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Method

The Medline and EMBASE databases were searched using (at 
a minimum) the following keywords: tumor, immunotherapy, 
interventional therapy, and immunomodulation. All articles 
studying the immunomodulatory effect of interventional 
therapy and interventional therapy combined with 
immunotherapy for tumors were selected by examining their 
titles or abstracts. After further exploration of the content, 
articles containing relevant data were then included and 
summarized. According to the Grading of Recommendations 

Assessment, Development, and Evaluation (GRADE) system, 
all selected articles were graded by their level of evidence and 
strength of recommendation. The literature searches were 
updated until October 2020.

Introduction

Cancer immunotherapy, which artificially stimulates the 
immune system and improves its natural ability to fight 
the disease, has long been seen as a hope to cure cancer. 
In recent years, with the prevalence of immunotherapy, 
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especia l ly  immune checkpoint  inhibi tors  ( ICIs) , 
immunotherapy has revolutionized cancer treatment. 
Cytotoxic T-lymphocyte-associated antigen 4 (CTLA-4) 
and programmed death 1 (PD-1) are the two most common 
checkpoint protein molecules in cancer immunotherapy. 
CTLA-4 (also named CD152) binds CD80 and CD86 
with greater affinity and avidity than CD28, thus enabling 
the transmission of inhibitory signals into T cells. 
Ipilimumab is the first Food and Drug Administration 
(FDA)-approved CTLA-4 inhibitor and was initially used 
for melanoma treatment (1). Latest research has shown 
that ipilimumab can also work on non-small cell lung 
cancer (NSCLC), small cell lung cancer (SCLC), as well as 
bladder and prostate cancers (2,3). Unlike the mechanism 
of CTLA-4 inhibitors, PD-1 inhibitors maintain the 
tumor cell inhibitory activity of effector T cells by 
inhibiting the binding of the PD-1 molecule on T cells 
to PD-L1 on tumor cells. Similar coinhibitory receptors 
include lymphocyte-activation gene 3 (LAG3), T cell 
immunoglobulin (Ig) and mucin domain 3 (TIM3), T cell 
immunoreceptor with Ig, and immunoreceptor tyrosine-
based inhibition motif (ITIM) domains (TIGIT), etc. (4-7).  
Other passive immunotherapies include lymphocyte 
therapies [such as chimeric antigen receptor redirected 
T (CAR-T) cells], cytokine therapies [such as IFN-α and 
interleukin (IL)-2]. The first two FDA-approved CAR-T 
therapies, tisagenlecleucel and axicabtagene ciloleucel, 
target the CD19 antigen, which is found in many B-cell 
types of cancers. Cytokine therapy either directly promotes 
effector T cell function, for example, through IFN-α, IL-2, 
and IFN-γ, or promotes effector T cell infiltration locally in 
the tumor, such as through CXCL9, CXCL10, CXCL11, 
CCL2, and CCL5 (8,9). 

Active immunotherapies, such as tumor vaccines and 
oncolytic viruses (OVs), direct the immune system to attack 
tumor cells by targeting tumor antigens. Cancer vaccines 
trigger or amplify tumor antigens' presentation to either 
treat existing cancer or prevent the development of cancer. 
Sipuleucel-T is a therapeutic cancer vaccine approved by 
the FDA for metastatic hormone-refractory prostate cancer. 
OVs are genetically engineered viruses that can selectively 
infect and replicate in tumor cells and ultimately resulting 
in tumor cell lysis and immunogenic death (10-16). Several 
viruses, including herpesviruses, poxviruses, picornaviruses, 
adenoviruses, paramyxoviruses, parvoviruses, reoviruses, 
Newcastle disease virus, and rhabdoviruses, have now been 
clinically tested as oncolytic agents (10). T-Vec is the first 
FDA-approved oncolytic virus to treat melanoma in patients 

with inoperable tumors (13). Some approved immune drugs 
developed for treating cancers of different organs are listed 
in Table 1.

However, insufficient responses to this innovative therapy 
have also been found in some cases (17,18), which may be 
due to different cancers’ differential immunophenotypes. 
A previous study has shown that compared to ipilimumab 
alone, nivolumab plus ipilimumab (anti-PD-1 plus anti-
CTLA-4) can lead to a higher 2-year overall survival (63.8% 
vs. 53.6%) for melanoma patients; however, it can also 
result in higher treatment-related grade 3–4 adverse events 
(54% vs. 20%) (19). To “warm” cold tumors and thereby 
increase the response rate while reducing or not increasing 
immunotoxicity, researchers have tried to combine 
immunotherapy with other interventions (20) (Table 2).

Immunotherapies based on tumor biological 
properties

Although immunotherapy, especially ICIs, has achieved 
great success in cancer treatment, insufficient responses 
to this innovative therapy were also found in some 
cases (17,18), which may be due to the differential 
immunophenotypes of different cancers. According to 
a relatively standardized method of classifying tumor 
immunophenotypes based on the Immunoscore (21-23), 
tumors are primarily classified into the following four 
biological types: hot tumors, T cell-excluded tumors, 
immunosuppressed tumors, and cold tumors. Tumors 
of different types well match different immunotherapy 
strategies (21). 

Hot tumors are characterized by high-density lymphocyte 
infiltration at both the tumor center (TC) and the invasive 
margin (IM) (21-23). However, infiltrating lymphocytes are 
depleted because of the imbalance of classical 2 pathways (4),  
which is caused by the overexpression of tumor cells at 
some checkpoints. Blocking or stimulating costimulatory 
receptors (4,24) can correct this imbalance and reactivate 
T cells to restore antitumor immunity. A relatively higher 
density lymphocyte infiltration characterizes T cell-excluded 
tumors at the IM but almost no infiltration at the TC. It 
has been found that this might be attributable to the lack 
of signals like CXCL9, CXCL10, and CCL5, which recruit 
T cells into the TC (8,9), or the formation of physical and 
biochemical barriers at the IM (25-27). Unlike excluded 
tumors, which prevent T cells from being recruited to the 
TC (28), immunosuppressed tumors are characterized by 
very low lymphocyte infiltration at both the TC and IM. 

