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Background: Invasive fractional flow reserve (FFR) is a standard indicator of coronary stenoses’ 
hemodynamic severity. Clinical prediction models (CPMs) may help differentiate ischemic from non-
ischemic lesions without using a pressure wire but by integrating related variables. This approach differs 
from that of physics-based models. However, it is not yet known which CPMs are the most reliable at 
detecting hemodynamic significance.
Methods: A systematic review was performed of relevant publications that developed or validated any FFR 
CPMs from inception to April 2019 in the PubMed, EMBASE, and Cochrane Library databases by two 
independent authors. The risk of bias and applicability were assessed using the prediction model risk of the 
bias assessment tool (PROBAST).
Results: A total of 11 unique CPMs and 5 subsequent external validation studies were identified. The 
prevalence of hemodynamically significant lesions (FFR ≤0.80) across the studies had a median of 37.1% 
(range: 20.7–68.0%). Lesion length, percent diameter stenosis, and minimal lumen diameter were the three 
most frequently used variables in the CPMs. Of the 11 FFR CPMs, 9 (82%) exhibited strong discrimination 
[area under the curve (AUC) >0.75], and 5 (45%) had been subject to external validation; however, calibration 
was only available for 3 models (27%). There was a high degree of applicability; however, none of the studies 
was assessed as having a low risk of bias. A CPM was identified that had undergone rigorous validation and 
calibration: the DILEMMA score (three validations; median AUC, 0.83).
Conclusions: Almost half of the existing FFR CPMs had been externally validated. Due to their 
good discrimination abilities, these FFR CPMs are useful tools that could reduce the need for invasive 
hemodynamic measurements. Future research that adheres to methodological guidelines should 
be undertaken to develop high-quality models in this setting. (PROSPERO registration number: 
CRD42019125011).
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Introduction

Since its introduction, fractional flow reserve (FFR) is a 
standard indicator of blood flow and has great value in 
assessing coronary lesions’ severity (1). Robust evidence has 
shown that FFR-guided percutaneous coronary intervention 
(PCI) provides improved outcomes for coronary artery 
disease (CAD) patients compared to strategies guided by 
invasive coronary angiography (2). However, interventional 
cardiologists are still largely dependent on visual estimations 
of lumen narrowing rather than physiological measurements 
in deciding whether to undertake revascularization (3). The 
underutilization of a physiological measurement may be 
related to the high costs of pressure wires, the discomfort 
induced by vasodilation, and the prolonged procedure  
time (4). However, given that PCI can be deferred for nearly 
75% of FFR-interrogated lesions in a large registry (5),  
a risk-stratification tool is needed to facilitate lesion 
selection for invasive functional assessments.

This issue could be resolved by predicting FFR from 
clinical characteristics and angiographic parameters. 
Clinical prediction models (CPMs) are tools that combine 
multiple variables, such as history, routine diagnostic 
tests, or laboratory results, to predict a probability 
related to diagnosis or prognosis (6). Compared with 
other types of models based on geometric reconstruction 
and computational fluid dynamics, CPMs cannot give 
a specific value of FFR but can help stratify patients or 
lesions that are more likely to have an abnormal FFR 
(see Figure 1). These CPMs may diminish the need for 
pressure wires and thus reduce both medical expenditure 
and potential complications (7). Despite an increasing 
number of published FFR CPMs in recent years, there has 
been no attempt to evaluate recent advances on this topic 
comprehensively. Thus, clinicians may find it difficult to 
determine which model is ideal for practical use. This study 
sought to characterize available FFR CPMs, compare their 
included predictors and development methods, and assess 
their performance and methodological quality.

Methods

This review was conducted following the preferred 
reporting items for systemic reviews and meta-analyses 
(PRISMA) statement (8) and another recent guideline (9).  
It was prospectively registered at the International 
Prospective Register of Systematic Reviews (PROSPERO; 
URL: www.crd.york.ac.uk/PROSPERO; registration 

number: CRD42019125011). The population, intervention, 
comparison, outcome, timing, and setting (PICOTS) 
system (9) was used to formulate the review questions (see 
Table 1).

