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Background: Radiation exposure computed tomography (CT) scans and the associated risk of cancer in 
patients have been major clinical concerns. Existing research can achieve low-dose CT imaging by reducing 
the X-ray current and the number of projections per rotation of the human body. However, this method may 
produce excessive noise and fringe artifacts in the traditional filtered back projection (FBP)-reconstructed 
image. 
Methods: To solve this problem, iterative image reconstruction is a promising option to obtain  
high-quality images from low-dose scans. This paper proposes a patch-based regularization method based on 
penalized weighted least squares total variation (PWLS-PR) for iterative image reconstruction. This method 
uses neighborhood patches instead of single pixels to calculate the nonquadratic penalty. The proposed 
regularization method is more robust than the conventional regularization method in identifying random 
fluctuations caused by sharp edges and noise. Each iteration of the proposed algorithm can be described in 
the following three steps: image updating via the total variation based on penalized weighted least squares 
(PWLS-TV), image smoothing, and pixel-by-pixel image fusion. 
Results: Simulation and real-world projection experiments show that the proposed PWLS-PR algorithm 
achieves a higher image reconstruction performance than similar algorithms. Through the qualitative and 
quantitative evaluation of simulation experiments, the effectiveness of the method is also verified. 
Conclusions: Furthermore, this study shows that the PWLS-PR method reduces the amount of projection 
data required for repeated CT scans and has the useful potential to reduce the radiation dose in clinical 
medical applications.
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Introduction

X-ray computed tomography (CT) has been widely used 
in the field of diagnosis (1,2). Due to the large dose of 
radiation received during CT scanning, the potential harm 
caused by exposure from the radiation has become a public 
concern (3). Conventional analytical CT algorithms, such 
as filtered back projection (FBP) is an analytical solution in 
2D CT reconstruction and served as the reference. Using 
these algorithms, the projection must be discretized at a 
high sampling rate to make the image quality satisfactory, 
but an excessively high radiation dose will have a negative 
impact on the health of the patient; in addition, if the sparse 
view measurement sampling is insufficient, the traditional 
algorithm FBP method cannot produce acceptable image 
quality for diagnosis (4-6). Scholars have conducted many 
studies in recent years, including studies on hardware-
based scanning protocols (7-9) and software-based image 
reconstruction techniques (10-13), to determine how to 
reduce the radiation dose of CT scans. Low-dose CT 
imaging can be achieved by reducing the X-ray current (14) 
and by reducing the number of projections per rotation of 
the human body (11). However, in the image reconstruction 
process, the noise created by the insufficient projections 
will inevitably lead to the degradation of image quality. 
To date, a variety of low X-ray current or sparse-view CT 
image reconstruction methods have been proposed. In this 
paper, based on the existing research, we simulate the use 
of a newly proposed method based on the data obtained by 
combining low X-ray current and sparse-view protocols to 
perform low-dose CT scanning under penalized weighted 
least squares (PWLS) criterion reconstruction. Then, 
we focus on reconstructing CT images from the sparse-
view projection data for comparison with other existing 
algorithms.

For reconstruction images using lower dose, many 
improved methods have been proposed (15-19). The filter-
based algorithm is effective and can suppress noise, but due to 
the lack of noise modeling in the filter, key structural details 
may be ignored in the reconstruction process (4-6). The 
statistical iterative reconstruction (SIR) algorithm (20-28),  
which uses the statistical characteristics of the data, has 
been proven to perform well in suppressing noise and streak 
artifacts (29). Statistics-based sinogram restoration and image 
reconstruction algorithms have shown advantages in reducing 
noise (30-32). The SIR algorithm uses the advantages 
of statistical modeling to achieve low-dose CT image 
reconstruction. The related objective function is generally 

composed of two terms: a data fidelity term and a penalty 
term. The data fidelity term is derived from a statistical 
measurement model; the penalty term is usually designed by 
considering the properties of the desired image itself. For 
example, by modeling the characteristics of signal-dependent 
noise, the PWLS method proposed by Wang et al. shows 
robustness in the sinogram space and image domain (30). 

For sparse-view image reconstruction, Sidky et al. 
proposed an innovative algorithm based on projections 
onto convex sets (POCS) (33), which uses the piecewise 
constant assumption to minimize the total variation (TV) of 
the image; this method is called the TV-POCS algorithm 
(34,35). An adaptive-steepest-descent-based POCS (ASD-
POCS) method based on the updated TV-POCS algorithm, 
which minimizes the TV in sparse-view CT image 
reconstruction and improves the denoise performance and 
suppresses cone-beam artifacts, was proposed (36). The 
ASD-POCS algorithm performed well in suppressing cone-
beam artifacts generated by sparse projection data (36). 
However, the characteristics the peripheral part of the 
image in the TV minimization algorithm are isotropic, so 
related algorithms often produce an over-smoothing effect. 
Therefore, a weighted TV minimization approach, as an 
extension of the conventional TV minimization approach, is 
proposed to solve the abovementioned problems in sparse-
view CT image reconstruction (37,38). For example, Zhang 
et al. proposed using restored sinogram data for image 
reconstruction based on the PWLS-based TV (PWLS-
TV) minimization method, which outperforms the PWLS 
method (39). 

