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Background

Artificial intelligence (AI) technology has been rapidly 
adopted in various fields (1-6). With the accumulation of 
medical data and AI technology development, especially 
deep learning (DL), data-driven based precision medicine 
has quickly progressed (7,8). Among the applications of 
AI in medicine, the most striking is for medical imaging. 
For example, radiomics is a method that extracts high-
dimensional image features, either explicitly by traditional 
image analysis methods (such as textures) or implicitly by 
convolutional neural networks (CNNs). It is then used for 
different clinical applications, including diagnosis, treatment 

monitoring, and correlation analyses with histopathology 
or specific gene mutation status (9-13). In nuclear medicine 
imaging, AI has also focused on using the imaging data (14).  
Machine learning (ML) is an important branch of AI. 
Traditional ML methods have been widely used in medicine 
for a long time, including naive Bayes, support vector 
machines, and random forests. The applications of ML in 
nuclear medicine imaging include disease diagnosis [positron 
emission tomography (PET) (15), single-photon emission 
computed tomography (SPECT) (16,17)], prognosis  
[PET (18), SPECT (19)], lesion classification [PET (20), 
SPECT (21,22)], and imaging physics (23). In recent years, 

Review Article

Applications of artificial intelligence in nuclear medicine image 
generation

Zhibiao Cheng1^, Junhai Wen1, Gang Huang2, Jianhua Yan2

1Department of Biomedical Engineering, School of Life Science, Beijing Institute of Technology, Beijing, China; 2Shanghai Key Laboratory of 

Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai, China

Correspondence to: Junhai Wen. Department of Biomedical Engineering, School of Life Science, Beijing Institute of Technology, Beijing 100081, 

China. Email: wenjh@bit.edu.cn; Gang Huang; Jianhua Yan. Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and 

Health Sciences, Shanghai 201318, China. Email: huanggang@sumhs.edu.cn; Jianhua.yan@gmail.com.

Abstract: Recently, the application of artificial intelligence (AI) in medical imaging (including nuclear 
medicine imaging) has rapidly developed. Most AI applications in nuclear medicine imaging have focused 
on the diagnosis, treatment monitoring, and correlation analyses with pathology or specific gene mutation. 
It can also be used for image generation to shorten the time of image acquisition, reduce the dose of 
injected tracer, and enhance image quality. This work provides an overview of the application of AI in image 
generation for single-photon emission computed tomography (SPECT) and positron emission tomography 
(PET) either without or with anatomical information [CT or magnetic resonance imaging (MRI)]. This 
review focused on four aspects, including imaging physics, image reconstruction, image postprocessing, and 
internal dosimetry. AI application in generating attenuation map, estimating scatter events, boosting image 
quality, and predicting internal dose map is summarized and discussed.

Keywords: Nuclear medicine imaging; artificial intelligence (AI); imaging physics; image reconstruction; image 

postprocessing; internal dosimetry

Submitted Sep 19, 2020. Accepted for publication Feb 14, 2021.

doi: 10.21037/qims-20-1078

View this article at: http://dx.doi.org/10.21037/qims-20-1078

2822

^ ORCID: 0000-0001-7636-5311.

https://crossmark.crossref.org/dialog/?doi=10.21037/qims-20-1078


2793Quantitative Imaging in Medicine and Surgery, Vol 11, No 6 June 2021

© Quantitative Imaging in Medicine and Surgery. All rights reserved.   Quant Imaging Med Surg 2021;11(6):2792-2822 | http://dx.doi.org/10.21037/qims-20-1078

DL technologies such as CNNs, artificial neural networks 
(ANNs), and generative adversarial networks (GANs) have 
developed very fast and shown better performance than 
traditional ML in some cases. The applications of DL in 
nuclear medicine include disease diagnosis [PET (24), 
SPECT (25,26)], imaging physics [PET (27), SPECT (28)], 
image reconstruction [PET (29), SPECT (30)], image 
denoising [PET (31,32), SPECT (33)], image segmentation 
[PET (34), SPECT (35)], image classification [PET (36), 
SPECT (37)], and internal dose prediction (38,39).

More than 200 papers have been cited in this review. Due 
to the wide range of AI applications in nuclear medicine 
imaging, we did not try to cover all AI applications. We 
focused mainly on image generation development, including 
imaging physics, image reconstruction, image postprocessing, 
and internal dosimetry, over the last 5 years. We obtained 
the literatures by searching keywords in PubMed (“artificial 
intelligence”, “machine learning”, “deep learning”, “nuclear 
medicine imaging”, “SPECT”, “PET”, “correction”, 
“reconstruction”, “low-dose imaging”, “denoising”, “fusion”, 
or “dosimetry”, and so on). We also included conference 
recordings of SPIE (International Society for Optics and 
Phonics), NSS/MIC (IEEE Nuclear Science Symposium 
and Medical Imaging Conference), and MICCAI (Medical 
Image Computing and Computer-Assisted Intervention). 
The last search date was 18 September 2020. Although 
there were some existing reviews of nuclear medicine 
(especially for PET) in the literature (40-45), our review 
focused on AI applications in improving the quality of 
nuclear medicine imaging. The section “Imaging physics” 
provides AI applications in imaging physics, including 
the generation of attenuation maps and the estimation of 
scattered events. The section “Image reconstruction” reviews 
AI applications in image reconstruction, including the 
optimization of the reconstruction algorithm. The section 
“Image postprocessing” covers AI applications in image 
postprocessing, including the generation of high-quality 
reconstructed images (in full-dose or low-dose imaging) 
and image fusion. The section “Internal dosimetry” reviews 
AI applications in internal dose prediction. The section 
“Discussion and conclusions” provides a discussion and 
summary.

Imaging physics

As the two most widely used nuclear medicine imaging 
technologies, both PET and SPECT quantify radionuclides’ 
distribution in a recipient by measuring the gamma photons 

emitted from that recipient. In practice, gamma photons 
are attenuated due to tissue absorption in the recipient. 
The attenuation effect causes the number of photons to be 
less than expected and results in nonuniform deviations in 
the radioactive distribution due to the different attenuation 
paths from the tracer to the detector (46). Another factor 
affecting image quality is scattered photons. Scattering 
events will cause severe artifacts and quantitative errors. The 
emergence of AI technology is not a complete replacement 
of traditional methods but rather an auxiliary means to find 
function mapping relationships and largely depends on the 
model structure, data range, and training process. Recently, 
Wang et al. (23) and Lee et al. (47) separately summarized 
the wide application of ML and DL in PET attenuation 
correction (AC), and they explored the performance of AI 
in PET AC under different input conditions. Here, we 
extended the search scope to nuclear medicine imaging 
(PET/SPECT) and evaluated the AI technology from two 
angles, namely AC and scatter correction. In each part, we 
discussed the application of different types of AI structures 
under different imaging methods.

AC

Stand-alone nuclear medicine imaging
The content included in this part mainly focuses on PET. 
Usually, due to space limitations in the scanner, only 
PET is built for some applications such as ambulatory 
microdose PET (48) and helmet PET (49). The attenuation 
coefficients have usually been obtained via scanning external 
radiation sources (such as X-ray or barium sources), which 
is typically time-consuming and introduces additional 
radiation exposure (50). With AI’s help, pseudo-CT 
(pCT) images/corrected nuclear medical images can be 
obtained quickly for AC. Once the training is completed, 
the label image will no longer be needed, which will avoid 
additional costs and radiation risks. In recent years, some 
researchers have used convolutional autoencoder (CAE) 
and convolutional encoder-decoder (CED) structures to 
predict pCT images from attenuation uncorrected PET 
images, as shown in Figure 1. The CAE structure was 
originally proposed for unsupervised feature learning and 
later widely used in image denoising and other fields (51). 
The CED structure is similar to the CAE structure. The 
most well-known structure is the U-net. Unlike CAE, U-net 
augments the contracting path that enables high-resolution 
features to be combined in the output layers. Liu et al. (52) 
used a CED structure to predict pCT from uncorrected 



2794 Cheng et al. Applications of AI in nuclear medicine image generation

© Quantitative Imaging in Medicine and Surgery. All rights reserved.   Quant Imaging Med Surg 2021;11(6):2792-2822 | http://dx.doi.org/10.21037/qims-20-1078

Non-attenuation-
corrected image

Attenuation-
corrected image/pCT

CED structure (U-net)

Convolution Deconvolution

Max pooling Copy & concatenation

CAE structure

Figure 1 Example of CAE structure & CED structure (U-net). CED structure is similar to CAE structure, unlike CAE, U-net augments 
the contracting path that enables high-resolution features to be combined in the output layers. CAE, convolutional autoencoder; CED, 
convolutional encoder-decoder; CT, computed tomography; pCT, pseudo-CT.