Search strategy and study selection

A comprehensive search for relevant publications was 
conducted in three databases [i.e., PubMed, EMBASE, 
and the Cochrane Central Register of Controlled Trials 
(CENTRAL)] from inception to April 14, 2019. A 
combination of MeSH/Emtree and keywords comprising 
FFR and CPMs were used with no language restrictions. 
Details of the search strategies are provided in the https://
cdn.amegroups.cn/static/public/qims-20-1274-1.pdf. 
After searching for citations in the electronic databases, 
two authors (Drs. Zuo and Zhang) separately screened 
the titles and abstracts to compile a preliminary list. They 
resolved any disagreements by consensus. Studies were 
deemed relevant if they examined any FFR CPM regardless 
of whether it had been subject to external validation. 
Studies investigating the prognostic impact of CPMs were 
not included in this review. Only original articles were 
considered for inclusion. Studies were also excluded if they 
were based on physics (e.g., computational fluid dynamics) 
or did not develop a multivariable model. The references of 
the included studies were checked to identify any additional 
publications related to FFR CPMs.

Definitions

A prediction model study was defined as a study that 
developed a new CPM (10), evaluated the performance of 
a CPM (which was usually referred to as “validation”) (11), 
or did both. The purpose of validation is to assess a model’s 
performance by using development cohorts processed 
by resampling techniques, including bootstrapping and 
cross-validation (“internal validation”) (12), or by using 
other independent datasets as validation cohorts (“external 
validation”) (13). In a prediction model study, “random 
splitting” (i.e., an approach whereby a whole dataset is 
randomly divided into development and validation cohorts) 
may be undertaken (14); however, this approach cannot 
provide a reasonable estimate of a model’s performance due 
to the similarity between the two cohorts (15,16) and should 
be considered a form of “internal” rather than “external” 
validation (14). Conversely, “sample splitting” by time (or 
“temporal validation”) represents a better alternative to 

https://cdn.amegroups.cn/static/public/qims-20-1274-1.pdf
https://cdn.amegroups.cn/static/public/qims-20-1274-1.pdf
https://cdn.amegroups.cn/static/public/QIMS-20-1274-Supplementary.pdf.
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Figure 1 Evolving techniques in the assessment of coronary stenosis severity. (A) Traditional quantitative coronary angiography with an 
intermediate coronary lesion in the left anterior descending artery; (B) physiological measurement with FFR of 0.77 during the hyperemic 
period; (C) three-dimensional angiography-based model with contrast-flow QFR of 0.83; (D) CPM, which contains variables from 
patient characteristics, laboratory tests, and lesion parameters, is developed by logistic or ML algorithms to classify coronary lesions into 
hemodynamic significance (FFR ≤0.80) and hemodynamic insignificance (FFR >0.80). FFR, fractional flow reserve; QFR, quantitative flow 
ratio; ML, machine learning; CPM, clinical prediction model.

Table 1 Review framework according to the PICOTS system

Item Definition

Population Patients undergoing invasive coronary angiography and simultaneous FFR measurement

Intervention Diagnostic models to identify flow-limiting coronary lesions

Comparator Not applicable

Outcome Hemodynamic significance indicated by FFR

Timing Not applicable

Setting Diagnostic prediction models to facilitate subsequent decision making

PICOTS, Population, Intervention, Comparison, Outcome, Timing, and Setting; FFR, fractional flow reserve.
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random splitting and can be considered an intermediate 
form of internal and external validation (14).

Data extraction and quality assessment

We extracted data regarding study characteristics and 
modeling methods, including predictors, model performance, 
and methodological factors. Predictors were defined as 
statistically independent variables or risk indicators that were 
combined to develop a CPM (14,17). Predictors can range 
from demographic variables, medical history, and physical 
signs to imaging results, laboratory tests, and other useful 
information for prediction. In the present study, the following 
three types of predictors were identified in the FFR CPMs: 
(I) patient characteristics (e.g., sex and age); (II) angiographic 
features; and (III) lesion-specific parameters. Lesion-specific 
parameters were defined as the target lesion’s quantitative 
variables (e.g., diameter stenosis), while angiographic 
features referred to other descriptions used in imaging, 
such as calcification and tortuosity. In our setting, model 
discrimination reflected the ability to distinguish ischemic 
lesions (FFR ≤0.80) from non-ischemic lesions (FFR >0.80). 
Discrimination was measured using the receiver operating 
characteristic curve; a higher area under the curve (AUC) 
indicated better discrimination. Generally, an AUC value 
of 0.50 indicates that the discrimination is no better than 
chance, a value of 0.60–0.75 indicates that the discrimination 
is helpful, and a value greater than 0.75 indicates that the 
discrimination is strong (18). Model calibration (or goodness 
of fit) is also an important indicator for evaluating a model 
and reflects the concordance between the expected risk and 
observed risk (i.e., whether a model can correctly estimate the 
actual risk) (18). A calibration plot or Hosmer-Lemeshow test 
usually assesses it; a small P value suggests poor calibration. 
A poorly calibrated model will underestimate or overestimate 
the occurrence of an event.