The local patch-based processing method has attracted 
more attentions, and it has been proven to be an effective 
method for preserving the patch characteristics. Patch-
based methods can obtain more image features than pixel-
based methods, and they have been widely used in image 
denoising, restoration and reconstruction in recent years 
(40-42). The traditional nonquadratic penalty algorithm 
uses the difference of the intensity between adjacent pixels 
to calculate the roughness on the image, which increases 
the robustness of the algorithm. If the image has serious 
noise, edge detection will be unreliable. The difference in the 
intensities between adjacent pixels is can be used to evaluate 
the results of edge detection in images affected by noise. To 
overcome this problem, Wang et al. proposed a patch-based 
regularization method that uses neighborhood patches instead 
of individual pixels to measure image roughness (40). Patch-
based regularization comparing the similarity between each 
patch outperform the pixel-based regularization (40). Kervrann 
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et al. proposed a novel adaptive patch-based approach for 
image denoising and representation (43). Wang and Qi 
developed a patch-based regularization method for iterative 
image reconstruction, which uses neighborhood patches 
instead of individual pixels to calculate the nonquadratic 
penalty (40). Patch-based reconstruction methods are also 
more robust to hyperparameter selection than traditional 
pixel-based reconstruction methods (44). Lu et al. proposed 
a dictionary-based method to process an input image patch 
by patch, unlike conventional image processing techniques 
that handle an image pixel by pixel (45). The reconstructed 
images obtained by using this approach are significantly 
better than those by using approaches based on pixel-by-
pixel processing (46,47).

Inspired by the ideas of the above methods, we are 
motivated to study whether the image quality can be further 
improved by combining the patch-based regularization 
method with the PWLS-TV algorithm. Thus, we propose 
the PWLS-PR method. Each iteration of the proposed 
algorithm can be described in the following three steps: 
image updating via the PWLS-TV, image smoothing, and 
pixel-by-pixel image fusion. In simulation experiments 
and physical experiments, qualitative and quantitative 
evaluations were measured on CT images reconstructed 
from sparse-view acquisitions. For undersampling and noisy 
image reconstruction, the experimental results show that 
this method can preserve more details than other methods 
while reducing noise and suppressing artifacts.

This paper is organized as follows. We introduce the 
related theory and describe the proposed algorithm in 
detail in the “Methods” section. The description of the 
simulation experiments and the image quality metrics 
used are presented in the “Computer simulation” section. 
The physical experiment is presented in the “Physical 
experiment” section. A discussion of the results is presented 
in the “Discussion” section, and the conclusions are 
presented in the “Conclusions” section.

Methods

CT imaging model

Under the assumption of a single energy beam, an X-ray 
CT measurement can be approximated by the following 
discrete linear system (39):

y=Hμ [1]
where y=(y1, y2, …yM)T represents the sinogram data obtained 
following prediction system calibration and logarithmic 

transformation and the superscript T represents the matrix 
transpose. H represents the M×N system or projection 
matrix that can be calculated in advance by fast ray tracing 
technology. μ = (μ1, μ2, … , μN)T represents the attenuation 
coefficient estimate of the vector.

When there is a measurement deviation or additional 
noise, the X-ray CT measurement can be expressed by the 
following formula:

y=Hμ+e [2]
where e represents measurement deviation and additional 
noise.

The goal of CT image reconstruction is to use the 
system or projection matrix H to estimate the attenuation 
coefficient µ from the sinogram data y.

Existing methods of CT image reconstruction

PWLS method
Based on the existing research, the PWLS criterion for CT 
image reconstruction can be rewritten as follows (32):

( ) ( ){ }1'*

0
arg min ( )p y p y p R p

µ
β−

≥
= − − +∑ [3]

where y=(y1, y2, ... , yM)T represents the sinogram data and 
p represents the ideal projection vector to be estimated. Σ 

is a diagonal matrix whose ith element is 2
iσ , which is the 

variance of the sinogram data y. β is a hyperparameter used 
to balance the fidelity term and the a priori penalty term. 
R(p) is the image roughness penalty.

Conventionally, the image roughness is measured based 
on the intensity difference between neighboring pixels (31). 
In the PWLS method, R(p) uses the following form of a 
quadratic penalty:

2
,

1( ) ( )
2

j

j k j k
j k M
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∈
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where Mj represents the set of four nearest neighbors of the 
jth voxel in the sinogram. ωj,k is the weighting coefficient 
related to the distance between pixels j and k in Mj. The 
weighting coefficient ωj,k is considered to be inversely 
proportional to the Euclidean distance between two pixels.

Based on previous research, the mathematical expression 
proposed by Huang et al. (48) can be used to calculate the 

variance 2
iσ  as follows:

2 2

0 0

1 1exp( )(1 exp( )( 1.25))i i i ep p
I I

σ σ= + −  [5]

where I0 represents the X-ray intensity,  represents the 



2544 Fu et al. Low-dose CT image reconstruction 

© Quantitative Imaging in Medicine and Surgery. All rights reserved.   Quant Imaging Med Surg 2021;11(6):2541-2559 | http://dx.doi.org/10.21037/qims-20-963

mean of the sinogram data in bin i and 
2
eσ  is the variance of 

the background electronic noise.