18F-fluordeoxyglucose (18F-FDG) PET images. Their 
method’s quantitative PET results showed that the average 
error in most brain regions was less than 1%. However, 
for certain areas, such as the skull’s cortical area, significant 
errors were observed. An abnormal situation is shown 
in Figure 2, where the predicted pCT showed obvious 
differences in the skull (red arrow). Similarly, in the work 
from Hwang et al. (53), DL was employed to reconstruct 
activity and attenuation maps from PET raw data 
simultaneously. The results showed that the combination 
of CAE and CED could achieve better results than CAE 
or CED alone. In contrast to the above scheme, Shiri  
et al. (54) and Yang et al. (55) used a CED structure 
to produce AC PET from non-AC PET in the image 
space for brain imaging. The difference between the two 
studies was that the latter also took scatter correction 
into consideration. The input and output images can be 
similar and have a uniform structure and edge information; 
however, when the test data pattern is not represented in 
the training cohort, a significant error will be seen. For 
example, in the study by Yang et al. (55), the average skull 

density of the 34 subjects was 685.6±61.1 Hounsfield units 
(HU; min: 569.6 HU, max: 805.1 HU), whereas 1 subject 
had an uncommonly low skull density (475.1 HU). This 
was also translated into a major quantitative difference 
of 48.5%. With the information of time-of-flight, the 
estimation of AC factors could be further improved (56).

In comparison with other DL, GAN is more popular 
in attenuation map generation. Generally, the generator 
network is used to predict an attenuation map, and the 
discriminator network is used to distinguish the predicted 
pCT image and the attenuation map. These two networks 
are in a competitive relationship. If the discriminator 
network can distinguish the estimated and real images 
well, then the generator network needs to perform 
better; otherwise, the discriminator network should be 
strengthened. Shi et al. (57) designed a GAN to indirectly 
produce the attenuation map of SPECT from the emission 
data. Their inputs were the photopeak window and scatter 
window SPECT images. This approach can effectively 
learn the hidden information related to attenuation in the 
emission data.
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Further, Armanious et al. (58) established and evaluated a 
conditional GAN (cGAN) method for the AC of 18F-FDG 
PET images of the brain without using anatomical 
information. Cycle-consistency network (cycle-GAN) is 
composed of two mirror-symmetric GANs and has been 
used for whole-body PET AC [Dong et al. (59,60)]. Dong 
et al. (60) combined a U-net structure and a residual block 
to form a new cycle-GAN generator in which the residual 
structure is important for learning. The method showed 
similar quantitative performance on heart, kidney, liver, and 
lesions with the gold-standard CT-based method, and the 
average whole body error was only 0.62%±1.26%.

In comparison with brain scanning, the AC for whole-
body imaging is more challenging due to more unexpected 

factors such as truncation and body motion. Dong  
et al. (59,60) demonstrated a GAN network’s feasibility 
in predicting whole-body pCT/corrected PET images. 
The use of cycle-GAN makes the cycle introduce inverse 
transformation, which adds more constraints to the 
generator. This effectively prevents the model from crashing 
and can help the generator find the unique mapping. The 
proposed method may avoid the quantization bias caused 
by CT/magnetic resonance imaging (MRI) truncation or 
registration error. Besides, Shiri et al. (61) designed a couple 
of 2D and 3D deep residual networks to achieve joint 
attenuation and scatter correction for the whole uncorrected 
body. It is worth noting that they used more than  
1,000 patients for training, which was useful for network 
training. On the test set of 150 patients, the voxel-wise 
relative errors (%) were –1.72%±4.22%, 3.75%±6.91%, 
and –3.08±5.64 for 2D slices input, 3D slices input, and 3D 
patches input, respectively. The diversity of cases in this 
large data training set (1,150 patients), including disease-
free and pathological patients with various indications, 
such as age, body weight, and disease type, ensured 
the comprehensiveness of the data, which brings more 
reliability to the prediction results, and training directly in 
the image domain can ensure accurate lesion conspicuity 
and quantitative accuracy.

Compared with predicting the pCT image required 
for AC, it seems more convenient to directly predict the 
attenuation-corrected activity image. Besides, the network’s 
input and output have similar anatomical structures, which 
is beneficial for training. However, the method of directly 
predicting the corrected active image has some obvious 
limitations (54,55,58). It is a data-driven method that skips 
the attenuation/scattering correction related to the imaging’s 
physical properties, which brings some uncertainty to the 
reconstructed activity images. The quality of the prediction 
results will completely depend on the quality of the 
training data (e.g., the number of training sets, the choice 
of labels, whether the training data is suitable for different 
radiotracers). A more complete and larger data set offers 
more comprehensive variability, which is a prerequisite 
for determining prediction accuracy. Also, whether the 
training set contains enough pathological patterns has a 
significant impact on the accuracy and robustness of clinical 
predictions (the same applies to predicting pCT images). 
Although there are many AI solutions, further evaluation of 
the clinical benefit is needed. It is very important to develop 
a clinically useful model for combining domain knowledge 
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Figure 2 A challenging example for deepAC (Liu’s result). This is 
a woman with obvious abnormalities in the right and frontal skull. 
The predicted pCT can basically show the missing part of the skull 
(red arrow). The cerebral cortex near the skull may have a large 
error relative to the inside of the skull. Reprinted with permission 
from (52) under the terms of the Creative Commons Attribution 4.0 
International License. CT, computed tomography; PET, positron 
emission tomography; AC, attenuation correction; CTAC, CT-
based attenuation correction; deepAC, name of Liu’s method; pCT, 
pseudo-CT.
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and AI technology.

Hybrid nuclear medicine imaging
For PET/CT or SPECT/CT, CT-based AC (CTAC) 
has been the standard technique. However, the risk of 
CT radiation exposure is a concern of the public, which 
should be minimized for young subjects (62). Besides, when 
the CT structure might be truncated, CTAC may not 
provide satisfactory results due to the missing attenuation 
information for this part. Traditional approaches to solving 
this problem rely on prior information and non-attenuation 
corrected images (63,64). Recently, Thejaswi et al. (65) 
proposed an inpainting-based context encoder structure 
for SPECT/CT imaging, which inferred the truncated 
CT image’s missing information from the untruncated CT 
image to obtain the attenuation map. Thus, they provided a 
new way to solve the truncation problem.

In comparison with PET/CT, the AC in PET/MRI 
is more challenging as the voxel intensity of MRI cannot 
reflect the photon attenuation characteristics; therefore, 
the attenuation map of PET cannot be obtained directly 
(66,67). Traditional MR-based AC (MRAC) methods 
mainly include segmentation-based methods, atlases-
based methods, template-based methods, emission, and 
transmission-based methods. Among them, the atlases-
based method is easily affected by individual differences 
in the anatomical structure; the template-based method 
is more sensitive to individual differences in anatomy, 
case differences, and organ movement; emission and 
transmission-based methods are prone to slow imaging 
speed and long operation time due to the use of alternating 
iterative algorithm; and segmentation-based method has 
relatively good performance in speed and robustness, and 
anatomical structure (68,69). Nowadays, the segmentation-
based method is the default AC method for the commercial 
PET/MR scanner. A leading challenge in generating 
attenuation maps from MR images is distinguishing 
between bone and air regions (e.g., mastoid of the temporal 
bone and the bone-fat of pelvic regions). With the 
development of ultrashort echo time (UTE) sequences such 
as zero echo time (ZTE) and UTE, the challenge could be 
alleviated for brain imaging but with high noise and image 
artifacts (68). Researchers have developed several ML-based 
methods to improve the segmentation-based method of 
MRAC, including random forest classifiers (70,71), support 
vector machines (72), Markov random fields (73), and  
clustering (74). The application of segmentation-based 
ML in MRAC for brain PET imaging has been well 

summarized by Mecheter et al. (75). Here we supplemented 
AI applications, especially DL, to their work and included 
the application for non-brain PET/MR imaging.

AI (mainly DL) is now actively used to train mapping 
relationships to predict pCT data/attenuation map from 
MR data. Through extensive training of CT and MR 
images with good registration, the link between MR 
images and HU in the CT images can be established, 
thus eliminating the need for CT scan for AC. Variant 
DL methods such as ANN (76), CAE (77,78), CED (79), 
and GAN techniques (80) have been explored to perform 
MRAC in brain PET imaging. An example using ANNs 
to map the MRI image to the corresponding attenuation 
map is shown in Figure 3A, which is a feedforward neural 
network with five layers (76), They have demonstrated that 
the ANN model trained with one subject and BrainWeb 
phantom data can be applied well to other subjects. Most 
CAE and CED models were used to learn the mapping 
relationship between 2D MRI slices and 2D CT due to 
the heavy computation burden. Directly learning the 3D 
model is a challenge for computing; however, this approach 
is unnecessary because 2D slices contain a large amount of 
contextual information. Bradshaw et al. (81) designed a 3D 
deep CNN and demonstrated that DL of pelvic MRAC 
using only diagnostic MRI sequences is feasible. Beyond 
CNN, GAN applications are also gradually increasing, but 
they are limited to the brain and pelvic area (82). Nie et al. 
(83,84) implemented a fully convolutional network (FCN) 
training in pelvic imaging by using an antagonistic training 
strategy. It is worth noting that an auto context model is 
applied to iterate the network output continuously, and a 
GAN can sense the context, which improves the network 
modeling ability to some extent, as shown in Figure 3B. Jang 
et al. (85) inputted UTE images into a CNN network to 
achieve a robust estimation of pCT images.