The methodological quality of the included studies was 
determined using the prediction model risk of the bias 
assessment tool (PROBAST) (19), which assessed predictive 
studies across the following four domains: (I) participants; 
(II) predictors; (III) outcome; and (IV) analysis. Studies can 
be classified as low, unclear, and have a high risk of bias or 
applicability. Bias was defined as any systematic error that 
was present in a prediction model study that would lead 
to distorted results and hamper validity (20). Applicability 
refers to the degree of agreement between the included 
studies and the review question regarding population, 
predictors, or outcomes (20). For example, concerns 

regarding applicability may arise if the participants in a 
study (e.g., patients in hospital settings) differ from those 
characterized in the review question (e.g., individuals in 
primary care settings). Two independent reviewers (Drs. 
Zuo and Zhang) were involved in the data extraction and 
critical appraisal of the studies, and a third investigator (Dr. 
Ma) was consulted if a discrepancy arose.

Data synthesis

Due to the inadequate number of validation studies on 
the same model (n≤3), a meta-analysis was not performed; 
rather, the published literature was qualitatively summarized 
to provide insights into FFR CPMs.

Results

A total of 1,296 citations were identified in the electronic 
databases based on our search strategy (see Figure 2). 
After removing duplicates, all the titles and abstracts 
were screened to exclude non-relevant publications, after 
which 34 full-text articles were assessed for eligibility. 
Subsequently, 18 articles were excluded because they 
constructed physics-based models (n=13), did not establish 
a CPM (n=3), or used coronary computed tomographic 
angiography (CCTA)-der ived FFR (CT-FFR) or 
functionally significant CAD as a reference standard (n=2). 
Overall, 16 studies (7,21-35) were identified that described 
11 different FFR CPMs.

General characteristics and predictors

Most reports were conducted in Australia (23,25,32) (n=3), 
China (33,34) (n=2), South Korea (n=2) (31,35), and the 
United States (27,29) (n=2) (see Figure 3A). All CPMs were 
designed to identify lesion-specific ischemia assessed by 
FFR, including 5,625 and 1,495 lesions for derivation and 
validation, respectively (see Table 2). Nine studies focused 
exclusively on intermediate angiographic coronary stenosis. 
The mean age of the included participants ranged from 59 to 
67 years, and the proportion of males varied from 60.6% to 
88.0%. Three quarters of the studies were single-centered. 
The overall event (FFR ≤0.80) rate had a median of 37.1% 
(ranging from 20.7% to 68.0%). Details of the participant 
characteristics of all the studies are provided in the https://
cdn.amegroups.cn/static/public/qims-20-1274-1.pdf.

Among the 11 unique CPMs, 7 were developed by 
logistic regression analyses (21-25,27,29), 3 by machine-

https://cdn.amegroups.cn/static/public/qims-20-1274-1.pdf
https://cdn.amegroups.cn/static/public/qims-20-1274-1.pdf
https://cdn.amegroups.cn/static/public/QIMS-20-1274-Supplementary.pdf.
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learning (ML) algorithms (30,31,35), and 1 by division (26).  
The number of final variables in each CPM varied greatly 
from 2 to 34. Quantitative angiography was applied in 
all 11 models, suggesting its essential role in predicting 
hemodynamic significance. Of these imaging-based models, 
8 used invasive coronary angiography (21,22,24-27,29,35), 
2 used non-invasive CCTA (23,30), and 1 used both (31).  
Lesion-specific parameters were used in all models, 
and >90% of models contained angiographic features. 
Conversely, patient characteristics (e.g., age and sex) were 
only considered in 27% of the models (27,30,35). The most 
commonly used predictors in the FFR CPMs were lesion 
length (82%), percent diameter stenosis (64%), and minimal 
lumen diameter (55%) (see Figure 3B). A complete list of the 
included variables is provided in the https://cdn.amegroups.
cn/static/public/qims-20-1274-1.pdf

Model performance

Table 3 shows the performance metrics of the included 
models, including their discrimination and calibration. As 
Figure 4 shows, 15 studies reported a median AUC of 0.85 
(ranging from 0.735 to 0.94), and 9 models (82%) showed 
strong discrimination as indicated by an AUC of ≥0.75. Only 
3 models measured calibration using the Hosmer-Lemeshow 
test (25,26,29), calibration plots (25), or tables (29).  
There was no evidence that the performances of the FFR 
CPMs had been compared based on discrimination or 
calibration.