PWLS-TV method
When the dimensionality of the system matrix in the 
CT system is very large, and when reconstruction is 
performed in the sinogram data of the measurement noise, 
the dimensionality of the system matrix will be seriously 
degraded, and it will be very difficult to directly calculate 
the attenuation coefficient estimate µ in equation (2). 
Therefore, in this paper, we use the PWLS-based criterion, 
which can be expressed as follows (48):

1

0
* arg min{( ) ( ) ( )}p H p H R

µ
µ µ µ β µ−

≥
′= − − +∑  [6]

where H represents the system or projection matrix, p 
represents the restored sinogram data from equation (3),  
and µ represents the attenuation coefficient to be estimated. 
Σ represents a diagonal matrix whose ith element is 

, which is defined in formula (5). β represents a 
hyperparameter used to balance the fidelity term (the first 
term on the right side of Eq. [6]) and the penalty term (the 
second term on the right side of Eq. [6]). For the PWLS-
TV and PWLS-PR algorithms proposed later, an identical 
value of β can be used.

In this paper, a TV-based penalty term is used, which can 
be written as (49):

2 2
, 1, , , 1

,
( ) ( ) ( )v w v w v w v w

v w
R µ µ µ µ µ δ− −= − + − +∑  [7]

where v and w represent the position indicators of the 
attenuation coefficient of the desired image. δ is a small 
constant used to ensure that this term is differentiable 
anywhere relative to the voxel value.

Proposed CT image reconstruction method

When an image is noisy, pixel intensity differences are 
not a reliable means of distinguishing real edges from 
noise fluctuations. To overcome this problem, inspired 
by the penalized likelihood method of positron emission 
tomography (PET) image reconstruction using patch-
based regularization (42), we propose the PWLS-PR 
method, which uses neighborhood patches instead of 
individual pixels to measure the image roughness. The 
proposed method can achieve good results in artifact 
suppression and structure preservation, and because it 
compares the similarity between patches, the proposed 
method is more reliable than the comparison methods 

PWLS and PWLS-TV.

Definition
Traditionally, the image roughness is measured based on the 
intensity difference between adjacent pixels (40):

1

1( )= ( )
4

j

j

n

jk j k
j k N

U µ ω ψ µ µ
= ∈

−∑ ∑  [8]

where U(μ) represents the image roughness penalty and 
ψ(x) represents the penalty function. wj,k represents the 
weighting factor related to the distance between pixels j and 
k in neighborhood Nj.

We add this image roughness penalty term to the PWLS-
TV method to obtain our proposed PWLS-PR method. 
The associated mathematical formula for the PWLS-PR 
method can be expressed as follows:

1

0
* arg min{( ) ( ) ( )} ( )p H p H R U

µ
µ µ µ β µ α µ−

≥
′= − − + −∑   [9]

where α is a regularization parameter that controls 
the balance between the data f idel ity and spatial 
smoothness. Too much α value reduces noise and makes 
the reconstructed image smoother but also reduces the 
resolution, so the choice of α value is very important for the 
PWLS-PR algorithm.

Inspired by the penalized likelihood method of PET 
image reconstruction using patch-based regularization (41),  
we propose using a patch associated with each pixel to 
calculate the image roughness between neighboring pixels j 
and k.

In this paper, the patch of a pixel is a square area with 
the pixel as the center, and the sizes of all the patches in 
an image are the same. We can understand the meaning 
of patch as shown in Figure 1. The proposed patch-based 
roughness function is defined as follows (40):

1

1( ) ( ( ) ( ) )
4

j

j

n

j k h
j k

U f fµ ψ µ µ
= ∈Ν

= −∑ ∑ [10]

where fj(µ) represents the feature vector of the intensity 
values of all pixels in the patch centered on pixel j. The 
patch-based distance between pixels j and k is calculated by 
the following formula:

2

1
( ) ( ) ( )

lm

j k l jl klh
l

f f rµ µ µ µ
=

− = −∑  [11]

where jl represents the lth pixel in the patch associated with 
pixel j. kl represents the lth pixel in the patch associated with 
pixel k. ml represents the total number of pixels in a patch. 
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rl represents a positive weighting coefficient equal to the 
normalized inverse spatial distance between pixel jl and pixel kl.

1
1

lm

l
l

r
=

=∑
 

[12]

From the existing research, we need to obtain a convex 
penalty function to guarantee the convergence of the 
proposed algorithm. Then, the penalty function must meet 
the following three conditions (50):

(I) The penalty function must be differentiable and 
symmetric everywhere.

(II) The first-order derivative must be nondecreasing:

( )( ) d xx
dx
ψψ 

 
[13]

(III) When x≥0 and 0 <ωψ(0) < +∞, the curve must be 
nonincreasing:

( )( ) d xx
dx

ψ ψω



 [14]

As discussed in a previous article, examples of possible 
penalty functions include the following: quadratic 
functions, the Lange function, the Huber function, and 
hyperbolic functions (40). When the penalty function is a 
quadratic function, patch-based regularization is equivalent 
to pixel-based quadratic regularization. However, the 
main disadvantage of quadratic regularization is that the 
discontinuity of the image cannot be taken into account, 
which may result in excessively smooth edges or fine 
structures in the reconstructed image.