It should be noted that the MR image in this study was 
obtained by dual-echo ramped hybrid encoding. Ladefoged 
et al. (86,87) used UTE images to obtain attenuation maps, 
and it is gratifying that they extended this method to the 
field of children (88). Similarly, Dixon MR images and 
ZTE MR images were inputted into the CNN framework 
separately or together to synthesize corresponding pCT 
images (89-92). Compared with the direct use of MRI 
images, The MR sequence has high signal intensity to the 
bones and can achieve better performance in MRAC, but 
it requires longer scanning time and has limited diagnostic 
value.

Although AI has shown great potential in CTAC/MRAC, 
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most of the applications were limited to the brain (few to 
pelvic). Even if the same network structure as the brain is 
used, it is difficult to realize the whole body’s AC directly. 
This is mostly due to the high anatomical heterogeneity 
and inter-individual variability of the whole body. The only 
whole body AC based on AI has been presented by Dong 
et al. (59,60) and Shiri et al. (61); their work was focused 
on predicting the corrected PET image/pCT from the 
uncorrected PET image, as mentioned in the previous 
section. The major obstacles of AI in MRAC for whole-body 
scanning are insufficient representative training data sets and 
registration errors between training pairs (40). Wolterink  
et al. (93) explored the use of cycle-GAN to train unpaired 
MR and CT images, and the quantitative results on the 
test set of six images [compared to the reference CT, the 

peak-signal-to-noise ratio (PSNR) of the synthetic CT] was 
32.3±0.7, which shows that this idea is feasible. With the 
continuous improvement of accumulating public datasets 
comes the gradual promotion of unpaired data training 
technology in the MRAC field. We believe this will reduce 
the impact of registration accuracy on the application of AI 
in MRAC, and we have reason to expect more universal AC 
methods (especially for whole-body) will appear.

Scatter correction

Traditional scatter correction methods have limitations 
in accuracy and noise characteristics (94,95). In general, 
scatter correction includes direct measurement or modeling 
to estimate scatter events. One of the traditional scatter 

Figure 3 Examples of attention correction methods. (A) ANN is a feedforward neural network with several layers, and it is an abstraction 
of the structure and operation mechanism of the human brain. (B) The auto context model was first widely used in semantic segmentation 
tasks, and was later introduced into regression tasks. The auto context model is used to iteratively optimize the generated results, so that 
GAN can perceive context. ANN, artificial neural network; GAN, generative adversarial network; pCT, pseudo-CT; CT, computed 
tomography; MRI, magnetic resonance imaging.
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correction methods is to use a lower energy window to 
measure the scatter image. Although double or triple energy 
window subtraction techniques have been continuously 
designed, the performance has not been significantly 
improved (96,97). The Monte Carlo simulation-based 
method is quite accurate but very time-consuming. The 
section “Stand-alone nuclear medicine imaging” outlined 
the use of AI technology to predict the activity image 
after attenuation directly and scatter correction, which is 
beneficial for independent nuclear medicine equipment. 
Once the AI prediction is proven effective, this type of 
method does not require obtaining the corresponding 
anatomical image, which effectively reduces cost (55,61). 
For PET scatter correction, Berker et al. (98) used the U-net 
to obtain single-scatter profiles. For brain imaging, this 
method has achieved high accuracy, but for beds where the 
high-absorption bladder extends beyond the axial field of 
view, the results showed poor performance. Qian et al. (99) 

proposed two CNNs to estimate scattering correction for 
PET. The first network had only 6 layers, of which the 
convolutional layer and the fully connected layer were used 
to predict multiple scatter profiles from a single scatter 
profile. The second network was used to obtain the total 
scattering distribution (both single and multiple scattering) 
directly from the emission and attenuation sinograms. The 
network structure, in this case, was unchanged. Monte 
Carlo simulation of scattering was used as a training label. 
Similar to the input of the second network used in Qian  
et al. (99), Xiang et al. (28) investigated a deep CNN 
(DCNN) structure (a 13-layer deep structure consisting of 
separate paths for emission and attenuation projections) for 
SPECT/CT scatter estimation for Y-90 nuclides. As shown 
in Figure 4, the DCNN and Monte Carlo dosimetry results 
for 90YPET showed a high degree of consistency.

Compared with whole-body imaging, the application 
of AI technology in specific regions (such as the brain and 

Figure 4 Comparison of SPECT/CT and PET/CT images following 90 Y radioembolization. (A) Patient with an 818 mL lesion with a 
necrotic center and enhancing rim treated with 3.9 GBq to the left-lobe. (B) Patient with a 6 mL lesion treated with 2.9 GBq to the right 
lobe. The results of the proposed DCNN-scatter correction are close to PET/CT in vision and contour. Reprinted by permission from 
Springer Nature Customer Service Centre GmbH, European Journal of Nuclear Medicine (28), © 2020. DCNN, deep convolutional neural 
network; SPECT, single photon emission computed tomography; PET, positron emission tomography; CT, computed tomography; MC, 
Monte Carlo; MR, magnetic resonance; SC, scatter correction.
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lungs) have better scatter correction (28,98). Although 
the time-consuming Monte Carlo simulation is required 
during the training process, it only needs to be performed 
once. Basically, with the increase of simulation data, scatter 
correction accuracy will be improved for all methods, 
either for non-AI or AI methods. The current method was 
only investigated for a single radioactive source, and the 
applicability for different radioactive sources has not yet 
been explored.

Image reconstruction

The image reconstruction from raw projection data is an 
inverse problem. The reconstruction algorithm in nuclear 
medicine includes an analytical filter back-projection (FBP) 
algorithm, algebraic reconstruction techniques (ARTs) 
algorithm, maximum likelihood algorithm [maximum 
likelihood expectation maximization (MLEM), ordered 
subset expectation maximization (OSEM)], and maximum 
a posterior (MAP) algorithm (100,101). The analytical 
methods are simple and fast, but there is a trade-off between 
high resolution and low noise, especially in adjacent parts 
where the radioactive distribution changes sharply. The 
maximum likelihood algorithm can simulate the physical 
characteristics in the process of data acquisition and better 
control the reconstruction quality, but this will take a 
longer time cost. Researchers have applied AI technology to 
nuclear medicine image reconstruction with AI technology 
development, mostly in PET reconstruction (102). The 
application of AI technology cannot solve the inverse 
problem. It essentially provides a mapping relationship to 
solve specific key problems in reconstruction with a data-
driven solution, such as completing the transformation 
between the sinogram domain and the image domain or 
replacing traditional algorithms’ regularization. To a certain 
extent, the emergence of AI technology has made it possible 
to obtain better imaging quality without increasing hardware 
costs. Reader et al. (29) summarized the basic theory of 
PET reconstruction and the key paradigm shift used by DL 
in PET reconstruction. They strictly focused on raw PET 
data. Here, we focused the search scope on nuclear medicine 
image reconstruction (PET/SPECT) and introduced the 
application of AI to three different systems, namely static 
scan (shown in Figure 5), dynamic scan, and hybrid fusion.

Image reconstruction in the static scan

AI applications in the projection domain
Detectors used in PET and SPECT are comprised of 
scintillators and photomultipliers [e.g., position-sensitive 
photomultiplier tubes (PSPMTs), silicon photomultipliers 
(SiPMs)] (103,104). Generally, large crystal arrays lead to 
low-resolution projection information, and thin crystal 
arrays can produce better visual quality; however, this 
approach also costs more because the detector cutting 
process is limited. In addition to the significant impact of 
low-resolution detectors on image quality, gaps or local 
failures of the detector due to the detector design [such 
as the octagonal configuration of the HRRT with eight 
gaps (105)] can also cause significant loss of projection 
data. The most common methods to complete sinogram 
data are interpolation-based methods (106) and penalized 
regression methods such as dictionary learning and discrete 
cosine changes. As shown in Figure 5A, compensation of the 
missing data in the projection space can improve the quality 
of recovery images (107).