Among the five models undergoing external validation, 
a ML model developed by Hae et al. (31) had the highest 
discrimination (AUC: 0.89). The model incorporated a 
wide range of 34 predictors into its algorithm, including 
angiographic parameters ,  CCTA-based subtended 
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Figure 2 PRISMA flow diagram of study selection. PRISMA, Preferred Reporting Items for Systematic Reviews and Meta-Analysis;  
CT-FFR, computed tomography-derived fractional flow reserve.

https://cdn.amegroups.cn/static/public/qims-20-1274-1.pdf
https://cdn.amegroups.cn/static/public/qims-20-1274-1.pdf


2647Quantitative Imaging in Medicine and Surgery, Vol 11, No 6 June 2021

© Quantitative Imaging in Medicine and Surgery. All rights reserved.   Quant Imaging Med Surg 2021;11(6):2642-2657 | http://dx.doi.org/10.21037/qims-20-1274

myocardial volume, and demographic features. Compared 
with conventional logistic regression models, the three 
ML models (30,31,35) integrated more determinants (>10 
for all) and required less time. The processing time of 
one ML model (30) was <30 seconds, whereas its logistic 
regression model counterpart (23) had a processing time 
of 102.6±37.5 seconds. The DILEMMA score (25) was the 
most tested score across all models and had a good degree 
of discrimination and calibration. Its reported AUCs ranged 
from 0.793 to 0.88 across three external cohorts from 
different races and the score was well calibrated as assessed 
by a calibration plot.

Quality assessment of study methods

In total, 13 studies were retrospective, and 9 models 
were derived from retrospective cohorts. There were 
three models (22,24,27) that had not been subject to any 
validation type, and three models (21,29,30) were only 
internally validated, limiting their generalizability. External 
validation occurred in five models, three of which were 
validated in different studies from their original reports 
(23,25,26). However, only one study (31) was conducted in 
compliance with the transparent reporting of a multivariable 
prediction model for individual prognosis or diagnosis 
(TRIPOD) statement (14). Notably, only two studies (25,29) 
presented the predicted probabilities across subgroups 
using a calibration plot or table, and none of the studies 
mentioned missing data.

Table 4 summarizes the results of our methodological 
evaluation, including the risk of bias and applicability. 
According to PROBAST, the risk of bias in participants’ 

domains, predictors, and outcomes was low in 14, 11, 
and 16 studies, respectively. However, all of the studies 
showed a high risk of bias in the domain of analysis, which 
was mainly driven by an inadequate number of events 
per variable, an inappropriate conversion of continuous 
variables, a univariable selection of predictors, and a lack of 
calibration plots (https://cdn.amegroups.cn/static/public/
qims-20-1274-1.pdf). Conversely, all of the studies ranked 
“low concern for applicability”, suggesting a good match 
between the review question and included studies.

Discussion

To the best of our knowledge, this systematic review was 
the first to synthesize and appraise FFR CPMs; it is also the 
first study to provide current evidence that practitioners 
can use to assess the validity and quality of FFR CPMs. Of 
16 studies, 11 models were identified, 5 of which had been 
externally validated. Discrimination ability was strong in 
the majority of models; however, calibration performance 
was not well documented. An application of PROBAST 
revealed that very few studies met the statistical analysis 
requirements but sound results were acquired in other 
domains. Thus, it may be premature to support a CPM 
for identifying hemodynamically significant coronary 
stenoses in clinical practice until further investigations with 
standardized methodologies and performance reports are 
conducted.