Based on existing research experience, in this paper, the 
Lange function is used as the penalty function (40,49):

( ) log(1 )
x x

xψ δ
δ δ

 
= − +  

   

[15]

When |x|<< δ, the function approximates the quadratic 
function, and when |x|>> δ, the function approaches the 
absolute function.

The proposed patch-based regularization method 
based on the PWLS-TV (PWLS-PR) algorithm for CT 
image reconstruction
Due to the nonlinear form of the filter relative to the image 
intensity, it is difficult for general optimization algorithms 
to effectively minimize the objective function in equation (9). 
To solve this problem, in this paper, similar to our previous 
work (31,48,51), an alternating minimization scheme is used 

in equation (9), where the weights can be automatically 
updated based on the similarity between patch windows. 
The current estimate during each iteration is μn, where n is 
the iteration index.

The proposed algorithm will guarantee a monotonic 
convergence to the global solution when the penalty 
function satisfies the three conditions given in the “Proposed 
CT image reconstruction method” section. Based on 
existing research experience, the Lange function is used 
as the penalty function in this paper, which satisfies the 
three conditions (40). Therefore, the proposed algorithm 
is convergent. The whole algorithm is summarized in 
Algorithm 1 (Table 1).

Computer simulation

In this study, experimental data were utilized to validate 
the proposed PWLS-PR algorithm and to compare it with 
the PWLS algorithm, the PWLS-TV algorithm and the 
classical FBP algorithm.

The preliminary image reconstructed using the FBP 
method with a ramp filter was used as the initial estimate 
for all the algorithms. The total number of iterations n was 
set to 100.

Experimental data acquisition
To verify the performance of the proposed method, we use 
the digital extended cardiac-torso (XCAT) phantom (52)  
shown in Figure 2 as analog data for experiments and 
perform ultra-low-dose image simulation on these analog 
data under different X-ray current levels and different 
numbers of views.

The phantom shown in Figure 2 is composed of 512×512 
square pixels with intensity values between 0 and 130. 
The size of each pixel is 0.85 mm × 0.85 mm. We use a 
representative geometrical figure in CT for scanning and 
a monoenergetic fan-beam CT scanner setup for a circular 
orbit. Each rotation included 360 projection views evenly 
spaced on a circular orbit, and each view contained 672 data 
elements each from 1 of the 672 detector bins. The distance 
from the X-ray source to the detector was 1,040 mm, and 
the distance from the center of rotation to the curved 
detector was 570 mm.

E a c h  p r o j e c t i o n  d a t u m  p a s s i n g  t h r o u g h  t h e 
tomographic image along the X-ray can be calculated 
based on the known densi ty  and the area  of  the 
intersection of the ray and the geometric shape of the 
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Table 1 Algorithm 1: PWLS-PR algorithm for CT image reconstruction

Input: XCAT image

Output: final reconstructed image

Parameters: number of iterations iter; hyperparameter β; regularization parameter α

1. Initialize the image:

The image reconstructed using FBP with a ramp filter is used as the initial estimate

2. Main loop for n=1, 2, …, iter

3. PWLS method image updating from the sinogram data y:

*( 1) 1

0
arg min{( ) ( ) ( )}n n n np y p y p R p

µ
β+ −

≥
′= − − +∑

4. TV method image updating from p:

*( 1) 1
TV

0
arg min{( ) ( ) ( )}n n n n n np H p H R

µ
µ µ µ β µ+ −

≥
′= − − +∑

5. Image smoothing:

*( 1)
,Re

1 ( )( )
2 j

n n n n
j g jk k jn k N

j

µ ω µ µ µ
ω

+
∈

= +∑

where the weight ωjk(μ
n) is calculated as 

*( 1)
,1

*( 1) *( 1) *( 1)
,Re , ,Re

2

(1 4 (1 )

n
j TVn

j n n n n n n
j j g j j TV j j g

µ
µ

α µ α µ α µ

+
+

+ + +
=

− + + −

where 

6. Pixel-by-pixel image fusion: 

*( 1)
,1

*( 1) *( 1) *( 1)
,Re , ,Re

2

(1 4 (1 )

µ
µ

α µ α µ α µ

+
+

+ + +
=

− + + −

n
j TVn

j n n n n n n
j j g j j TV j j g

where 

7. End for

8. Return: the image estimate μ*(n+1)

PWLS-PR, patch-based regularization method based on penalized weighted least squares total variation; CT, computed tomography; FBP, 
filtered back projection; PWLS, penalized weighted least squares.
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object in the tomographic image.

Simulation setup
Simulating low-dose noisy projection data is similar to the 
research in (53). First, the y value of the noise-free line 
integral is calculated according to Equation [1] as a direct 
projection operation, and then the noise measurement 
value bi in each bin i is calculated according to the following 
formula for the statistical model of the prelogarithmic 
projection data:

2
0( exp( )) (0, )i i eb Poisson I y Normal σ= − +  [16]

where I0 represents the incident X-ray intensity and  
represents the background electronic noise variance, which 
was set to 10 in this paper.