https://en.wikipedia.org/wiki/Tumor
https://en.wikipedia.org/wiki/Cancer
https://en.wikipedia.org/wiki/Oncolytic_virus
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The main factors contributing to the formation of this 
immunosuppressive tumor microenvironment (TME) 
include soluble immunosuppressive factors like IL-
10 and TGF-β (29,30) and inhibitory immune cells like 
type 2 macrophages (M2), myeloid-derived suppressor 
cells (MDSCs), and regulatory T cells (Tregs) (31-35). 
Integrating almost all of the above immunosuppression 
mechanisms into one, cold tumors are characterized by no 
lymphocyte infiltration at the TC or IM and are the most 
difficult tumor type to clear. To achieve clinical efficacy, it 
may be necessary to use combination therapy, that is, first 
enhancing the T cell priming effect (via methods such as 
tumor vaccines, adoptive T cell therapies, or therapies that 
can convert a tumor into a vaccine) to turn a cold tumor 

into a hot one and then combine with antibodies aimed at 
classic immune checkpoints. However, these combinations 
would increase immune-related adverse effects (IRAEs) and 
require rigorous monitoring during the entire process. 

Immune-related adverse effects (IRAEs) and 
limitations

With their mechanism of action dependent on the 
physiological immobilization of inhibiting immune 
activation, ICIs usually have a miss target effect, which 
leads to immune-mediated inflammation of various organs 
or tissues (36-39). This can sometimes be serious, with up 
to 60% of grade 3–5 adverse events occurring when anti-

Table 1 Approved immune agents

Immune agents Brand name Approved treatment(s)

CTLA-4 blocker

Ipilimumab Yervoy Metastatic melanoma

PD-L1 blocker

Atezolizumab Tecentriq Bladder cancer 

Avelumab Bavencio Metastatic Merkel cell carcinoma

Durvalumab Imfinzi Bladder cancer, non-small cell lung cancer

PD-1 blocker

Nivolumab Opdivo Unresectable or metastatic melanoma, squamous non-small cell lung cancer, 
renal cell carcinoma, colorectal cancer, hepatocellular carcinoma, classical 
Hodgkin lymphoma

Pembrolizumab Keytruda Unresectable or metastatic melanoma, squamous non-small cell lung cancer 
(NSCLC), Hodgkin's lymphoma, Merkel-cell carcinoma (MCC), Primary 
mediastinal B-cell lymphoma (PMBCL), stomach cancer, cervical cancer

Cemiplimab Libtayo Cutaneous squamous cell carcinoma (CSCC) or locally advanced CSCC

CAR-T cells

Tisagenlecleucel Kymriah/Novartis Relapsed/refractory B-cell precursor acute lymphoblastic leukemia (ALL) 

Axicabtagene ciloleucel Yescarta/Kite Pharma Relapsed/refractory diffuse large B-cell lymphoma (DLBCL). 

Cancer Vaccine

Oncophage Kidney cancer

Sipuleucel-T Provenge Metastatic hormone-refractory prostate cancer

Bacillus Calmette-Guérin (BCG) Early-stage bladder cancer

Oncolytic viruses (OVs)

ECHO-7 enterovirus Rigvir Skin melanoma

Oncorine H101 Head and neck cancer

Talimogene laherparepvec Lmlygic Advanced inoperable melanoma
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Table 2 Recruiting clinical trials of interventional therapy combined with immunotherapy

Clinical trial 
No.

Phase Status Conditions Interventions Endpoint Locations

NCT03817736 2 Recruiting HCC TACE/SBRT/Immune 
Checkpoint Inhibitor

Number of patients 
amendable to 
curative surgical 
interventions

China

NCT03937830 2 Not yet 
recruiting

Hepatocellular Cancer/
HCC/Metastatic HCC

Durvalumab/
Doxorubicin-Eluting 
Beads/TACE/
bevacizumab

Progression free 
survival (PFS)

United States

NCT03755739 Not 
Applicable

Recruiting Hepatocarcinoma Hepatic artery infusion 
of an immunotherapy 
agent (Pembrolizumab)

1. Overall survival 
(OS)

China

2. Complete 
response (CR) 

NCT03638141 2 Recruiting Intermediate Stage of HCC/
HCC

DEB-TACE/Durvalumab/
Tremelimumab (Cohort 
A dose)/Tremelimumab 
(Cohort B dose)

Objective response 
rate (ORR)

United States

NCT03952065 3 Recruiting Head/Neck Neoplasm Neck artery infusion 
(Toripalimab)

Overall survival (OS) China

NCT03753659 2 Recruiting HCC Pembrolizumab/RFA/
MWA

Objective response 
rate (ORR)

German

NCT02821754 2 Recruiting Biliary Tract Neoplasms/
Liver Cancer/HCC/
Cholangiocarcinoma/Bile 
Duct Cancer

Durvalumab/
Tremelimumab/TACE/
RFA/Cryoablation

Progression free 
survival

United States

NCT03949153 1/2 Recruiting Melanoma (Skin) Nivolumab Injection/
Cryotherapy/Ipilimumab 
Injection

Number of failures 
linked to the 
procedure

France

NCT03630640 2 Recruiting HCC Nivolumab Injection/
Irreversible 
electroporation

1. Recurrence rates France

2. Local recurrence-
free survival

NCT04062721 1/2 Not yet 
recruiting

Colorectal Cancer Chemotherapy/RFA/In 
situ immunotherapy

NCT03757858 1/2 Recruiting Cancer/Abdominal 
Cancer/Pelvic Cancer/
Metastatic Cancer/
Peritoneal Metastases/
Liver Metastases

Thermotron RF-8/
Adoptive cellular 
Immunotherapy/
Anti-PD-1 antibody/
Chemotherapy

Progression free 
survivor

China

NCT03101475 2 Recruiting Colorectal Cancer/Liver 
Metastases

Durvalumab 
(MEDI4736)/
Tremelimumab/SBRT/
RFA

Progression free 
survivor (PFS) 

Austria/France/
Germany/
Netherlands/
Sweden/
Switzerland

NCT03864211 1/2 Recruiting HCC Nonresectable Thermal ablation 
Toriplimab

Best overall immune 
response rate

China

Table 2 (continued)
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Table 2 (continued)

Clinical trial 
No.