Under routine angiographic evaluation, coronary 
lesions may be misclassified and inappropriately managed, 
as a high frequency of discrepancy between angiography 
and FFR has been found (36). CPMs could be used to 
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Table 3 Algorithms, predictors, and performance metrics of included models

Model
Modeling 
method

Type of predictors 
included in the model

Study,  
year

Discrimination (AUC)

Calibration
Sensitivity 

(%)†
Specificity 

(%)†Derivation 
cohort

Internal 
validation

Validation 
cohort

FAST Logistic 
regression

Lesion-specific 
parameters, and 

angiographic  
features (ICA)

Hoole,  
2012 (21)

– – 0.865‡ – 93.8 71.4

P20-DAC2 Logistic 
regression

Lesion-specific 
parameters, and 

angiographic  
features (ICA)

Biasco,  
2015 (22)

– – – – Probability <20%  
(score <2); probability 

>90% (score ≥4)

ASLA Logistic 
regression with 
modified Akaike 

criterion

Lesion-specific 
parameters, and 

angiographic  
features (CCTA)

Ko,  
2015 (23)

– 0.82 – – 76.3 76.7

Munnur,  
2018 (32)

0.83 – 0.85‡ –– 100.0 
(score ≤4)

94.0  
(score ≥15)

STABLED Logistic 
regression

Lesion-specific 
parameters, and 

angiographic  
features (ICA)

Natsumeda,  
2015 (24)

0.85 – – – 72.3 83.6

DILEMMA Logistic 
regression 
with Akaike 
information 

criterion

Lesion-specific 
parameters, and 

angiographic  
features (ICA)

Wong,  
2015 (25)

– 0.82 0.88 H-L test: 
P=0.5, 

calibration 
plot

>95.0 
(score ≤2)

>95.0  
(score ≥9)

Beton,  
2017 (28)

– – 0.793 – >97.0 
(score ≤2)

100.0  
(score ≥9)

Michail,  
2019 (7)

– – 0.83 – – –

ADDED Ratio Lesion-specific 
parameters, and 

angiographic features 
(ICA or CCTA)

Di Serafino,  
2016 (26)

0.94 – – H-L test: 
P=0.58

94.0 97.0

Yu,  
2018 (33)

0.83 0.827 – – 78.6 85.5

Yu,  
2018 (34)

0.863 0.861 – – 80.0 90.9

FFR-SSS Logistic 
regression

Patient 
characteristics, 
lesion-specific 

parameters, and 
angiographic  
features (ICA)

Matar,  
2016 (27)

0.735 – – – 38.0 90.4

Model by  
Sareen et al.

Logistic 
regression

Lesion-specific 
parameters, and 

angiographic  
features (ICA)

Sareen,  
2017 (29)

0.81 – 0.85‡ H-L test: 
P=0.55, 

calibration 
table

– –

Table 3 (continued)
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Table 3 (continued)

Model
Modeling 
method

Type of predictors 
included in the model

Study,  
year

Discrimination (AUC)

Calibration
Sensitivity 

(%)†
Specificity 

(%)†Derivation 
cohort

Internal 
validation

Validation 
cohort

Model by  
Dey et al.

WEKA Patient 
characteristics, 
lesion-specific 

parameters, and 
angiographic features 

(CCTA)

Dey,  
2018 (30)

– 0.84 – – 73.0 80.0

Model by  
Hae et al.

L2 penalized 
logistic 

regression, SVM, 
RF

Lesion-specific 
parameters, and 

angiographic features 
(CCTA and ICA)

Hae,  
2018 (31)

0.81 – 0.84–0.87‡; 
0.89

– 76.0–84.0 80.0–85.0

Model by  
Cho et al.

XGBoost library Patient 
characteristics, 

and lesion-specific 
parameters (ICA)

Cho, 2019 
(35)

0.86 – 0.87§; 0.87 – 84.0 80.0

†, The sensitivity and specificity are obtained at each study’s own optimal cut-off point. ‡, Temporal validation: the sample is split into a 
development cohort and a validation cohort by time. §, Random splitting: the sample is split into a development cohort and a validation 
cohort randomly. ASLA, Area of Stenosis, Lesion length, and the Alberta Provincial Project for Outcome Assessment in Coronary Heart 
Disease (APPROACH) score; STABLED, Stenosis, Tandem lesion, Bifurcation, LEsion length >20 mm, and Distance from ostium <20 mm; 
DILEMMA, minimal lumen DIameter, lesion LEngth, and area of MyocardiuM At risk; ADDED, Angiography-DeriveD hEmoDynamic; FFR, 
fractional flow reserve; SSS, simple scoring system; CCTA, coronary computed tomographic angiography; H-L, Hosmer-Lemeshow; ICA, 
invasive coronary angiography; RF, random forest; SVM, support vector machine; WEKA, Waikato Environment for Knowledge Analysis; 
XGBoost, eXtreme Gradient Boosting.