In this paper, the simulation experiment performed ultra-
low-dose CT images under different X-ray current levels 
and different numbers of views. When simulating different 
X-ray current experiments, the X-ray exposure level I0 was 
set to three different levels: 1×105, 1×106 and 5×106. The 
noisy measurement yi value was calculated through the 
logarithmic transformation of bi. When the different sparse-
view projection data simulation experiments were carried 
out, the original 360 views were under-sampled with 60, 90, 
120, and 180 views.

XCAT phantom studies
For image reconstruction under different sparse-view 
projection data levels, we set the X-ray intensity to a fixed value 
and reconstructed the images from ultra-low-dose sinogram 
data obtained with different algorithms at different sparse-view 
levels. Then, we compare the low-dose reconstruction effect 
maps of the PWLS, PWLS-TV, and PWLS-PR algorithms 
for the different numbers of sparse views. As shown in Figure 3, 
under a fixed I0 =5×106, the number of sparse views from top to 
bottom is 60, 90, 120, and 180.

To analyze the reconstruction image in Figure 3, the 
images reconstructed from the projection data using the 
FBP approach with a ramp filter were used as the prior 
images. Obvious differences can be observed between the 
initial images obtained using the FBP method (shown in the 
first column in Figure 3) and the desired image (shown in 
Figure 2). The measurements of the sparse-view projection 
data resulted in serious fringe artifacts using FBP-based 
reconstruction. The first column in Figure 3 shows the 
images reconstructed using FBP with a ramp filter from the 
60-, 90-, 120- and 180-view projection data, which were 
used as the initial estimates for all the iterative algorithms 
for reconstruction from the same numbers of views. The 
second and third columns in Figure 3 show the images 
reconstructed using the PWLS and PWLS-TV approaches, 
respectively. The fourth column shows the images 
reconstructed using the proposed PWLS-PR approach. 
Through the comparison of reconstruction images of 
different algorithms, it can be seen that the PWLS-PR 
method has better image recovery effects than the other 
methods in terms of noise removal and artifact suppression.

For the image reconstruction under different X-ray 

Figure 1 An example of a sampling window designed for a single 
pixel (the central red pixel). The white window corresponds to a 
patch of size 9×9, and the gray window corresponds to a patch of 
size 3×3.

Figure 2 XCAT phantom.
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Figure 3 XCAT phantom reconstructions using the different methods for a fixed X-ray current level of I0 =5×106 and 60, 90, 120 and 180 
views. FBP, filtered back projection; PWLS, penalized weighted least squares; PWLS-TV, total variation based on penalized weighted least 
squares.

current levels, we set a fixed number of sparse views and 
images reconstructed from the ultra-low-dose sinogram 
data obtained with different algorithms at different X-ray 
current levels. As shown in Figure 4, under a fixed sparse 
view =90, the different X-ray current levels from top to 
bottom are I0 =1×105, I0 =1×106 and I0 =5×106, respectively. 
The proposed PWLS-PR method also achieves better 
image recovery than the other methods at each X-ray 
current level.

In Figures 3,4, the results obtained by the FBP, PWLS, 
PWLS-TV and PWLS-PR methods are shown from left to 
right. The reconstruction parameter value β of the PWLS, 
PWLS-TV and PWLS-PR methods is 0.01. The image 
reconstructed by FBP has serious streak artifacts. It can 
be seen that the proposed PWLS-PR method has better 
image recovery effects than other methods in terms of noise 
removal and artifact suppression.

To further prove the excellent performance of the PWLS, 
PWLS-TV and PWLS-PR methods, we compared the 
performance of these three algorithms in reconstructing detailed 
regions of interest (ROIs). We choose the sparse-view level of 
90 views over 2π and the X-ray exposure level of I0 =5×106; the 
three selected ROIs are shown in Figure 5A. We choose the  
image reconstruction from the 360 views over 2π at an X-ray 
exposure level of I0 =1×105, the three selected ROIs are shown 
in Figure 5B. Zoomed-in views of these three ROIs in Figure 
5A are displayed in Figure 6A. Each row in Figure 6A shows 
the results reconstructed using the different approaches 
from the 90-view projection data. The image reconstructed 
from the projection data using the FBP approach with 
a ramp filter was again used as the initial image. The 
first row in Figure 6A shows the three ROIs obtained 
using the PWLS approach, which still exhibit serious 
streak artifacts. The second and third rows in Figure 6A 

Views

60

90

120

180

FBP PWLS PWLS-TV Proposed
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Figure 4 XCAT phantom reconstructions using the different methods for 90 views and different X-ray current levels of I0 =1×105,  
I0 =1×106 and I0 =5×106. FBP, filtered back projection; PWLS, penalized weighted least squares; PWLS-TV, total variation based on 
penalized weighted least squares.

 show the three selected ROIs with detailed structures 
reconstructed using the PWLS-TV and PWLS-PR 
approaches, respectively. Additionally, the corresponding 
zoomed-in views of the three ROIs in Figure 5B are 
displayed in Figure 6B. All the experimental results prove 
that the PWLS-PR method achieves remarkable gains over 
the PWLS and PWLS-TV methods in terms of preserving 
the structural information of the ROIs.