Phase Status Conditions Interventions Endpoint Locations

NCT04049474 1 Not yet 
recruiting

Advanced Non-small Cell 
Lung Cancer

Cryo-Immunotherapy/
Device: ERBOKRYO® CA 
- Cryosurgical Unit with 
Flexible ERBECRYO 
Probe, 1.9 mm outer 
diameter (ERBE, Inc., 
Tubingen, Germany)

1. Number of 
participants with 
adverse events

United States

2. Overall response 
rate

NCT04123535 Not 
Applicable

Not yet 
recruiting

Undifferentiated 
Pleomorphic Sarcoma

Device: ExAblate 
2000/2100 MRgFUS

1. Feasibility United States

2. Safety

NCT03080974 2 Recruiting Pancreatic 
Adenocarcinoma

Nivolumab/Irreversible 
Electroporation

Incidence of any 
device-related 
adverse events

United States

NCT03823131 2 Recruiting Metastatic Head and Neck 
Squamous Cell Carcinoma/
Recurrent Head and Neck 
Squamous Cell Carcinoma/
Unresectable Head and 
Neck Squamous Cell 
Carcinoma

Electroporation/
Epacadostat/
Pembrolizumab

Safety and 
tolerability

United States

NCT04108481 1/2 Not yet 
recruiting

Colorectal Cancer 
Metastatic/Colon Cancer/
Metastatic Colorectal 
Cancer/Rectal Cancer/
Liver Metastasis Colon 
Cancer/Colorectal 
Cancer/Colorectal 
Adenocarcinoma/
Colorectal Neoplasms/Liver 
Metastases/Colorectal 
Carcinoma

Durvalumab/Yttrium-90 
Radio Embolization

United States

NCT02913417 1/2 Recruiting Uveal Melanoma/Hepatic 
Metastases

SIR-Spheres® Yttrium 
90/Ipilimumab/
nivolumab

Determine the 
maximum tolerated 
dose

United States

NCT03812562 1 Recruiting HCC Nivolumab/Yttrium Y  
90 Glass Microspheres

Safety and 
tolerability

United States

NCT03945162 2 Recruiting NMIBC Refractory to BCG TLD-1433 Bladder 
infusion and 
Photodynamic Therapy

Recurrence rate Canada

NCT03727061 2 Recruiting Recurrent Head and 
Neck Carcinoma/Locally 
Advanced Head and Neck 
Carcinoma

Nivolumab/
Porfimer Sodium/
Interstitial Illumination 
Photodynamic Therapy/
Pembrolizumab/
Cisplatin/Carboplatin/
Cetuximab/Fluorouracil

Complete response 
(CR) rate

United States

DEB-TACE, drug-eluting bead transcatheter; SBRT, stereotactic body radiation therapy; RFA, radio-frequency ablation; MWA, microwave 
ablation; MRgFUS, magnetic resonance-guided focused ultrasound; HCC, hepatocellular carcinoma; NMIBC, non-muscle invasive 
bladder cancer; BCG, bacillus calmette-guerin. 
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CTLA-4 and anti-PD-1 are used simultaneously (40-42). 
Cytokine release syndromes (CRS) are common in patients 
treated with CAR-T cells. These complications are usually 
not life-threatening and can be controlled by administering 
steroids (43), adjusting dosage, or terminating the treatment 
if necessary. However, the regression of IRAEs caused by 
steroids can lead to steroid-related immunosuppression, 
which may also impair the antitumor response (39). 

Current studies regarding CAR-T cell therapy have 
mainly focused on hematological cancer (44,45), while 
studies regarding solid tumors are still in the early stages 
(46-51). Although cancer vaccines and oncolytic viruses 
seem harmless, they are mainly experimental and not 
extensively used in clinical practice as checkpoint inhibitors, 
and thus, the long-term toxicity remains unclear. CAR-T 
cells and vaccines are “autologous”, meaning that the 
production of personalized CAR-T cells and tumor 
vaccines involves a high design cost and is time consuming. 
An OV’s efficacy is primarily limited by the low effective 
bioavailability of the delivery route (52,53). At present, OVs 
are administered either through intratumoral injection, 
which greatly limits the scope of application or through 
intravenous injection, which also greatly weakens their 
efficacy due to the antiviral immune response. 

Interventional therapy and the combination with 
immunotherapy (Table 2, Figures 1,2)

Due to the rapid development of interventional radiology, 
including transarterial chemoembolization (TACE), ablation, 
internal irradiation therapy, and photodynamic therapy 
(PDT), interventional therapy has become an important 
means of cancer treatment. Tumor interventional therapy 
has the advantages of small trauma, rapid recovery, targeting, 
and repeatability. It can be effectively combined with various 
modern medical methods and high-tech procedures to 
achieve a synergistic effect (54). More importantly, local 
cancer interventional therapy can regulate the immune 
system through different mechanisms, causing a systemic 
immune response (21,55,56). Although this effect is too 
weak to prevent local recurrence or distant metastasis (55),  
it can expand the effectiveness of immunotherapy and 
might be a powerful combined strategy for immunotherapy. 
An ongoing phase II, single arm, multicenter study 
(NCT03469713) is attempting to analyze the objective 
response rate (ORR) of nivolumab plus stereotactic body 
radiotherapy (SBRT) in II and III lines of patients with 
metastatic renal cell carcinoma (mRCC), with the primary 

outcome measure being the frailty status as measured by the 
SHARE-frailty instrument measurement. This would be the 
first report on the safety profile of nivolumab in combination 
with SBRT.

Transarterial chemoembolization (TACE) 

Due to the physiological basis of double blood supply in 
normal liver tissue and the fact that more than 95% of the 
blood supply of hepatocellular carcinoma (HCC) comes 
from the hepatic artery, TACE has mostly been applied 
to advanced unresectable HCC (57-59). It is aimed at 
killing tumor cells without causing severe adverse effects to 
normal hepatic tissue. TACE has also been employed as an 
alternative for resectable early stage HCC and in patients 
with regional recurrence of the tumor following previous 
resection and bridge therapy to surgery, radiofrequency 
ablation (RFA), or liver transplantation for downstaging 
(60-63). TACE has also demonstrated promising results 
in unresectable cholangiocarcinoma (64). Other treated 
malignancies include carcinoid tumors, pancreatic islet 
tumors, and sarcomas metastatic to the liver, whereas 
TACE’s efficacy in patients with colorectal metastases is 
possibly palliative.