Hong et al. (108) proposed a residual CNN method 
to predict higher resolution PET sinogram data from 
low-resolution sinogram data, making learning local 
feature information more efficient. The transfer learning 
scheme was incorporated into the method of dealing with 
poor labels and small training data sets. However, the 
network was gradually trained on the number of analytical 
simulations and Monte Carlo simulations and did not 
simulate attenuation and scattering events. The scheme 
only provided qualitative information on real data (because 
there was no ground truth), the result of which is shown in 
Figure 6. In contrast, Shiri et al. (109) used the CED model 
to achieve end-to-end mapping of high- and low-resolution 
PET images. The encoder part extracts the features of low-
resolution images and effectively compresses them so that 
the decoder finally outputs higher-quality images. Also, 
Shiri et al. (110) used a similar structure to generate high-
resolution PET images similar to point spread function 
(PSF) modeling, which can accelerate the reconstruction 
without complex spatial resolution modeling. The CED 
model was shown to be effective in image detail recovery. 
Besides, anatomical image-guided nuclear medicine image 
reconstruction technology [Schramm et al. (111)] can obtain 
more prior details to improve imaging resolution, which 
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will be introduced in the section “Anatomical image-guided 
nuclear medicine image reconstruction”. Compared with 
a reconstructed image, the difference between different 
resolution data in the sinogram domain comes from 
sampling, which is only related to local information. In 
contrast, the difference between different resolution images 
in the reconstructed image comes from more complex 
sources. Therefore, it is desirable to obtain high-resolution 
projection data as much as possible in the sinogram domain.

Shiri et al. (112) used a residual neural network (ResNet) 
to predict the full-time projection (the acquisition time 
is reduced from 20 to 10 s) and the full-angle projection  
(32 full projections reduced to 16 half projections) when 
using a dedicated dual-head cardiac SPECT camera with 
a fixed 90-degree angle for SPECT imaging. The results 
showed that reducing the acquisition angle can produce 
better predictive indicators [root mean square error 
(RMSE), structural similarity index measure (SSIM), and 
PSNR] than reducing the acquisition time. Ryden et al. (113) 
used the U-net structure to generate 177Lu-SPECT full 

projection data from sparse projections. The experiments 
of these works have certain guiding significance for clinical 
acquisition. However, reducing the acquisition time at 
each angle will inevitably introduce more errors. It has 
been shown that DL can effectively correct this error, but 
further shortening acquisition time is a key issue. Besides, 
Shiri et al. (105) used the CED structure to complement 
the sinogram gap generated by the HRRT scanner. 
The same structure was used by Whiteley et al. (114) to 
complement the sinogram generated by the local block 
failure of the detector. Liu et al. (115) combined the U-net 
structure with the residual structure to predict the full-
loop data of the sinogram domain and the PET image 
domain from the partial loop data. These three tasks are 
similar, complementing the incomplete sinogram, and have 
important practical significance.

For the pre-reconstruction processing, the CNN’s task 
is to realize automatic learning of image features and end-
to-end mapping between different images through fast 
reasoning. By introducing the residual learning into images, 
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Figure 5 Static nuclear medicine image reconstruction method. (A) AI technology is applied in the projection domain to complete sinogram 
data or obtain more continuous sinogram data. (B) AI technology is applied to generate PET/SPECT images directly from sinogram data. 
(C) AI technology is applied to directly enhance the back-projection data and generate PET/SPECT images. (D) AI technology is combined 
with iterative reconstruction algorithms. AI, artificial intelligence; SPECT, single photon emission computed tomography; PET, positron 
emission tomography.
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the degradation problem caused by an increase in network 
depth can be reduced, and the learning capability can be 
improved. The abundant application of AI in natural image 
super-resolution/generation proves that AI technology can 
obtain higher quality images. It is undeniable that medical 
images have higher requirements for intensity accuracy, 
especially in the sinogram domain. An obstacle that cannot 
be ignored is that it is often difficult for researchers to 
obtain enough sinogram data. Although transfer learning 
or data enhancement techniques can help fit the model 
better, the robustness and general clinical verification of 
the network need to be further verified. There is hope that 
CNN may assist in supplementing/generating high-quality 
sinogram images. It aims to obtain high-quality projection 
data with the help of AI for less sampling angle, ray beam, 
and acquisition time.

AI applications in direct reconstruction
As shown in Figure 5B, some studies have found that AI 
could be used to could obtain reconstructed images directly 
from projections, although this approach ignores some 

physics-related issues. The technology of AI can learn 
the mapping relationship between sinogram data and 
reconstructed images with a large amount of training data, 
which is composed of millions of parameters and garner 
an approximate solution to the inverse problem. However, 
once the training is completed, direct AI reconstruction is 
computationally efficient. Direct reconstruction based on 
AI can avoid the inaccurate assumption modeling present in 
traditional methods.

In 2018, Zhu et al. (116) reported that reconstruction 
was reencoded as a data-driven supervised learning task 
via manifold approximation automatic transformation 
(AUTOMAP). The network is composed of three fully 
connected layers and a CAE structure. AUTOMAP 
can learn a reconstruction function to improve artifact 
reduction and reconstruction accuracy for sinogram data 
from noisy and under-sampled acquisitions. Zhu et al. 
applied AUTOMAP to 18F-FDG PET data and obtained 
images comparable to the standard reconstruction methods, 
as shown in Figure 7. Later, Häggström et al. (117) applied 
the inverse-Radon transform to the PET data set. The 
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Figure 6 Reconstructed images of mouse data. In both high and low doses, SRI can achieve better results at 2/4/8 times down-sampling. 
Reprinted with permission from IEEE, IEEE Transactions on Medical Imaging (108), © 2018. HRI-H, high-resolution images for high doses; 
HRI-L, high-resolution images for low doses; LRI, low-resolution sinogram reconstructed images; IRI, interpolated sinogram reconstructed 
images; SRI, super-resolution sinogram reconstructed images.
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authors designed a deep CED architecture called DeepPET. 
The encoder imitated the VGG16 network architecture by 
modification, shrinking the input data in a CNN-specific 
way; the decoder samples the shrinkage feature from the 
encoder to the PET image. DeepPET can achieve similar 
results to the traditional iterative method.

Similarly, Chrysostomou et al. (118) applied CED 
structure to SPECT reconstruction. Shao et al. (119) 
established the mapping from the sinogram image to the 
compressed image domain-containing less output (e.g., 
16×16 bits) (a structure consisting of seven convolutional 
layers and two fully connected layers). They then 
decompressed the result into a normal (128×128 bits) 
SPECT image (training the CAE unsupervised network 
so that the goal of its output was as close to its input as 

possible). This kind of network was carried out in a reverse 
sequence, and neural networks converged faster. The input 
of the structure was the sinogram data and the attenuation 
map for this system. Compared with ordinary Poisson 
ordered subsets expectation maximization (OP-OSEM), 
this system is less sensitive to noise, but this only entails the 
training of 2D data.

Additionally, Hu et al. (120) extended the improved 
Wasserstein GAN version of the CED network. The use 
of multiple loss functions can effectively avoid the loss of 
details in the reconstructed image. Besides, Shao et al. (121) 
also explored the feasibility of reconstruction with small 
viewing angles (reducing by 1/2 and 1/4, respectively), 
which has positive significance for exploring clinically 
reducing acquisition time.

PET Sinogram FBP

OP-OSEM AUTOMAP

A B

C D

Figure 7 Reconstruction results using the traditional algorithm and Zhu et al.’s method. Human FDG PET sinogram data (A) was 
reconstructed using (B) FBP, (C) OP-OSEM, and (D) AUTOMAP. Compared with FBP, AI results are significantly improved and can 
generate results that are visually similar to OP-OSEM algorithms. Reprinted by permission from Springer Nature Customer Service Centre 
GmbH, Nature (116), © 2018. PET, positron emission tomography; FBP, filter back projection; OP-OSEM, ordinary Poisson ordered 
subsets expectation maximization; AUTOMAP, manifold approximation automatic transformation.
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Direct conversion from sinograms to images usually 
requires a large number of parameters. Most of the 
current research focused on 128×128 images. The amazing 
parameters benefit from using one or more fully connected 
layers. Although DeepPET relinquished the fully connected 
layer, it still needed to decode the sinogram to complete 
the feature extraction deeply. These operations’ benefit is 
the computational cost of converting between the sinogram 
domain and the image domain, which is completely different 
from image reconstruction. Recently, Whiteley et al. (122) 
designed an efficient Radon inversion layer to perform 
domain conversion. They only focused on the sinogram 
corresponding to each patch in the image domain and 
performed a small range of fully connected operations, which 
completely avoided excessive calculation of whole data. This 
strategy may be a new inspiration for reducing the number 
of parameters and increasing the image size. In their work, 
time-of-flight list-mode data is acquired and histogrammed 
into sinograms. The quantitative results better than 
OSEM + PSF are obtained under low count input, t 
average absolute deviation is 1.82%, the maximum value is 
4.1%, and the negative deviation of OSEM + PSF reaches 
50%. In the direct prediction, physics factors including 
attenuation and scatter are not explicitly modeled, which 
potentially leads to uncertain reconstruction [e.g., DeepPET 
may produce false results in low count imaging (117)]. 
When encountering new radiopharmaceuticals and new 
equipment, it may need to restart training and require 
extensive clinical validations. Besides, most of the direct 
predictions were investigated with 2D data, how to 
extrapolate it to 3D in a computationally coefficient way 
will be the research focus in the future. How to obtain the 
mapping of two different domains (and break through the 
limitation of image size) at the minimum computational cost 
may become a future concern.