Performance evaluation
To further demonstrate the benefits of our proposed 
scheme, we quantitatively compare the performance of 
the PWLS, PWLS-TV and PWLS-PR algorithms on the 
reconstruction of the whole image and of the ROIs with 
detailed structures. The peak signal-to-noise ratio (PSNR), 
the root mean square error (RMSE) and the structural 
similarity (SSIM) have all been widely used in evaluating 
the quality of reconstructed CT images (54).

To quantitatively evaluate the PWLS-PR method under 
different numbers of views and different X-ray current 
levels, the PSNR, RMSE and SSIM were calculated as 
image quality indicators for the whole image and for the 

ROIs indicated by the boxes in Figure 5.
For a fixed X-ray current level of I0 =5×106 and different 

sparse-view levels of 60, 90, 120 and 180 views, the whole-
image results are given in Table 2. In addition to the X-ray 
current level shown in Figure 3, the X-ray exposure level I0 
was set to two other values, i.e., 1×105 and 1×106, and a fixed 
sparse-view level of 90 views was used. The corresponding 
whole-image results are listed in Table 3. It can be seen from 
these tables that the PWLS-PR method outperforms the 
PWLS and PWLS-TV methods in most cases, especially 
when the radiation dose is lower.

To more clearly compare the PSNR, RMSE and SSIM 
values for low-dose CT image reconstruction, these metrics 
were also computed for the three ROIs marked with red 
boxes in Figure 5A. The results are shown in Figure 7. We 
can conclude that PWLS-PR outperforms the PWLS-TV 
method by more than 15% and outperforms the PWLS 
method by more than 30% in terms of the PSNR, while 
the RMSE of PWLS-PR is the lowest among the three 
methods. A lower RMSE value and a higher PSNR value 
indicate better-quality reconstructed images. In addition, a 
higher SSIM value indicates that the reconstructed images 

FBP
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1e6

5e6
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Figure 5 Three selected ROIs in the same locations indicated on the results of the PWLS, PWLS-TV and PWLS-PR approaches. (A) 
Image reconstruction from 90-view projection data over 2π at an X-ray exposure level of I0 =5×106. (B) Image reconstruction from the 360 
views over 2π at an X-ray exposure level of I0 =1×105 (in each case, the image reconstructed via FBP from the projection data was used as 
the initial image). FBP, filtered back projection; PWLS, penalized weighted least squares; PWLS-TV, total variation based on penalized 
weighted least squares; ROIs, regions of interest; PWLS-PR, patch-based regularization method based on penalized weighted least squares 
total variation.

are more similar to the reference images in terms of the 
structure and perceptual features. Through comparisons, 
it can be seen that the images processed by the PWLS-PR 
method are also the closest to the reference images. We 
describe the intensity-pixel position map of these algorithms 
in Figure 8. It can be found that the red line of the PWLS-
PR algorithm is the closest to the black line of the reference 
image. This shows that the reconstructed image obtained 
by the PWLS-PR algorithm is the closest to the original 
image. In addition, we compare the performance of these 
algorithms through residual graphs. As shown in Figure 9, 
it can be known that the noise and artifacts in Figure 9D are 
the least. This means that compared with other algorithms 
to reconstruct images, the reconstructed image obtained by 
the PWLS-PR algorithm has the least noise and artifacts, 
and the algorithm has the highest robustness.

All the algorithms were implemented in MATLAB 2016 
(MathWorks). The programs were run on a typical desktop 
computer equipped with an Intel i7-9700 CPU @ 3.00 GHz 
and 64.0 GB of RAM.

Physical experiment

In this section, a diagnostic head phantom (Atom Max 
711 HN, CIRS Inc., VA, USA) was used for a physical 

experiment. CT scanning was performed on our laboratory’s 
CT platform (Varex G-242, Varex Imaging Corporation, 
UT, USA) with an X-ray tube voltage of 120 kV and a 
current of 11 mA. During the experiments, a bowtie filter 
and an additional 0.5 mm copper filter were used. An energy-
resolving photon counting detector (XC-Hydra FX50, 
XCounter AB, Sweden) with an imaging area of 512 mm 
× 6 mm and a native component size of 0.1 mm × 0.1 mm 
was used. The projection data were rebinned from 5,200× 
60 pixels to 850×10 pixels through the following steps:

(I) Discard the 10 columns of data collected at both 
the left and right edges of the detector panel;

(II) Rebin the dataset in a 6×6 binning mode.
The middle two layers of the rebinned 3D projection 

data were extracted and averaged to obtain the 2D data. The 
distance from the source to the center of gantry rotation was 
1,000 mm, and the distance from the X-ray source to the 
detector was 1,500 mm. The gantry was rotated 360° with a 1° 
angular projection interval, and sparse-view data were obtained 
by under-sampling the whole set of 360 projection views to 60, 
90, 120 and 180 views evenly over the original 360 views.