Figure 4 The forest plot of AUCs reported in included studies. For studies reporting more than one AUC, only one value was presented 
following the priority order: (I) external validation; (II) temporal validation; and (III) derivation or internal validation. AUC, the area under 
the curve.
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integrate the anatomical and physiological assessments 
of coronary stenosis (without the need for a pressure 
wire), reducing the overall expense and minimizing 
the potential complications associated with invasive 

procedures. Additionally, several virtual indexes have also 
been proposed to detect flow-limiting lesions based on 
computational fluid dynamics, including the quantitative 
flow ratio (QFR) and CT-FFR (37,38).

Table 4 Risk of bias and applicability assessment of included studies (PROBAST)

Model Study, year
ROB Applicability Overall

Participants Predictors Outcome Analysis Participants Predictors Outcome ROB Applicability

FAST Hoole,  
2012 (21)

− + + − + + + − +

P20-DAC2 Biasco,  
2015 (22)

+ + + − + + + − +

ASLA Ko,  
2015 (23)

+ + + − + + + − +

Munnur,  
2018 (32)

+ + + − + + + − +

STABLED Natsumeda, 
2015 (24)

− ? + − + + + − +

DILEMMA Wong,  
2015 (25)

+ + + − + + + − +

Beton,  
2017 (28)

+ + + − + + + − +

Michail,  
2019 (7)

+ + + − + + + − +

ADDED Di Serafino, 
2016 (26)

+ + + − + + + − +

Yu,  
2018 (33)

+ + + − + + + − +

Yu,  
2018 (34)

+ + + − + + + − +

FFR-SSS Matar,  
2016 (27)

+ ? + − + + + − +

Model by 
Sareen et al.

Sareen,  
2017 (29)

+ ? + − + + + − +

Model by Dey 
et al.

Dey,  
2018 (30)

+ + + − + + + − +

Model by Hae 
et al.

Hae,  
2018 (31)

+ ? + − + + + − +

Model by Cho 
et al.

Cho,  
2019 (35)

+ ? + − + + + − +

+ indicates low ROB/low concern regarding applicability; − indicates high ROB/high concern regarding applicability; and ? indicates  
unclear ROB/unclear concern regarding applicability. PROBAST, Prediction model Risk of Bias ASsessment Tool; ROB, risk of bias; ASLA, 
Area of Stenosis, Lesion length, and the Alberta Provincial Project for Outcome Assessment in Coronary Heart Disease (APPROACH) 
score; STABLED, Stenosis, Tandem lesion, Bifurcation, LEsion length >20 mm, and Distance from ostium <20 mm; DILEMMA, minimal  
lumen DIameter, lesion LEngth, and area of MyocardiuM At risk; ADDED, Angiography-DeriveD hEmoDynamic; FFR, fractional flow  
reserve; SSS, simple scoring system.



2653Quantitative Imaging in Medicine and Surgery, Vol 11, No 6 June 2021

© Quantitative Imaging in Medicine and Surgery. All rights reserved.   Quant Imaging Med Surg 2021;11(6):2642-2657 | http://dx.doi.org/10.21037/qims-20-1274

Compared with other emerging techniques, CPMs have 
several advantages. First, risk scores are easy to calculate. 
Consequently, CPMs are suitable for use in centers where 
pressure wires or virtual indexes are unavailable and will 
optimize which patients are referred for further evaluations 
and shorten the consultations’ length. Additionally, CPMs 
could be used as initial screening tools, which would enable 
unnecessary FFR measurements to be avoided. Indeed, a 
recent study showed that nearly half of intermediate lesions 
with a DILEMMA score of ≤2 or ≥9 could potentially 
have been deferred for invasive functional assessments (7).  
Second, CPMs can integrate more ischemia-related 
information than a three-dimensional vessel reconstruction, 
inc luding demographic  character i s t ic s ,  phys ica l 
examinations, laboratory tests, and imaging. Dynamics 
and other factors influence the physiological severity of 
coronary stenosis; thus, a combination of virtual indexes and 
CPMs would provide a more accurate and comprehensive 
assessment of lesions than a single-method approach (33). 
Despite the advantages mentioned above, current CPMs 
still have some limitations. They can only distinguish 
ischemic from non-ischemic lesions, and they cannot 
simulate the FFR value. Further, the included studies rarely 
reported the time needed to complete the prediction, which 
raises another concern that should be addressed before they 
are used in practice.