Applying AI to back-projection data
Unlike directly predicting the reconstructed image from 
the sinogram domain, as shown in Figure 5C, some 
researchers use back-projected data as network input to 
obtain reconstructed images. This method has advantages 
in reconstruction time and image quality. The back-
projection data has the same structural information as 
the output, which will effectively avoid applying the fully 
connected layer in the Radon inversion layer and greatly 
reduce the number of training parameters. Jiao et al. (123) 
used a multiscale fully CNN (msfCNN) structure, which 
takes the back-projection image of sinogram data as the 

network input and makes full use of the large-scale context 
information to reconstruct PET images. In the network 
design, to have a large receiving field with better calculation 
efficiency, the reduced scale’s downscaling-upscaling 
structure and the extended convolution are designed.

Additionally, the application of subpixel convolution 
ensures resolution without loss. Similarly, Dietze et al. 
(124,125) proposed a deep CED structure to enhance 
the SPECT image reconstructed by fast-filtering back-
projection, and the result showed that it was equivalent to 
the Monte Carlo reconstruction result. This was the first 
time this approach was used in the SPECT field, although 
it was only a qualitative validation. Furthermore, Xu  
et al. (126) extended the 2D CED structure to 3D and used 
it in dual tracer PET imaging, aiming to find the time and 
space information in training data. Their training data came 
from Monte Carlo simulation.

In this part, the AI structure was used as part of the fast 
back-projection reconstruction method or post-processing, 
which was proven to obtain reconstruction results equivalent 
to the Monte Carlo simulation. It must be mentioned that 
when combining reconstruction and AI structure, compared 
with the innovation of network architecture, a wider range 
of clinical training data verification algorithms may be 
required. In a specific task, the method of creating synthetic 
volumes can help augment the training data. For example, 
Dietze et al. (124) placed balls with random diameters at 
random locations in the liver and filled other locations 
with different patients’ active distribution blocks. In this 
way, they expanded the original 100 ground truth data to 
1,000. Besides, adding more prior information and using 
multichannel input will collect effective information more 
efficiently in future work. Whiteley et al. (127) used the 
time-of-flight PET scanner’s timing resolution to combine 
the most likely annihilation position histogrammer with 
the U-net structure to achieve deblurring of time-of-flight-
back-projected images. This method was used to reduce the 
position uncertainty of annihilation events effectively. In 
particular, AC was also considered herein.

Combination of iterative reconstruction and AI
Normalization (e.g., total variation) is often used in nuclear 
medicine image reconstruction to suppress noise artifacts 
while retaining edges, especially for sparse reconstruction, 
but it requires a large time overhead. Some researchers have 
applied the trained network to the iterative reconstruction 
framework, using penalty design or a variable re-
parameterization method. As shown in Figure 5D, the 
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combination of neural networks (especially U-net structure) 
and iterative reconstruction frameworks considered data 
consistency and can restore more image details. Gong 
et al. (128) combined a residual network with a U-net 
structure in the maximum likelihood framework to remove 
PET images’ noise by using the concept of iterative CNN 
reconstruction. The alternating direction method of the 
multiplier algorithm is used to optimize the reconstruction 
of the objective function. It is necessary to select an 
appropriate penalty parameter ρ. Unlike adding the network 
to the iterative loop, Kim et al. (129,130) designed an 
iterative reconstruction framework based on the denoising 
CNN (DNCNN) using the reconstructed image of low-
dose data sampling six times as input and the label as the 
standard-dose image. To enhance the image quality and to 
avoid unnecessary deviation, they combined a local fitting 
function with the DNCNN. The experiment found that the 
noise interference was weakened or even eliminated, which 
greatly reduced the image reconstruction time.

Besides, some researchers have focused on implementing 
unrolled reconstruction using neural networks different 
from the above schemes. Gong et al. (131) combined the 
U-net structure with the updated EM algorithm steps (U-net 
is used to replace the penalty item’s gradient) to obtain 
better PET images. To solve the possible inconsistency 
between the CNN results and the penalty gradient, they 
further expanded the MAP-EM update step and combined 
it with CNN to obtain higher contrast in the matched noise 
situation (132). Lim et al. (133,134) proposed a recurrent 
framework to penalize the difference between the unknown 
image and the image obtained by the network. Multiple 
trained networks combined this framework, namely block 
coordinate descent network (including convolution, soft 
threshold, and deconvolution layer). An advantage of their 
method is a lower demand for computational memory. 
They focused their attention on low-count PET imaging 
and achieved a high contrast-to-noise ratio superior to non-
trained regularizers reconstruction methods (total variation 
and non-local means). For low-count PET reconstruction, 
they demonstrated the reliable generalization ability of 
this method on small data sets. Mehranian et al. (135) 
proposed an optimization algorithm for Bayesian image 
reconstruction with a residual learning unit to constrain 
the step of regularization of the previous image estimate. In 
particular, they verified the effectiveness of PET input alone 
and PET/MR combined input in low-dose stimulation and 
short-term in vivo brain imaging.

Furthermore, to learn the relationship between the 

sinogram and each pixel in the reconstructed image, 
the ANN was introduced to SPECT to replace the 
iterative estimation framework (136). Inspired by this, 
Wang et al. (137) used an ANN to fuse images from the 
maximum likelihood and post-smoothed the maximum 
likelihood reconstruction to enhance PET images’ quality 
of myocardial perfusion. Similarly, Yang et al. (138) 
used an ANN to fuse image versions with different 
regularization weights reconstructed from the MAP 
algorithm for quantitative improvement. Their proposed 
method eliminated the need for parameter adjustment. 
Subsequently, the authors established a multilayer 
perceptron model based on back-propagation to improve 
Bayesian PET imaging (139) quantitatively. This structure 
can learn the structural information, size, texture, and edges 
of 3D images from the data, which is significant for brain 
image enhancement; however, for other parts of the body 
under different tracers, a more general study is needed. 
Attention must be given to the performance of ANN being 
affected by the number of hidden layers and the number of 
neurons.

Compared with inputting projection data into the 
network, combining the traditional iterative method 
combines reliable imaging physics knowledge and noise 
model, which will reduce the dependence on huge data 
sets and avoid the difficulty of training the network from 
0. Compared with traditional reconstruction, using the 
AI structure to learn the regularization term in iterative 
reconstruction or directly replacing the unrolled formula’s 
potential function brings more constraints to the network 
training and can eliminate more noise. However, the former 
needs to avoid the uncertainty caused by selecting key 
parameters, and the latter still needs to consider the cost 
of memory and time. No matter what kind of scheme is 
tried, extensive clinical validity verification (and comparison 
between different AI schemes) is still missing, and higher 
quality matched ground tags are still lacking. Compared 
with the extensive exploration of CNN, the previously 
mentioned cycle-GAN (59,60), which has been shown to 
avoid the quantization deviation caused by registration, 
might be a new direction in the future.

Image reconstruction in dynamic imaging

In contrast to static imaging, dynamic imaging requires 
data detection in consecutive frames. The frame number 
and frame duration need to be determined for each 
application. However, there is a trade-off between frame 
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number and duration. Therefore, it is challenging to 
obtain optimal results with traditional modeling methods 
to include MAP, or the maximum likelihood estimation 
and penalty weighted least squares (PWLS) model. The 
kernel-based iterative method can be equivalent to a 2-layer 
neural network structure, which requires the use of prior 
information based on anatomy. Wang et al. (140) first 
proposed a maximum likelihood estimation algorithm based 
on the kernel expectation-maximization method by taking 
the PET image intensity itself as prior information. Unlike 
the traditional maximum likelihood method, this approach 
has a better bias-variance tradeoff and higher contrast 
recovery in dynamic PET image reconstruction. Boudjelal  
et al. (141) further developed a kernel MLEM regularization 
(κ-MLEM) method, removing background noise while 
retaining the edge and suppressing image artifacts. Ellis  
et al. (142) proposed a method of using kernel expectation-
maximization in research using PET with dual data sets, 
using AI technology to construct spatial basis functions for 
PET reconstruction for subsequent reconstruction. Spencer 
et al. (143) proposed a dynamic PET reconstruction method 
based on a highly constrained back-projection (HYPR) 
kernel, which can produce a better region of interest (ROI) 
accuracy. Spencer (144) employed the dual kernel method 
to fully explore the possibility under the kernel framework 
by combining a nonlocal kernel with a local convolution 
kernel. Nevertheless, the existing kernel methods only 

consider the spatial correlation. Wang (145) extended the 
spatial kernel method to the spatial-temporal domain, 
which can effectively reduce noise in the space and temporal 
domain for dynamic PET imaging.