Similar to the simulation experiments, the image 
reconstructed from the projection data using the FBP 
approach with a ramp filter was used as the initial image. 
Figure 10 shows the images reconstructed from the ultra-
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Figure 6 Zoomed-in views of the three selected ROIs for the comparison of the PWLS, PWLS-TV and PWLS-PR approaches. (A) Image 
reconstruction from the 90-view projection data over 2π at an X-ray exposure level of I0 =5×106. (B) Image reconstruction from the 360 
views over 2π at an X-ray exposure level of I0 =1×105. FBP, filtered back projection; PWLS, penalized weighted least squares; PWLS-TV, 
total variation based on penalized weighted least squares; ROIs, regions of interest; PWLS-PR, patch-based regularization method based on 
penalized weighted least squares total variation.
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Table 2 PSNR, RMSE and SSIM values for image reconstruction with different sparse-view levels for a fixed I0 =5×106

I0 =5×106 Whole PWLS PWLS-TV Proposed

Views =60

PSNR 26.33 29.85 34.34

RMSE 8.09e−4 5.40e−4 3.22e−4

SSIM 0.9894 0.9953 0.9983

Views =90

PSNR 27.96 32.90 37.87

RMSE 6.71e−4 3.80e−4 2.14e−4

SSIM 0.9927 0.9977 0.9993

Views =120

PSNR 29.23 35.54 39.69

RMSE 5.80e−4 2.80e−4 1.74e−4

SSIM 0.9946 0.9987 0.9995

Views =180

PSNR 31.24 38.86 41.43

RMSE 4.67e−4 2.14e−4 1.56e−4

SSIM 0.9966 0.9994 0.9997

PSNR, peak signal-to-noise ratio; RMSE, root mean square error; SSIM, structural similarity; PWLS, penalized weighted least squares; 
PWLS-TV, total variation based on penalized weighted least squares.

Table 3 PSNR, RMSE and SSIM values for image reconstruction with different X-ray exposure levels at a fixed sparse-view level of 90 views

Views =90 Whole PWLS PWLS-TV Proposed

I0 =1×105

PSNR 24.92 29.16 31.42

RMSE 9.52e−4 5.85e−4 4.51e−4

SSIM 0.9855 0.9945 0.9967

I0 =1×106

PSNR 27.63 32.34 36.36

RMSE 6.98e−4 4.06e−4 2.46e−4

SSIM 0.9921 0.9973 0.9990

I0 =5×106

PSNR 27.96 32.90 37.87

RMSE 6.71e−4 3.80e−4 2.14e−4

SSIM 0.9927 0.9977 0.9993

PSNR, peak signal-to-noise ratio; RMSE, root mean square error; SSIM, structural similarity; PWLS, penalized weighted least squares; 
PWLS-TV, total variation based on penalized weighted least squares.

low-dose sinogram data acquired at different sparse-view 
levels. From top to bottom, the numbers of views are 60, 
90, 120, and 180. Figure 11 shows the images reconstructed 
from 90 sparse views using the different methods and the 
corresponding three zoomed-in ROIs. It is evident that our 
algorithm shows stronger robustness than the PWLS and 
PWLS-TV algorithms.

Discussion

In this work, we have proposed the novel PWLS-PR 
method with FBP sinogram restoration as a preprocessing 
step for ultra-low-dose image reconstruction from sinogram 
data acquired using a combined low X-ray current and 
sparse-view protocol. The PWLS-PR method was applied 
to reconstruct images from restored sinogram data.
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Figure 7 Performance comparisons of the three algorithms on the whole image and on each ROI marked in Figure 5A. Bar charts of the 
PSNR, RMSE and SSIM values are shown in (A,B,C), respectively (for 90 sparse-view projections over 2π at an X-ray exposure level of  
I0 =5×106). PSNR, peak signal-to-noise ratio; RMSE, root mean square error; SSIM, structural similarity; ROI, regions of interest; PWLS, 
penalized weighted least squares; PWLS-TV, total variation based on penalized weighted least squares.

Figure 8 Intensity profiles along the horizontal line (red) through the image (for 90 sparse-view projections over 2π at an X-ray exposure 
level of I0 =5×106). FBP, filtered back projection; PWLS, penalized weighted least squares; PWLS-TV, total variation based on penalized 
weighted least squares; PWLS-PR, patch-based regularization method based on penalized weighted least squares total variation.
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Figure 9 Panels (A,B,C,D) show the residual images for the FBP, PWLS, PWLS-TV and PWLS-PR methods, respectively (for 90 sparse-
view projections over 2π at an X-ray exposure level of I0 =5×106). FBP, filtered back projection; PWLS, penalized weighted least squares; 
PWLS-TV, total variation based on penalized weighted least squares; PWLS-PR, patch-based regularization method based on penalized 
weighted least squares total variation.

Table 4 Summary of the selected parameters

No. Parameter Value Meaning

1 iter 100 Number of iterations

2 jl 0.85 mm × 0.85 mm The lth pixel in the patch associated with pixel j; each pixel size is 0.85 mm × 0.85 mm

3 Nj 3×3 The size of the neighborhood centered at pixel j

4 α 0.01 (simulation); 0.1 
(real experiment)

A regularization parameter that controls the balance between data fidelity and spatial 
smoothness

5 10 The background electronic noise variance in the simulation

6 β 0.02 A hyperparameter used to balance the fidelity term

7 δ 1×10−9 A hyperparameter in the penalty function

The PWLS-PR method can achieve significant gains, but the computational costs of patch-based methods will inevitably increase, which 
is a disadvantage of the proposed method. The calculation times of the PWLS, the PWLS-TV and the proposed PWLS-PR algorithms 
are given in Table 5. PWLS-PR, patch-based regularization method based on penalized weighted least squares total variation; PWLS, 
penalized weighted least squares; PWLS-TV, total variation based on penalized weighted least squares.