Immunomodulatory effects of TACE
It has been found that TACE can generate a bidirectional 
effect on tumor treatment by regulating the immune system. 
Embolization can lead to tumor tissue necrosis, thus reducing 
the mass and the release of immunosuppressive factors and 
weakening immune function inhibition (65). Moreover, 
necrotic tumor tissue can activate the systemic immune 
response by changing the phenotype of peripheral immune 
cells (66). Iodized oil-TACE increases infiltration of glypican 
3 peptide-specific cytotoxic T lymphocytes. Embolization 
with polyvinyl alcohol (PVA) particles increases AFP-
specific CD4+ T cells and is positively correlated with tumor 
necrosis and prognosis (67). On the other hand, embolization 
also reduces the number of peripheral T helper cells, which 
weakens the antitumor immune response (65). At the same 
time, embolization can induce a hypoxic microenvironment 
and upregulate the expression of vascular endothelial 
growth factor (VEGF), hypoxia inducible factor-1 (HIF-1),  
and PD-L1 on immune or tumor cells, resulting in an 
immunosuppressive effect (68).

Application of TACE combined with immunotherapy
The rational combination of TACE's bidirectional effect 
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on the immune system and immunotherapy is expected to 
achieve synergistic therapeutic effects (69). Duffy et al. (70)  
reported on a heavily pretreated post-sorafenib patient 
population with HCC who received two doses of 
tremelimumab followed by TACE. The result showed 

encouraging clinical activity, with 2/8 patients achieving a 
partial response, as well as a median overall survival (OS) 
of 13.6 months [95% confidence interval (CI): 7.5 months-
undefined] and a median potential follow-up (from the study 
date until analysis) of 18.8 months. He et al. evaluated the 

Figure 1 Immune mechanisms triggered by interventional therapies and potential immunotherapy category that could be applied together 
with interventional modalities. Interventional therapies, such as TACE, ablation, internal irradiation, and PDT, can cause immunogenic 
stress or death of tumor cells and produce a large number of tumor antigens. These processes can also induce strong inflammatory cell 
responses that promote DC maturation and increase the secretion of cytokines, such as chemokines, which drive the antigen presentation 
process. These specific antigens activate the maturation of immature T cells and promote their proliferation. Receptors on the surface of T 
cells can also bind to coinhibitory signals to inhibit the activation of T cells. As a foreign substance, OVs can also be recognized as foreign 
antigens. Antigenic "educated" T cells "patrol" throughout the body to seize those specific antigens, leading to the regression of distant 
tumors (or viruses). Immunotherapies such as OVs, tumor vaccines, CAR-T cells, nonspecific immunotherapy (cytokines such as CCLs, 
CXCLs), and cosignal antibodies (OX40, 4-1BB, anti-CTLA-4, anti-PD-1 etc.), can enhance the production of effector T cells and assist in 
killing tumor cells, and have a synergistic effect in combination with interventional therapies. TACE, transarterial chemoembolization; DC, 
dendritic cell; OVs, oncolytic viruses; CAR-T cells, chimeric antigen receptor redirected T cells.
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efficacy of recombinant human type-5 adenovirus (H101) 
in patients with unresectable HCC treated by TACE (71). 
Compared with TACE monotherapy, patients treated with 
combined TACE and H101 therapy had increased OS 
rates (61.0%, 40.0%, and 31.5% vs. 55.0%, 33.4%, and 
22.3%, for estimated 1-, 2-, and 3-year OS, respectively) 
and decreased cancer-specific mortality. Another case with 

recurrent HCC treated with a transarterial injection of 
H101 combined with TACE also led to a good clinical 
prognosis with no evidence of recurrence, no abnormal 
liver function, and a normal serum AFP level 18 months 
after the last H101/TACE treatment (72). Huang et al. tried 
to determine the clinical efficacy of sequential therapy with 
RFA and TACE compared to the autologous cytokine-

Figure 2 Immunomodulatory activity of interventional therapies on tumors with different immune status. Interventional therapy can 
transform tumors (such as cold tumors, excluded tumors, and immunosuppressed tumors) with no or low response to immunotherapies into 
hot tumors through a variety of mechanisms, including promoting immunogenic stress and death, forming an inflammatory environment, 
exposing antigens and reducing the tumor load, breaking physical and immunosuppressive biochemical barriers, etc. However, interventional 
therapies may also produce immunosuppressive factors such as IL-6, HIF-1α, HGF, and its receptor c-MET, which can upregulate the 
expression of PD-L1 and deepen the immunosuppressive state of tumors. IL-6, interleukin 6; HIF-1α, hypoxia-inducible factor 1 alpha; 
HGF, hepatocyte growth factor; PD-L1, programmed death-ligand 1.
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induced killer (CIK) cell transfusion combined with RFA 
and TACE in the treatment of HCC. They found that the 
patients in the TACE + RFA + CIK group had a significantly 
longer OS (56 vs. 31 months, P=0.001) and progression-
free survival (PFS) (17 vs. 10 months, P=0.001) than those 
in the TACE+RFA group. They concluded that CIK cell 
immunotherapy might effectively prevent recurrence and 
metastasis in HCC patients after RFA and TACE (73). 

Guo et al. studied patients with small-cell lung cancer and 
metastatic liver cancer who failed to achieve disease control 
after radiotherapy and chemotherapy and subsequently 
received TACE for liver metastasis and four courses of 
nivolumab-based immunotherapy. The results showed 
a sustained regression of hepatic and pulmonary lesions 
on imaging and a PFS of 15 months. The researchers 
concluded that TACE combined with nivolumab can 
enhance the antitumor immune responses and that there is 
a synergy between these two treatment modalities (74). 