Besides, Cui et al .  (146) described the dynamic 
reconstruction problem by combining MLEM with a 
stacked sparse autoencoder structure. This model was 
composed of multiple encoders and a decoder. The authors 
used the images of adjacent layers as prior knowledge and 
can recover more details in areas such as boundaries. A 
major issue with this approach is tissue specificity. Since 
the network parameters are pretrained, when the model 
extracts features from new test data, it may not be able to 
recognize the features, which will affect the reconstruction. 
As shown in Figure 8, compared to the MLEM algorithm, 
their method performs better with Zubal phantoms. 
However, since only the phantom body’s patches are used 
in the training phase, the results may not be as good as 
those obtained by the Monte Carlo simulation results. 
Yokota et al. (147) used random noise as input and realized 
dynamic PET reconstruction through the combination of 
non-negative matrix factorization and a deep image prior 
(DIP) framework. It is worth noting that U-net is used in 
parallel combination to extract the spatial factor after matrix 
decomposition, and the reconstruction result has a higher 
signal-to-noise ratio.

Furthermore, inspired by Gong et al. (128), the use of 

Figure 8 Reconstruction results for the Zubal phantom data using the MLEM algorithm (top row) and Cui et al.’s method (second row). 
From left to right: the 1st, 3rd, 5th, 7th, and 9th frames. Here, the tested Zubal phantom has different simulation parameters from the 
training data. Reprinted with permission from (146) under the terms of the Creative Commons Attribution License. MLEM, maximum 
likelihood expectation maximization.
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pre-trained noise reduction models can effectively perform a 
constrained maximum likelihood estimation. Xie et al. (148) 
upgraded and improved a GAN structure, which performed 
well in the trade-off between lesion contrast recovery 
and background noise. Compared with traditional kernel 
methods, integrating neural networks into the iterative 
reconstruction framework can maximize data consistency. In 
general, a clearer boundary and less noise can be obtained 
by inputting multiple frames of images. Adjacent frames 
have similar structural information, which can be used as 
prior information for each other, not for static imaging. 
In addition to minimizing the data distribution difference 
between training and test data, we also need to heed the 
high training time consumption caused by multi-frame data. 
A computationally efficient neural network is desirable for 
this task.

Anatomical image-guided nuclear medicine image 
reconstruction

With the emergence of hybrid imaging systems, combining 
anatomical information can improve image quality, although 
anatomical image-guided PET/SPECT reconstruction 
has not been routinely used in clinical applications. 
Addressing the problem that traditional smoothing before 
the reconstruction algorithm leads to excessive smoothing 
in the reconstructed image, the application of the sparse 
signal representation method based on dictionary learning 
can learn the dictionary from the corresponding anatomical 
images and be used to form a preceding signal in the 
reconstruction of images [MAP (149), maximum likelihood 
estimation (150)]. Dictionary learning is often combined 
with sparse models and is widely used in image denoising 
or super-resolution imaging. The sparsity of patches in 
dictionaries provides reconstruction regularization, and 
the dictionary can train CT or MR images to provide the 
inherent anatomical structures. However, some models, 
such as sparse coding, patch extraction, and dictionary 
learning, are slower than MLEM methods. In PET/MRI 
imaging, prior knowledge is often used to enhance PET and 
MRI dependence at a very small scale of image gradient, so 
the large scale of inter-image correlation between images 
and intra-image texture patterns cannot be captured. 
The advantages of AI technology can utilize MRI/CT 
anatomical information and boost PET image quality.

Sudarshan et al. (151) developed a patch-based joint 
dictionary method for PET/MRI to learn the regularity 
of a single patch and the correlation of corresponding 

spatial patches for Bayesian PET reconstruction with 
maximized expectations. Besides, Gong et al. (152) designed 
a reconstruction framework to train the reconstruction 
process based on the conditional DIP approach, named 
DIPRecon, which used a modified 3D U-net structure. No 
pretraining pairs were needed; in fact, only the patient’s 
prior information (T1-weighted MR) is needed, which 
is an unsupervised framework. Schramm et al. (111) used 
3D OSEM PET and 3D structure MRI as input to train 
a residual network (a purely convolutional shift-invariant 
neural network). Interestingly, their network has achieved 
good performance on tracer data that has never been seen 
before, proving that the network has better learned the 
denoising operation of the input PET image. Compared 
with 2D image training, which can segment larger patches, 
3D image training will become more cautious. In turn, 
smaller patches will no longer need to design more data 
collection. For most hybrid imaging, methods to improve 
the registration accuracy of the prior information will be 
a key factor affecting the quality of the network output. 
Pertinently, expertise in task solving can provide advantages 
over more complex AI technology structures. Anatomical 
information can assist low dose PET/SPECT imaging, 
which will be introduced in the section “Low-dose 
imaging”.

Image postprocessing

Low-dose nuclear medicine imaging is desirable in the 
clinic. One way to reduce image noise associated with 
low dose imaging is to apply a smoothing operation 
after iterative reconstruction. However, there is a trade-
off between noise level and spatial resolution. With the 
development of GPU technology and AI’s outstanding 
performance in natural image denoising, AI is proven to 
achieve a better balance between noise level and image 
resolution. The AI technologies have been used to obtain 
high-quality nuclear medicine images, such as in image 
denoising and image fusion.

Low-dose imaging

Classical ML methods such as regression forest (153), sparse 
representation (154), canonical correlation analysis (155), 
and dictionary learning (156) have been investigated in 
reconstructing full-dose nuclear medicine images from low 
dose injection. Currently, the potential of DL-based low-
dose nuclear medicine image denoising is still in its infancy. 
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Here, we mainly summarized four structures: CNN, U-net 
structure, CAE, and GAN. The CAE/CNN structure 
here was essentially a low-pass filter, and the purpose of 
convolution was to extract useful features from the input, 
which also greatly improved the calculation efficiency. 
To ensure that the network output was the same size, a 
special design of padding and stride is essential. As shown 
in Figure 9A, the design of batch normalization layers is 
used to normalize the output operation. In natural images, 
DCNNs are widely used; Costa-Luis et al. (157) introduced 
them into the postprocessing step of PET imaging. The 
image generated by a DCNN can reduce the impact of 
ringing and obtain clearer edge information. Similar to 
Figure 9A (black line), Gong et al. (158,159) introduced 
skip connections in the CNN structure (improved VGG19) 
to denoise PET brain and lung images. This design can 
directly combine the early layer’s output with the deeper 
input of the same dimension, effectively avoiding the 
problem of gradient disappearance while obtaining more 
details. Nazari et al. (160) combined Alex-Net (161) and 
denoising autoencoders to achieve denoising/low-dose 
imaging of dopamine transporter SPECT images. By 
adding Gaussian white noise to achieve a 67% reduction in 
simulated scan time, the average absolute pixel difference of 
CNN denoising images and real images was 1.8%, which 
was much smaller than the 6.7% of noisy images. Unlike 
directly learning the end-to-end mapping between low-dose 
images and full-dose images, Xiang et al. (162) introduced 
structural T1 images into the network input layer and used 
an auto-context method to optimize the estimation, which 
undoubtedly made the model more robust. To obtain the 
spatial correlation of image voxels, the 3D convolutional 
layer was used by Song et al.  in low-dose SPECT 
myocardial perfusion imaging (163,164). Such a structure 
can effectively suppress the noise level in the reconstructed 
myocardium, but the training of the 3D network usually 
requires many calculations.

There is also a special U-net structure in the CED 
network. At each stage of the U-net, two overlapping 
convolutional layers are designed to provide a deeper 
network, the structure of which is shown in Figure 9B. 
However, it is often difficult to obtain satisfactory results 
by only inputting low-dose images. Such a network lacks 
sufficient knowledge to distinguish noise from useful 
information. Adjacent slices can be used as different 
input channels [PET-plus-MR or PET-only image input 
(165,166), three-layer PET image input (167,168), and 
five-layer SPECT image input (124,125)] can provide 

2.5D structural information to the network, and this 
can be called a method of target feature enhancement. 
Compared with 3D convolution, calculation costs are 
high for this approach. Notably, 2.5D multichip input 
has its parameters and higher training effectiveness. 
The maximum value and residual learning have special 
advantages to improve training efficiency. Lu et al. (168) 
also predicted the deviation between images with different 
doses and obtained prediction results by adding them to 
the corresponding low-dose images. Liu et al. designed a 
3U-net structure to combine the advantages of MRI and 
PET images fully. The PET and MRI images were entered 
into a 1U-net channel (to obtain initialization weights), 
and all outputs of multichip input were regarded as the 
third U-net network (169). The advantage of this network 
is that when PET and MRI images are incorporated into a 
1U-net network, more features can be extracted under the 
premise of mutual interference. In particular, the data here 
need to be strictly registered. Subsequently, Hashimoto  
et al. extended the data to dynamic PET imaging (170,171). 
Importantly, the structure used was very similar to the U-net 
structure. Ramon et al. (172) used the CAE structure and 
demonstrated that regarding denoising, at a clinical dose 
input of 1/16, PET image quality was similar to that of the 
conventional 1/8 dose. Ramon et al. then went on to use 
a 3D CAE structure (33). The image results became less 
sensitive to the number of layers and filters by adding skip 
connections, which greatly alleviated some of the problems 
of overfitting; Figure 9C shows the CAE structure.