In the future, a simultaneous risk calculation with 
coronary angiography in the catheterization laboratory 
could be developed to determine whether an intervention 
should proceed. Compared to conventional logistic 
regression, ML has been recognized as a promising 
approach for predictor identification and big-data 
processing, and thus will likely play an important role in 
the improvement of CPMs (39). Notably, Dey et al. (30)  
conducted a study in which ML integrated feature 
selection, model building, and cross-validation. This 
algorithm can be executed on a standard personal 
computer within 30 seconds and exhibited a higher AUC 
than logistic regression (0.84 vs. 0.78). Deep neural 
networks, an objective and automated method for feature 
extraction, could help to simplify the process of image 
identification and reduce the potential biases that arise 
from manual quantifications (40), which are non-inferior 
to experienced observers in the analysis of cardiovascular 
magnetic resonance (41). Similarly, the amount of 
subtended myocardial volume, which is a significant 
predictor of flow-limiting lesions, can be roughly 
estimated by angiographic indexes (23,25,26); however, 

ML provides a feasible approach to measure its value 
accurately (31).

Notably, uncertainty remains about models’ performance, 
especially when used for distinct populations based on 
derivation cohorts. External validation is necessary, as 
internal validation insufficiently reflects models’ actual 
performance in a relatively small cohort (42). However, only 
a small proportion of the FFR CPMs underwent external 
validation, which raises concerns about their generalizability. 
Despite satisfactory discrimination, most FFR CPMs were 
originally designed for intermediate-grade lesions, limiting 
the scope of their application. After the primary study, 
further efforts should be undertaken to investigate their 
prognostic effects and analyze their cost-effectiveness. Apart 
from discrimination, the net clinical benefits could help us 
identify the models that best support decision making and 
lead to better outcomes (43).

There were four major causes of risk of bias in the 
included studies: (I) an inadequate number of participants 
with the outcome; (II) the univariate selection of predictors; 
(III) the inappropriate categorization of continuous 
predictors; (IV) an absence of calibration. The first two 
limitations may exacerbate concerns about optimistic 
model performance, particularly those that did not undergo 
external validation. Despite no consensus on the reasonable 
number of events per variable, we adopted a cut-off point of 
>20 and >200 for logistic regression and ML, respectively 
(20,44). The number of outcomes should be at least 100 
for validation studies (45), but some studies failed to meet 
the minimum criterion. We also noted that univariate 
analyses for screening candidate predictors were used in 
more than half of the included development studies. This 
could lead to biases, as confounding factors might hide 
some significant predictors in the derivation dataset (46). 
Our review systematically summarized the most commonly 
used predictors in FFR CPMs. Consequently, future studies 
may benefit from selecting these directly rather than by 
univariate screening. Further, statistical power is impaired 
when a continuous predictor is categorized without using 
predefined or widely accepted cut-off points (47), which 
are often seen in risk scores for simplicity. This problem 
could be solved with automatic calculation tools, such as 
web calculators and mobile apps. The final shortcoming 
deserves more attention in subsequent validations. Some 
studies measured calibration based on goodness-of-fit 
tests; however, a P value alone does not provide any useful 
information regarding the extent of miscalibration (20).  
This issue arose because some of the early work was 
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conducted before the publication of the TRIPOD statement 
and because less attention was paid to calibration than 
discrimination.

Limitations

This work had several limitations. First, 81% of the studies 
were retrospective and may be inherently influenced 
by confounding factors. Second, heterogeneity across 
the studies and insufficient validation meant that model 
performance could not be quantitatively synthesized; thus, a 
narrative description of FFR CPMs was produced that was 
largely based on their characteristics and methodological 
quality. Third, caution should be adopted in interpreting 
the comparative performance of models, as no existing study 
has validated them within the same cohort. Fourth, most of 
the included studies only focused on discrimination and did 
not combine it with calibration in evaluating overall model 
performance. Thus, the current evidence on FFR CPMs is 
still too weak to draw strong inferences about their actual 
effects.

Conclusions

In conclusion, published FFR CPMs showed good 
diagnostic performance in detecting hemodynamically 
significant coronary stenoses and may reduce the need for 
pressure wires. Many FFR CPMs have been developed; 
however, less than half of these have been externally 
validated, and their calibration has rarely been reported. 
ML techniques may have advantages in terms of accuracy 
and speed that could prove particularly important in clinical 
use. Future studies should seek to examine the external 
validity of existing models and optimize model performance 
rather than developing new models.
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