TACE's most frequently reported side effect is the self-
limited post-embolization syndrome, which involves pain, 
fever, nausea, fatigue, and elevated transaminases (75).  
Other uncommon but serious complications include 
ischemic cholecystitis, pulmonary or cerebral embolization 
resulting from non-target embolization, and symptomatic 
hypothyroidism resulting from the contrast’s high 
retained iodine load. Specialized techniques and devices 
may decrease the risk of adverse effects. In debilitated 
patients with advanced disease or impaired liver function, 
treatment-induced liver failure may offset the intervention's 
antitumoral effect or survival benefit. A prudent standard 
is required when selecting candidates for considering the 
possible complications of the procedure against its potential 
benefits.

In theory, TACE kills tumor cells via the following 
mechan i sms :  the  embol i c  par t i c l e s  coa ted  wi th 
chemotherapeutic drugs can not only interrupt the tumor 
blood supply and stall its growth but also locally and 
slow-release chemotherapy, allowing for the delivery of a 
higher dose in situ while simultaneously reducing systemic 
exposure (76). Meanwhile, less than half of large treated 
lesions demonstrate extensive necrosis in pathology (77), 
which might be a result of the upregulation of VEGF,  
HIF-1, and PD-L1 (78,79). 

Ablation

Local ablative therapy has been applied for symptom 
palliating in patients with advanced tumors of the lung (80), 

kidney, bone (81), pancreas, and bile duct (82), as well as 
liver cancer with a small mass or at special sites where the 
tumor is directly abutting surrounding structures (such as 
the liver capsule, gallbladder, vessel, diaphragm, intestine, 
and adrenal gland), with a maximum distance of 1.0 cm 
between the tumor and these organs (83). It has also been 
utilized in the treatment of some benign lesions like osteoid 
osteomas (84-86), uterine fibroids, Morton’s neuroma (87), 
skin lesions (88), and varicose veins. Furthermore, ablation 
has also been performed to treat precancerous lesions or 
oligo-progressive tumors. Numerous clinical trials have 
demonstrated that RFA is a safe and effective treatment 
for Barrett's esophagus, with more than 80% of patients 
achieving complete eradication after approximately two to 
three treatments (89-92). In patients with oligometastatic 
and oligoprogressive NSCLC, which is defined as those 
with limited metastatic disease, and in selected individuals 
with resistance to targeted therapies, evidence for the 
clinical benefit of local ablative therapy is increasing (57,93). 
This includes RFA, microwave ablation (MWA), laser 
and high-intensity focused ultrasound (HIFU) ablation, 
irreversible electroporation (IRE), and cryoablation.

Immunomodulatory effects of ablation
Ablation can lead to local coagulation necrosis of tumors 
and can also improve the antitumor immune response 
through the following mechanisms: 

(I) Increasing the exposure of tumor antigen: ablation 
leads to immunogenic death of the tumor and 
exposure of a large number of tumor antigens, 
allowing the tumor to act as an “in situ vaccine” 
(93,94).

(II) Enhancing the immunogenicity of tumor antigens: 
heat shock proteins (HSPs) can act as carriers or 
peptide chaperones to bind to tumor antigens in 
order to form HSP complexes, which are presented 
by major histocompatibility complex (MHC) I 
molecules to activate CD4+/CD8+ T cells to 
induce specific cellular immunity against tumor 
cells. Ablation can increase HSP expression in 
tumor tissues and the periphery, thereby enhancing 
the immune response to HCC (95-97). 

(III) Activating antigen-presenting cells (APCs) to 
increase tumor-specific T cells: dendritic cells 
(DCs) are the most powerful APCs. When the 
local infiltration of DCs in tumors is insufficient or 
dysfunctional, which can lead to reduced cytokine 
release, the interaction of MHC-peptide complexes 
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with T cell receptors does not lead to T cell 
expansion but rather to T cell tolerance (98,99). 
Ablation can activate local DCs to proliferate 
and mature, and effector T lymphocytes to exert 
antitumor effects by presenting tumor antigens 
and releasing costimulatory signals and cytokines 
(55,56).

(IV) Reducing immunosuppression: it  has been 
found that ablation might reduce the release of 
immunosuppressive factors like CD25+Foxp+  
Tregs (55).

Application of ablation combined with immunotherapy
The immune response that is stimulated by energy-based 
ablations alone is often too modest to completely expunge 
established tumors (100). A clinical trial of the CTLA-
4 inhibitor tremelimumab combined with ablation in the 
treatment of advanced HCC (70) showed that, compared 
with tremelimumab alone, the combined therapy not 
only effectively controlled the lesions but also increased 
the accumulation of cytotoxic T cells in distant untreated 
lesions, increasing the objective response to immunotherapy. 
Bäcklund et al. reported a case of lung metastasis from 
colorectal cancer that remained uncontrolled after 
multiple surgical resections and stereotactic radiotherapy. 
After MWA combined with pembrolizumab, no new 
lung lesions or tumor recurrence were found during the 
8-month follow-up (101). Three RFA cycles followed by 
the intravenous atezolizumab were performed in a case of 
recurrent squamous cell lung cancer in the left lower lobe 
after resection of the left upper lobe, as well as four cycles 
of adjuvant chemotherapy. The results showed that one 
lesion in the left lower lung that received RFA combined 
with atezolizumab displayed remarkable control, while 
another lesion in the right upper lung treated with the only 
atezolizumab showed little improvement (102). Another 
case reported by Soule et al. (103) showed that treatment of 
metastatic renal cell carcinoma (RCC) with percutaneous 
cryoablation and local administration of nivolumab could 
enhance the systemic immune response to metastatic bone 
lesions.