Compared with the supervised training mode, the 
unsupervised or semi-supervised learning mode is worth 
further exploration. The GAN structure is a general 
model with a more flexible framework. In Figure 9D, the 
generator network is used to create a full-dose image, and 
the discriminator network is used to distinguish predicted 
full-dose images and the actual full-dose images. Because 
the jump connection in the U-net structure can effectively 
combine deep and shallow features, it is widely used 
in generator networks [2D U-net (173) and 3D U-net 
(174,175)]. The pooling layer is usually not used in this 
case because the pooling layer is often used to reduce the 
dimensionality of the feature map (such as in classification 
tasks). The discriminator network is mostly a common 
CNN structure or an encoder structure, and the application 
of the residual structure in GANs has obvious advantages 
in improving the calculation efficiency (176-178). Xie  
et al. (179) expanded the input into five adjacent low-dose 
PET slices and introduced a self-attention gate to implicitly 
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Figure 9 Low-dose imaging network structure. (A) The CNN structure here was essentially a low-pass filter, and the purpose of convolution 
was to extract useful features from the input. (B) At each stage of the U-net, two overlapping convolutional layers are designed to provide a 
deeper network. (C) For CAE, to ensure that the network output was the same size, a special design of padding and stride is essential. (D) 
For GAN, the generator network is used to create a full-dose image, and the discriminator network is used to distinguish predicted full-dose 
images and the actual full-dose images. CNN, convolutional neural network; CAE, convolutional autoencoder; GAN, generative adversarial 
network.
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learn to suppress irrelevant regions in the input image 
while highlighting salient features. Unlike traditional GAN ​​
models, Kaplan et al. (178) inputted low-dose PET images 
to the generator network after low-pass filtering. This step 
can remove some noncritical noise to improve training 
efficiency.

Furthermore, cGANs ​​are widely used to learn the 
conditional model of data (173,174). To better avoid model 
failure, cycle-GANs introduce an inverse transform in a 
cyclic manner, which can better constrain the generator of 
training (177). Compared with U-net and GAN structures, 
the texture of the image generated by the cycle-GAN 
structure matches well with the full count image. The 
improvements in cycle-GAN are particularly evident in 
normal physiological uptake organs such as the brain, heart, 
liver, and kidneys are shown in Figure 10. For multimode 
image synthesis of full-dose PET, a local adaptive fusion 
network needs to be added prior to the generator network, 
and the fused image should be used as input to avoid adding 
more parameters to the generator but also to obtain richer 
structural information (175,176).

However, large amounts of training data are always hard 
to collect. The emergence of the DIP framework can use 
random noise as the input of the network to obtain denoised 
images without the need of previous training pairs, and 
some researchers have used a prior image of the patient (a 
previous image or a CT image) as the input of the network, 
which is similar to the 3D U-net framework; consequently, 
the PET image after denoising can be obtained through 
a certain iteration (152,180). Self-supervised learning has 
proven its wide practical value because the data does not 
need to be paired. Song et al. (181,182) proposed a dual-
GAN to achieve super-resolution technology for PET 
images. The input was low-resolution PET images, high-
resolution MR images and spatial information (axial and 
radial coordinates), and high-dimensional feature sets 
extracted from the auxiliary CNN, which used a pair of 
analog data sets for individual training in a supervised 
manner. Paired training data are not necessary here, 
enabling a new direction for clinical applications that lack 
paired data sets. In particular, a noise-to-noise approach 
was used for image denoising. The training pair’s input 
and target are both noise versions of the same unknown 
image, and the common signal component between 
the input and the target is effectively predicted. Chan  
et al. (183) combined the noise-to-noise approach with the 
residual network to achieve denoising of low-count PET 
images. Yie et al. (184) also used U-net to train a noise-to-

noise net and the upgraded version, which showed that self-
supervised denoising could effectively reduce the PET scan 
time or dose. Liu et al. (185) introduced the noise-to-noise 
training method into SPECT-MPI denoising. Furthermore, 
a 3D coupled U-net design can improve learning efficiency 
by reusing feature maps. This solution is better for 
perfusion defect detection than non-local means, CAE, and 
conventional 3D Gaussian filtering.

As the dose continues to decrease, the image quality 
will drop significantly. Compared to directly training the 
mapping relationship between low- and high-dose images, 
adding one or more MR images to the network’s input will 
help obtain high-resolution features, and such a model is 
also suitable for the denoising process. In most cases, real 
images under ideal conditions cannot be obtained in clinical 
practice, and due to the lack of paired data, self-supervised 
learning focusing on noise becomes a better choice. It 
should be noted that any single measurement standard is 
difficult for judging a certain algorithm’s effectiveness, and 
they often produce large deviations from human perception. 
How to design a more clinically meaningful task-based 
evaluation standard will be a very important task.

Image fusion

Another way to obtain higher quality nuclear medicine 
images is image fusion, which combines CT/MRI images 
with structural information to form a new clear image. 
Traditional methods mainly include component substitution 
and multi-resolution analysis, but it is often difficult 
to extract edge details (186). Subsequently, contourlet 
transform, non-subsampled contourlet transform, and 
wavelet transform were gradually proposed, but the cost 
of time needs to be considered (187,188). Due to the 
global coupling and pulse synchronization of neurons, 
pulse-coupled neural networks (PCNNs) are widely used 
in image fusion tasks. There is a fundamental difference 
between traditional neural networks and PCNNs. Coming 
from a biological background, PCNNs are based on the 
phenomenon of synchronous pulse firing in the cerebral 
cortex of cats and other animals. This structure can extract 
useful information from complex backgrounds without 
learning or training. Panigrahy et al. (189) proposed a 
new nonsubsampled shearlet transform domain medical 
fusion method based on weighted parameter adaptive dual-
channel PCNN, which fuses MRI and SPECT images of 
AIDS and Alzheimer’s disease patients. This model is used 
to fuse high-pass sub-bands, and a weighting rule based on 

https://iopscience.iop.org/article/10.1088/1361-6560/ab4891#pmbab4891f03
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Figure 10 Generated PET images under full count under different methods. (A) CT, (B) full count PET, (C) low count PET, (D) U-net 
PET, (E) GAN PET, (F) cycle-GAN PET images on the coronal, sagittal, and axial planes, and (G) PET image profiles from different 
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multiscale morphological gradients is used to fuse low-pass 
sub-bands. Similarly, nonsubsampled shearlet transform 
and nonsubsampled contourlet transform were combined 
with PCNNs to fuse PET/MRI and SPECT/CT tasks, 
respectively (190,191). Compared with other methods, it 
can retain more details of the source image.

Besides, CNNs have certain applications in multimodal 
medical image fusion. The CNN model focuses more 
on information near the tumor and ignores the impact 
of tumor location changes on feature learning. Kumar 
et al. (192) designed a supervised CNN to obtain the 
features of multimodal images and used the relativity 
of complementary information to fuse each multimodal 
feature of spatial position. DL often faces the problem of 
small sample sizes. Deep polynomial networks have good 
feature representations and perform well using small data 
sets. Shi et al. (193) designed a two-level multimodal stacked 
deep polynomial network algorithm to learn PET and 
MRI’s feature information and obtained remarkable results 
on datasets of different scales.

The PCNN is a neural network structure with a single 
cortical feedback signal. It does not require a training 
process to obtain useful information, which means that 
increasingly complex parameters are required. Also, the 
relationship between real-time processing speed and 
fusion effectiveness is not positive. Therefore, how to 
improve operational efficiency while obtaining better 
fusion effects will become the biggest problem. Challenges 
still exist regarding the CNN image in nuclear medicine 
image fusion. The sample demand is large (need expert 
annotation), training time is long, network framework is 
simple, and there are many convergence problems. We 
believe that combining CNN with traditional methods can 
enable the retention of more information. For example, 
Hermessi et al. (194) proposed that combining CNN with 
the wavelet fusion combination realizes the fusion of CT 
and MRI, and we believe that the same idea applies to 
nuclear medicine imaging. In general, although medical 
image fusion methods have developed from the spatial 
domain, transformation domain to DL applications, most of 
the methods can only be regarded as improvements on the 
original methods, and they have not completely resolved 
the fundamental problems in fusion. Such problems include 
the effective extraction of feature information, and some 
rely on the accuracy of registration. Most of the current 
fusions focus on the fusion of two modal images, and for 
wider clinical applications, the fusion of more modal images 
is still challenging.

