and nodules individually. SL, 
supervised learning; SSL, semi-supervised learning.
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SSL might not need as many labeled breast nodules as 
for previous methods based on SL. The main highlight 
of the present study was proposing a semi-supervised 
breast nodule recognition method, which proved that 
recognition accuracy on large, noisy ultrasound images 
could be achieved even if the number of labeled nodules was 
significantly reduced.

The proposed method may also be extended to other 
medical imaging techniques with better quality images and 
a higher signal-to-noise ratio than ultrasound images. This 
study confirmed that SSL has great potential for clinical 
practice lacking labeled data. The existing SL can be 
replaced with SSL to alleviate data preparation difficulty in 
medical computer-assisted systems significantly. 

Conclusions

This study proposed a detection and recognition method 
for breast nodules based on SSL, which was trained on 
a small amount of labeled data. The proposed method’s 
performance was as good as that of SL trained on a large 
number of nodules and was better than the accuracy of four 
out of five sonographers. The study revealed the application 
prospects of SSL in the medical imaging domain, greatly 
reducing the cost and time involved in current medical data 
annotation. Future studies should aim to reduce the amount 
of data annotations further and achieve an unsupervised 
learning method that does not require any annotations.
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