Studies in mouse models of prostate cancer (104) showed 
that local cryoablation of tumors did not affect distant 
secondary tumors’ growth, whereas the combination with 
CTLA-4 inhibitors significantly slowed the growth and 
even eliminated secondary tumors. Compared with the 
cryoablation monotherapy group, the combination therapy 
group had more cytotoxic T cell infiltration in distant 

secondary tumors and a higher cytotoxic T cells ratio to 
Tregs. Similar results were also observed in melanoma (93)  
and colon cancer (105) models in mice. Qian et al. found 
that NOD scid gamma mice inoculated with the human 
melanoma WM115 cell line and then infused with 
chondroitin sulfate proteoglycan-4 (CSPG4)-specific 
CAR-T cells followed by photothermal ablation of the 
tumor showed more evidence of tumor decay, indicating 
that photothermal therapy facilitates the accumulation and 
effector function of CAR-T cells within solid tumors (106). 
Blanchard et al. found that direct cell ablation by stereotactic 
body radiation therapy (SABR) not only generated excellent 
control or cure of local, clinically detectable and accessible 
tumors but also induced relatively weak T cell responses, 
which could be boosted by systemically administered VSV-
TAA, contributing to the control of local and systemic 
disease (107). Zhao et al. treated a murine orthotopic 
pancreatic ductal adenocarcinoma model (KRAS* model) 
with irreversible electroporation and anti-PD1 and found 
that the combined therapy significantly prolonged the 
survival of the model and achieved a cure rate of 36–43% 
with a memory T cell response. The combined therapy 
also promoted tumor infiltration by CD8+ cytotoxic T cells 
without recruiting other immunosuppressive cells (108).

However, to date, due to the lack of high-level evidence-
based medicine and prospective clinical studies with the 
multicenter, large sample, and randomized control, ablation 
therapies are only used as an alternative or complementary 
treatment in solid tumors except for some primary small 
liver cancers. Also, the therapeutic and side effects vary 
between different ablation equipment. Ablation can also 
promote the growth and metastasis of distant tumors by 
promoting the production of IL-6, HIF-1α, hepatocyte 
growth factor (HGF), and its receptor c-MET (109-111). 
These factors can upregulate the expression of PD-L1 
(112,113), thereby inhibiting the antitumor immunity effect 
of ablation.

Internal irradiation therapy

Radioisotopes are implanted into or adjacent to a tumor by 
interventional means, such as particle scaffolding or stents, 
to treat the tumor locally. This technique is now widely 
used to treat various malignancies; for example, iodine-125 
seed implantation in prostate cancer, radioembolization 
of HCC [Yttrium-90 (Y-90)-labeled microspheres], and 
iodine-125 particle-loaded radioactive stents for malignant 
tumors of the biliary tract or esophagus and for airway 
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obstruction. Different studies have suggested that the effect 
of radioactive particle implantation is comparable to that of 
surgery and external radiotherapy and is superior to that of 
surgery when combined with other modalities (114,115).

Immunomodulatory effects of internal radiation 
therapy
There are currently no direct studies demonstrating the 
effects of internal radiation therapy on the immune system. 
The traditional perception is that radiation exposure 
suppresses immunity; however, studies on external radiation 
therapy have shown that in some cases, radiotherapy with 
moderate radiation exposure can activate the immune system 
and enhance antitumor effects (21,116-120). Radiotherapy 
can destroy the irradiated tumor and control distant 
metastasis beyond the local treatment site, known as the 
"abscopal effect" of radiation therapy (121-123). The possible 
mechanisms of the activation of the antitumor immune 
response by radiation therapy are briefly summarized as 
follows:

(I) Increasing the exposure of tumor antigen: 
radiotherapy causes immunogenic death of tumor 
cells, which induces the release of tumor-associated 
antigens (TAAs), thus increasing the probability of 
tumor cells being recognized by T cells.

(II) Promoting the activation and maturation of DCs: 
radiotherapy induces immunogenic stress or death 
of tumor cells, leading to the release of danger-
associated molecular patterns (DAMPs) in the 
TME. DAMPs can bind relevant receptors (124-129)  
to promote the recruitment, phagocytosis, and 
migration of DCs, as well as induce the secretion 
of relevant cytokines by DCs, ultimately presenting 
tumor antigens to T cells to activate and stimulate 
the proliferation of T cells (130). The activated 
effector T cells can enter the circulation to capture 
tumor antigens, leading to regression of distant 
tumors (131,132). 

(III) Promoting an inflammatory microenvironment: 
rad io therapy  increases  the  expres s ion  o f 
proinflammatory cytokines (133-138) [such as IL-
1β, TGF-β, FGF, and TNF, as well as the NACHT, 
LRR, and PYD domain-containing protein 3 
(NALP3) inflammasome] and chemokines (such 
as CXCL9, CXCL10, CXCL11, and CXCL16), 
which in turn recruit immune cells into the TME. 
However, the recruited immune cells can be 
either antitumor immune cells, such as DCs and 

effector T cells (139,140), or tumor-promoting 
immune cells, such as Tregs, MDSCs, and tumor-
associated macrophages (TAMs) (132,141-145). Also, 
radiotherapy converts tumor-associated macrophages 
into type 1 macrophages (M1) and increases the 
expression of the tumor endothelial cell adhesion 
molecules Icam-1 and Vcam-1, which facilitate the 
recruitment of T cells to tumors (146). Radiotherapy 
also upregulates the IFN-γ-mediated expression of 
PD-L1 on the surface of tumor cells (143).

(IV) In addition to the direct stimulation of the 
adaptive immune system, deoxyribonucleic acid 
(DNA) released from the cell injury mediated 
by radiotherapy can activate and promote the 
production of interferon type 1 (IFN-1) through 
Toll-like receptors, RIG-1-like receptors, and 
stimulator of interferon gene (STING), improving 
the antitumor immune response mediated by T 
cells. However, this process requires the infiltration 
of CD103+ DCs into the tumor so that the efficacy 
could be limited in tumors barren of T cells while 
being effective in T cell “excluded” tumors (142,143). 

Application of internal irradiation combined with 
immunotherapy
Conventional and simple radiotherapy upregulates the 
expression of PD-L1 on the surface of tumor cells mediated 
by IFN-γ and is considered to be one of the most important 
factors in tumor resistance to radiotherapy (143,147). 
Studies (143,148) have shown that after conventional 
radiotherapy in melanoma, colorectal cancer, and triple-
negative breast cancer models in mice, the expression of 
PD-L1 on tumor cells increased, resulting in resistance 
to radiotherapy. However, radiotherapy combined with 
PD-1/PD-L1 inhibitors enhances antitumor-specific T cell 
immune responses and reduces the number of MDSCs in 
the TME to improve radiotherapy’s therapeutic efficacy. 
Confino et al. found that Da3 mice with breast cancer 
and lung metastasis treated with a combination of DaRT 
wires in combination with an MDSC inhibitor (sildenafil), 
Treg inhibitor (cyclophosphamide at low dose), and the 
immunostimulant, CpG, 3/20 showed complete rejection 
with primary tumors and elimination with lung metastases. 
The other mice treated with different strategies also showed 
a reduced tumor burden and prolonged survival compared 
to the controls’ corresponding outcomes (149).