Internal dosimetry

In addition to focusing on obtaining higher-quality nuclear 
medicine images, obtaining more accurate dose maps is 
also important because internal dosimetry is the key to 
personalized treatment in nuclear medicine. Personalized 
dose estimation can minimize the risk of radiation-induced 
toxicity (195). In personalized therapy, Monte Carlo 
simulation is used as the gold standard for dosimetry, 
although it has not been applied in clinical practice (196). 
The factors that limit its conventional application include 
its huge amount of calculation and computing time. The 
most widely used dosimetry method in clinical practice 
comes from the Medical Internal Radiation Dose (MIRD) 
committee (197) model and is an organ-based metrology 
method. The premise of this method is to assume that the 
activity in each organ is evenly distributed. The voxel-
based method [dose point kernel (198), voxel S-value (197)] 
considers this deficiency but ignores the heterogeneity of 
different media. In the previous part, we demonstrated 
that the application of AI in nuclear medicine imaging is 
ubiquitous. In this part, we will focus on its application in 
dose distribution prediction.

Lee et al. (38) input PET and CT images into a 3D U-net 
to perform the internal dose prediction. Their reference 
image comes from the truth dose rate map simulated by 
Monte Carlo. The tissue density information of the CT 
image is organically combined with the activity distribution 
of the PET image. Compared with the traditional voxel 
S-value method, the dose rate map obtained by this method 
performs well in areas such as lungs, bones, and organ 
borders and is stable in whole-body dose determination. 
It is noteworthy that they only used 10 patient data, and 
they needed to retrain for different tracers or applications 
in PET/SPECT. Similarly, Götz et al. (39) combined 
U-net and empirical mode decomposition to achieve a dose 
map of patients who had undergone 177Lu-PSMA therapy 
where the input was SPECT and CT. The small number of 
patients, especially the acquisition of the ground truth data 
required an astonishing time, and the results mentioned 
above can be used as proof of concept. Unlike the above 
method, Akhavanallaf et al. (199) proposed a new whole-
body element dosimetry method, which does not require 
a whole-body dose map of the training step. They used 
a 20-layer ResNet algorithm to implement a prediction 
medium-specific S value kernel. The network’s input is the 
density map generated by the CT image, and the reference 
is the corresponding dose distribution kernel of the point 
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source at different locations. The simulation time in this 
process only needs 1/8,000 of the Monte Carlo simulation 
time. Compared with the MC-based kernel, this method has 
an average relative absolute error of 4.5%±1.8% and good 
consistency. The single-input network ratio is obtained 
by the network prediction multi-input network parameter 
volume, the training cost is smaller, and the voxel-level 
MIRD dosimetry idea is effectively expanded. Götz  
et al. (200) proposed that a DL strategy based on the U-net 
architecture can learn accurate dose voxel kernels (DVKs) 
(discretizing continuous dose point kernels), which is faster 
than the gold standard Monte Carlo simulation. However, 
the accuracy of prediction is limited by time-integrated 
activity distribution estimation.

The application of DL in internal dosimetry has just 
begun. Current researchers have adopted the U-net 
structure and U-net due to its unique down-sampling and 
up-sampling steps, and jumper connections at each level 
of spatial resolution greatly retain the spatial resolution 
information. This effectively avoids the problem of 
vanishing gradient. Compared with the network structure, 
how to quickly generate accurate ground truth dose maps 
is particularly important. Besides, the accuracy of image 
registration is also one of the factors affecting the final 
prediction results. Akhavanallaf et al. (199) have shown 
that it is possible to generate a whole body element dose 
map within a few minutes, making it possible to quickly 
generate ground truth data. Also, most of the direct end-
to-end predicted dose maps do not involve physical factors. 
It would be more meaningful if physical factors (such 
as Compton scattering) can be considered. The current 
research is only for the specific tracer/imaging modality, 
and further training is needed for more extensive clinical 
verification.

Discussion and conclusions

In recent years, due to the explosive development of AI 
in the field of computer vision and image processing, AI, 
especially DL, is being increasingly used in nuclear medicine 
imaging. As described in this article, the application of AI 
in nuclear medicine imaging has demonstrated potential in 
promoting the nuclear medicine imaging system and paving 
the way for precision medicine. With the rapid development 
of hardware, especially GPU technology, AI can quickly 
process, mine, and analyze large amounts of data. Once 
training is completed, AI can usually provide faster and 
better resolution of specific tasks than traditional methods. 

In particular, the data-driven end-to-end mapping method 
provides new opportunities for many traditional tasks, 
such as the prediction of attenuation maps, improvement 
of reconstruction quality, prediction of internal dose map, 
and AI has demonstrated improved image quality and 
quantification for multiple tasks. Unlike traditional methods 
that require more human participation, evaluating the 
effectiveness of AI performance often depends on training 
data, network structure, and hyperparameter settings.

For the clinical application of AI,  we need to pay 
attention to the following aspects. First, for different 
topics, what kind of network structure is the best? Zeng 
et al. (201) believed that the structure of a neural network 
is unnecessary. In AI, training data set pairs are used as 
black-box input and output. Almost all algorithms contain 
parameters that need to be adjusted according to tasks. By 
constantly updating the parameter set’s values to find the 
optimal parameters in learning, this process is repeated 
many times until the result is satisfactory. In existing 
research, the practicability of performance depends on the 
design of the structure. What they have in common is that 
they need enough data sets as dependencies. Therefore, 
how to break the restriction of network structure and 
provide an interpretable network structure will still require 
future development. Because of the limitations of memory, 
time, and the network’s immense weight, larger images 
are difficult to manage. However, if training data are 
scarce, one should consider whether such an approach is 
meaningful, especially when making some pure predictions 
(e.g., reconstruct the image directly from the projection 
image). How to avoid the unpredictability of training is 
problematic.

Secondly, we cannot guarantee that the data pairs 
involved in training contain almost all possible situations. 
The promotion of data integration and sharing should be 
the focus of further research. Also, using only a limited 
number of cases is not always convincing, so we need to 
pay attention to the existence of abnormal data. Although 
transfer learning and data expansion can be used to improve 
this situation, a large amount of training data will double 
the amount of calculation required. Here, the acquisition of 
training data is more critical than the training of network 
structure, and the results of using more professional training 
data can better resemble the actual effect. Compared with 
the limited paired training set, how to train unpaired 
training ensemble as a current hot spot, cycle-GAN 
emergence that does not require paired data provides more 
directions for this topic. This problem is evident not only in 
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a single field but in almost all AI-related research.
Thirdly, we should thoughtfully consider whether we 

should risk using the good results obtained by the AI 
method in clinical practice; accordingly, ways to verify the 
proposed method in general practice may be the next step to 
be investigated. The indicators RMSE, PSRN, and SSIM, 
are often used to evaluate the quality of composite images, 
but studies have shown that the interpretation of similar 
indicators may not match clinical task evaluation (202). 
In addition to the commonly used evaluation indicators, 
professional evaluations are particularly important. At 
present, most of the existing AI applications have been 
developed for specific tasks. Although the application 
of contextual information makes AI more intelligent, it 
is not realistic to let AI completely replace physicians 
and complete tasks automatically. Deficiencies of AI 
include a lack of real baseline data, lack of label data, and 
provision of an insufficient interpretation of models and 
methods. Compared with traditional methods, the research 
community still seems to be exploring how to better utilize 
AI technology, which should involve a wider range of 
situations. In actual applications, more evaluation indicators 
are needed to determine the effectiveness of these methods.

Fourthly, compared with independent system imaging, 
more training knowledge can be obtained by hybrid 
imaging during network training. We found that multimode 
imaging, as well as prediction, may be a new research 
direction. However, the most important problem is the 
registration of multi-mode images. The training method 
performed in combination with unpaired data may be the 
reasonable direction. Taking the brain as an example, there 
is still the possibility of head drift between the acquisition 
time windows of different modal systems. Also, the use of 
multi-mode images as multiple inputs to the network will 
inevitably bring more parameters, increasing the difficulty 
of network convergence and training time, which requires 
additional attention in the network design.

Finally, we would like to sketch the landscape of the 
AI technology advancements that offer improvements in 
nuclear medicine imaging quality. We mainly focused on 
four aspects: imaging physics (AC and scatter correction), 
image reconstruction (a static system, dynamic system, 
and hybrid system), image postprocessing (low-dose 
imaging and image fusion), and internal dosimetry. Once 
the learning is complete, AI prediction will take less time 
than the traditional methods. Researchers are still actively 
investigating the possibility of AI technology in improving 
the quality of nuclear medicine imaging and its application 

in the clinic.
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