Table 5 The computational costs of the PWLS, PWLS-TV and 
PWLS-PR algorithms.

Number of 
iterations

Calculation time/s

PWLS PWLS-TV Proposed

50 3.67 4.41 329.17

80 5.52 6.55 529.10

100 7.61 8.61 688.40

150 10.07 12.06 1,078.42

PWLS, penalized weighted least squares; PWLS-TV, total 
variation based on penalized weighted least squares; PWLS-
PR, patch-based regularization method based on penalized 
weighted least squares total variation.

In the implementation process, the weights of the 
PWLS-TV term were estimated using the nonlinear 
relationship between the mean and the variance and the 
mean values of the sinogram data. Noise reduction was 
achieved by manually selecting the hyperparameter β 
for PWLS-TV-based image reconstruction. In general, 
it is difficult to find a simple method to determine an 
appropriate value for β, and this value is usually chosen 
based on practical experience. In all of our experiments, 
we empirically found that a β value near 0.02 produced the 
best reconstructed images. Preliminary experimental results 
also showed that using the PWLS-TV method as the first 

A B C D
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Figure 10 Comparison of the performance of the three algorithms for the reconstruction of ROIs with detailed structures. These 
physical experimental results further prove that the PWLS-PR method achieves remarkable gains compared to the PWLS and PWLS-
TV approaches in terms of preserving the structural information of the ROIs. FBP, filtered back projection; PWLS, penalized weighted 
least squares; PWLS-TV, total variation based on penalized weighted least squares; ROIs, regions of interest; PWLS-PR, patch-based 
regularization method based on penalized weighted least squares total variation.

Views FBP PWLS PWLS-TV Proposed

60

90

120

180



2556 Fu et al. Low-dose CT image reconstruction 

© Quantitative Imaging in Medicine and Surgery. All rights reserved.   Quant Imaging Med Surg 2021;11(6):2541-2559 | http://dx.doi.org/10.21037/qims-20-963

Figure 11 Zoomed-in views of the three selected ROIs for the comparison of the PWLS, PWLS-TV and PWLS-PR approaches (for image 
reconstruction from 90 sparse-view projection data over 2π). FBP, filtered back projection; PWLS, penalized weighted least squares; PWLS-
TV, total variation based on penalized weighted least squares; ROIs, regions of interest; PWLS-PR, patch-based regularization method 
based on penalized weighted least squares total variation.

step of the proposed method is useful for the reconstruction 
of ultra-low-dose CT images from data obtained using 
a combined low X-ray current and sparse-view protocol. 
However, it is worth noting that in such a protocol, when 
the X-ray current level and number of views are only 
moderately low, the results obtained via the PWLS-TV 
method seem to show an over-smoothing effect, which will 
reduce the resolution of the reconstructed image. Thus, 
how to reduce noise while maintaining the image resolution 
is a very important topic for discussion in ultra-low-dose 
image reconstruction.

Another parameter that requires attention is the 
hyperparameter δ in equation (15). The experimental results 

showed that the optimal range of δ is approximately 1×10−12 − 
1×10−3. When δ is in the range of 1×10−12 − 1×10−3, it has little 
effect on the quality of the reconstructed images. Thus, in all 
of our experiments, we chose a δ value of 1×10−9.

The third parameter of interest is the patch size in 
equation (12). A larger patch size can lead to a slower 
runtime, and an excessively large patch size may hinder 
the recognition of small image features, resulting in the 
inability to preserve the corresponding edges. Based on 
our experience, we selected different patch sizes from 1×1 
to 7×7 pixels, and we calculated the relative RMSE based 
on different patch size choices. The RMSE values for the 
different patch sizes are shown in Figure 12. Considering 
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these results, we set the patch size to 3×3 pixels in our 
experiments.

The fourth parameter that may affect the results is the 
regularization parameter α in equation (9). A larger α value 
produces a smoother reconstructed image and reduces 
noise, but it also results in a lower resolution. How to 
determine the optimal α value for our proposed algorithm 
is an important question. Based on comprehensive 
consideration of the available options, in our experiments, 
we set α=0.01. Finally, the values and meanings of the 
parameters in the algorithm are summarized in Table 4.

Conclusions

In this paper, we present a PWLS-PR method for sparse-view 
CT image reconstruction. Each iteration of the algorithm 
proposed in this paper can be described in the following three 
steps: image updating via the PWLS-TV, image smoothing, 
and pixel-by-pixel image fusion. This method has been 
validated by computer simulations and a physical experiment.

The experimental results demonstrate that the proposed 
PWLS-PR approach can preserve the detailed structure 
of the desired image. Compared with the existing PWLS 
and PWLS-TV methods, the PWLS-PR approach can 
achieve significant gains. However, as shown in Table 5, 
the PWLS-PR algorithm will increase the computational 
complexity due to its high efficiency. This issue is worth 
discussing in the future. Furthermore, this study shows 
that the PWLS-PR method reduces the amount of 
projection data required for repeated CT scans and has 
the useful potential to reduce the radiation dose in clinical 
medical applications.
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