Kwon et al. conducted a multicenter randomized 
double-blind phase III clinical trial to assess the clinical 
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efficacy of radiotherapy combined with ipilimumab after 
chemoresistance in castration-resistant prostate cancer but 
concluded no significant difference between the groups in 
terms of OS in the primary analysis (11.2 vs. 10.0 months;  
P=0.05) (150). In another phase, I clinical trial, 22 patients 
with metastatic melanoma were treated with a combination 
of radiotherapy and ipilimumab. The analysis showed 
that 18% of patients had a partial response, 18% were 
stable, and 64% continued to progress after refusing 
combination therapy. Furthermore, it was also found 
that radiotherapy combined with two ICIs with different 
mechanisms (a CTLA-4 inhibitor and a PD-1/PD-L1 
inhibitor) significantly increased the complete response rate 
of mice with melanoma (151). A phase 2 multicenter trial 
to determine if combined treatment with PSA/TRICOM 
vaccine and 153Sm-EDTMP radiation could delay the 
progression of prostate cancer better than radiation alone 
showed no significant difference in the primary endpoint and 
the median PFS (3.7 vs. 1.7 months) (P=0.041, HR =0.51, 
P=0.046); 3/21 patients in the combination arm achieved 
PSA decline >50%, compared with no patients in the Sm-
153-EDTMP alone arm >30% (152).

Radioembolization is a minimally invasive technique 
that combines embolization and internal radiation therapy, 
in which microspheres containing the radioisotope Y-90 
are implanted into the tumor-feeding arteries, resulting 
in a high dose of radiation to the tumor and blockage 
of its blood supply. An open-label fixed-dose phase Ib 
trial (NCT02416466) of CAR-T hepatic artery infusions 
followed by selective internal radiation therapy (SIRT) with 
Y-90 Sir-Spheres® for CEA-expressing liver metastases has 
been completed; however, the results have not yet been 
published. Delivered via the vascular pathway, embolic 
microspheres can also cause non-target embolization, which 
could be avoided by taking appropriate measures before 
administering irradiation particles during the mapping 
procedure. Post radioembolization syndrome, which 
involves symptoms such as fever, fatigue, nausea, vomiting, 
and anorexia, is self-limited and only requires symptomatic 
management in some patients. However, this therapy may 
lead to cumulative radiation adverse effects on the medical 
staff who have been engaged in this work for an extended 
period.

Photodynamic therapy (PDT)

PDT was first proposed more than 100 years ago (153) and 
has since been intermittently used in the study of cancer 

treatment (154,155). Photosensitizers (PSs), which act as 
catalysts, can convert molecular oxygen into a series of 
highly reactive oxygen species (ROS) under visible light 
exposure. This can kill tumor cells (156-158) via mechanisms 
such as direct necrosis or promotion of apoptosis to inhibit 
tumors (159), or cause changes in the tumor vasculature, 
such as the closure of blood vessels, thus hindering the 
supply of oxygen and nutrients to tumors (160,161). PDT 
is highly effective for actinic keratosis of the skin, which 
could become cancerous, such as non-hyperkeratotic actinic 
keratosis on the face and scalp (162,163) and actinic cheilitis 
on the lip (163). PDT has also shown promising efficacy 
in the treatment of superficial non-melanoma skin cancers 
(Bowen’s disease) (164,165), small uncomplicated superficial 
basal cell carcinoma (BCC), nodular BCC (162), and some 
other benign skin conditions (166).

Immunoregulation of PDT
PDT also has a significant effect on the immune system 
(167-169): (I) PDT can produce acute inflammation 
and attract leukocytes to the treated TME; (II) PDT 
can increase the immunogenicity of dead tumor cells by 
exposing or producing new antigens and increase the 
efficiency of antigen cross-presentation by inducing HSPs 
to form more effective tumor-specific cytotoxic T cells (158); 
(III) the proinflammatory effect of PDT may also increase 
DC migration, antigen uptake, and secretion of cytokines; 
and (IV) PDT can produce long-lasting tumor-specific 
immune memory.

Application of photodynamic therapy combined with 
immunotherapy
In a bilateral murine 4T1 breast cancer model, photodynamic 
therapy was used to intervene on one side of the tumors 
and was combined with a PD-L1 antibody’s systemic 
administration. The results showed that combined therapy 
effectively killed the local tumor directly after exposure to 
light and significantly prevented distant metastasis, and even 
reduced the size of the existing tumors on the opposite side 
(170,171). Also, cytotoxic T-lymphocyte (CTL) infiltration 
was significantly increased in distal tumors unexposed to light 
in the combination treatment group. The CTL infiltration 
levels in the control groups were not significantly affected, 
indicating that photodynamic therapy can reverse the 
immunosuppressive microenvironment within tumors and 
trigger CTL-mediated antitumor immunity. Ou et al. (172)  
used photodynamic therapy combined with imatinib to 
treat melanoma in mice (C57BL/6 mice) and found that 
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photothermal and photodynamic effects could directly 
lead to tumor cell apoptosis, necrosis, production of TAAs, 
and maturation of DCs, which enhanced the presentation 
of TAAs to T cells. Also, imatinib-loaded GITR-PLGA 
reduced the suppressive function of Tregs, thereby activating 
CD8+ T cells. Gil et al. treated subcutaneously implanted 
syngeneic murine NXS2 neuroblastoma and human FaDu 
head and neck squamous cell carcinoma xenografts in nude 
mice with PDT and oncolytic vaccinia virus (OVV). They 
found that combination therapy could effectively inhibit 
the growth of primary and metastatic tumors compared 
with either monotherapy. Moreover, PDT-induced vascular 
disruption made the OVV-EGFP infection easier and 
resulted in higher intratumoral viral titers than those of the 
untreated tumors (173).

PDT has a good immunomodulatory effect and may 
induce positive therapeutic effects for malignant obstruction 
of the digestive tract and ureter or other superficial tumors. 
However, a meta-review (174) demonstrated a markedly 
higher average recurrence rate for squamous cell carcinomas 
treated with PDT (26.4%) than other modalities, including 
standard surgical excision (5.4%), cryotherapy (0.8%), 
curettage and electrodessication (1.7%), Mohs (3.0%), and 
radiation (6.4%). Therefore, they concluded that PDT 
indications should exclude lesions over 2 cm, polymorphic 
lesions where biopsy may not represent the true histologic 
sample, and any lesions with dermoscopic characteristics of 
invasive SCC. Also, other disadvantages, including the time 
commitment (3-hour incubation period) and pain, are often 
outweighed when patients have multiple superficial BCCs, 
Gorlin syndrome, propensity for hypertrophic scarring, as 
well as a diseased lumen with malignant stenosis.

Future challenges and opportunities

The combinat ion of  intervent iona l  therapy  and 
immunotherapy has presented new opportunities in the field 
of tumor research and treatment and has broad application 
prospects (Table 2). However, numerous relevant studies 
are still in their infancy, and many key questions need to be 
addressed. 

Firstly, the dose and frequency of combination therapy 
need to be determined: (I) Dose and frequency of 
immunologic preparations: the dose and frequency schemes 
of immune agents currently used in most combination 
therapies are based on previous experience in clinical 
trials and need to be evaluated and adjusted during use. 
Moreover, no consensus has been reached. Considering 

the immunomodulatory effects and the local drug delivery 
function of interventional therapy and the aim of minimizing 
the immunotoxic side effects, the dose of immune agents 
is bound to decrease. (II) Amount and frequency of 
interventional therapy: some interventional therapies, such 
as ablation and internal irradiation therapy, can promote 
immunoreactivity and produce immunosuppressive effects. 
Shi et al. reported that inflammation induced by incomplete 
RFA could accelerate tumor progression and hinder PD-1 
immunotherapy (175), suggesting that different effects may 
be related to the dose (range and length) of intervention. 
Also, the immunomodulatory effects of interventional 
therapy, such as the “thermalization” of cold tumors, may be 
transient (176), and thus, whether “thermalization” should 
be performed regularly needs to be further confirmed by 
relevant studies.

Secondly, the optimal timing and sequencing of 
immunotherapy and interventional therapy need to be 
determined. As previously mentioned, interventional 
therapy can lead to the release of tumor antigens through 
a series of mechanisms. Therefore, in theory, simultaneous 
intervention or intervention followed by immunotherapy, 
rather than the other way around, can better incite 
combination therapy’s synergistic effects. Therefore, 
current studies regarding combination treatment with 
TACE and immunotherapy are designed to administer 
immunological agents either during or after TACE. 
Meanwhile, considering the lower median OS and common 
deterioration of the liver function of TACE (177,178) 
compared to systemic therapy, Enrico (179) proposed a 
novel concept for treating intermediate-state HCC with 
ICIs; initiating first and delaying the use of TACE to the 
time-point of radiological progression (should this ever 
occur) and confining it to the targeting of progressive 
lesions to reduce the proportion of liver parenchyma 
exposed to the collateral damage potentially caused by 
TACE. Relative results might worth expecting. Yu et al. (180) 
compared 76 patients with advanced HCC who received 
radiotherapy before and/or during the administration of 
nivolumab with nivolumab monotherapy and found that 
patients who had received previous/concurrent radiotherapy 
had a significantly longer PFS (P=0.008) and OS (P=0.007) 
than those who did not receive radiotherapy. However, this 
trend was not observed in patients with a history of RFA or 
TACE (all P>0.05).

Thirdly, the administration route and dosage form need 
to be determined: there are off-target toxicity concerns, 
especially with immunotherapy approaches targeting TAA 
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that can target not only tumor cells but also non-tumor 
tissues that express target receptors, thus predisposing 
patients to organ damage (38,181-184).  Systemic 
administration is also prone to cytokine storms and 
produces toxic side effects such as CRS (185). In particular, 
the greatest challenge to OVs’ efficacy is adequate drug 
delivery because systemically administered OVs are rapidly 
and massively cleared by the body's antiviral immune 
defenses, greatly reducing their bioavailability (70,186). 
There is also increased clearance with intratumoral injection 
(187,188). However, interventional therapy can employ 
various new and unique carriers, such as polymeric micelles, 
nanoparticles, drug-loaded microspheres, covered stents, or 
other implants, to load and deliver drugs to achieve targeted 
and controlled release. Researchers have found that the 
extended-release of innate immunity-including agonists 
of Toll-like receptor 7/8 (TLR7/8) or STING from a 
biodegradable hydrogel placed in the tumor resection site 
cured a much higher percentage of animals than systemic or 
local administration of the same therapy in solution (189).  
Another study showed that a  s ingle intratumoral 
administration of the adenovirus (Ad)/hydrogel modality 
might prolong and potentiate the therapeutic efficacy 
of Ad, modulate the immune reaction in favor of the 
virotherapy, and enhance intratumoral localization of the 
virus, ultimately overcoming the limitations of oncolytic 
virotherapy revealed in recent clinical trials (190).

Also, it should be noted that the “cold” and “hot” 
classification of tumors has significant potential for guiding 
treatment; however, it is not the only factor determining 
the effect of immunotherapy. In contrast, the Immunoscore 
system itself has inadequacies (28), such as the strict 
pathological guidelines and experimental manipulation 
required for immune scoring and deviation from 
predetermined standardized operating procedures, leading 
to incorrect quantification of immune scores. In general, 
to better predict therapeutic efficacy, more comprehensive 
analysis methods need to be urgently established. This 
may involve specific imaging technologies of the TME and 
efficient early biomarkers, such as PD-L1 overexpression, 
neoantigens, genetic and epigenetic signatures, and 
microsatellite instability tumor resident memory T cells, 
matrix-derived immune biomarkers, and increased glycolysis 
(191-194).
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