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Introduction

In patients with rectal cancer, lymph nodes (LNs) are one 
of the main areas of metastasis, and LN metastasis is the 
main cause of postoperative local recurrence and death (1). 
However, current diagnostic methods and criteria used for 

N staging of rectal carcinoma are unsatisfactory, and LN 
status has not effectively selected patients for preoperative 
chemoradiation therapy (CRT) (2,3). Therefore, accurate 
N staging in rectal cancer patients before treatment is 
important for determining the clinical stage, treatment 
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strategy, and prognosis (4,5). Previous studies have revealed 
that the accuracy of endorectal ultrasounds (EUS) and 
computed tomography (CT) in detecting nodal metastases 
varied greatly (62–83% and 22–73%, respectively) (6,7). 
Magnetic resonance imaging (MRI) evaluates LN status 
by measuring the short axial (SA) diameter and can 
achieve 58–70% sensitivity and 75–85% specificity in 
identifying malignant nodes (8). Its use is limited by the 
size overlap between benign and malignant LNs (9) despite 
its popularity. Therefore, none of these current predictive 
methods are satisfactory.    

Radiomics is a combined medical and industrial approach 
that uses advanced artificial intelligence (AI) to solve specific 
clinical problems. In recent years, radiomics has been used 
to evaluate multiple kinds of tumors and is increasingly 
being applied in the clinical setting (10,11). MRI-based 
radiomics models have been used to distinguish cancer from 
benign tissues and to reflect the histological characteristics 
of rectal cancer (12,13). AI can change diagnosis and 
management through its ability to make classifications that 
are difficult for human experts and its ability to review a 
large number of images (14) rapidly. Since it is difficult to 
acquire large amounts of data from medical images, transfer 
learning was adopted (15). Transfer learning is a type of 
deep learning that uses a pretrained model and requires 
fewer medical images. This method begins with initializing 
the network using pretrained weights from a similar 
architecture network and then fine-tunes the parameters 
to fit the target application. According to the class number 
in the new classification task, the last fully connected layer 
is usually replaced with as many neurons as the new class 
number (16). 

To our knowledge, this is the first study to identify 
LN status using the deep transfer learning method on a 
node-by-node basis in patients with rectal cancer. This 
will provide clinicians with more reliable and accurate 
preoperative N staging diagnosis and assist with clinical 
treatments.

Methods

Patients

This prospective study was conducted between April 2018 
and March 2019 and was approved by the Institutional 
Review Board at Harbin Medical University Cancer 
Hospital. Inclusion criteria were as follows: (I) patients 
diagnosed with rectal cancer by endoscopic biopsy and 

scheduled to undergo surgery within 2 weeks after MRI; 
(II) no history of treatment before the MRI; (III) no 
contraindications and can undergo high-resolution MRI; 
(IV) patients with at least one mesorectal (peritumoral) or 
superior mesenteric LNs on MRI; and (V) maximum SA 
diameter of LNs ≥3 mm. The following exclusion criteria 
were applied: (I) patients who received radiotherapy or 
chemotherapy before surgery; (II) patients with poor 
tolerance of MRI; (III) patients with no satisfactory MRI 
scans; and (IV) patients in whom the target LN could not 
be detected during surgery. Finally, a total of 129 patients 
with definite rectal cancer were recruited (Figure 1).

High-resolution rectal MRI parameters

All patients underwent rectal MRI before surgery using 
a Philips Achieva 3.0T MR scanner with a 16-channel 
torso array coil. An MR sagittal T2-weighted (T2W) scan 
sequence was obtained with the following parameters: TR/
TE =3,000 ms/100 ms; number of signal frequency (NSA) 
=2; layer thickness =4.0 mm; and layer spacing =0.4 mm;  
FOV =240×240 mm. The rectal lesions’ position was 
determined in the sagittal position, which was perpendicular 
to the intestinal canal lesions, with a transverse T2W scan: 
TR =3,824 ms; TE =110 ms; NSA =3; layer thickness 
=3.5 mm; and interval =0.2 mm. According to the sagittal 
lesion position, patients with parallel pathological changes 
received a coronal T2W scan: TR =3,824 ms; TE =110 ms;  
NSA =3; layer thickness =3.0 mm; and layer spacing  
=0.2 mm. The LNs were then located in the sagittal, 
transverse, and coronal images. 

Imaging assessment

LN location and image acquisition
The MR images (original images) were reviewed based 
on the consensus of one abdominal radiologist (R1) with 
6-years’ experience in rectal MRIs. This radiologist 
determined the largest separable LN in the mesorectal 
or rectal superior artery region on the T2W images. The 
location and SA diameter of the LN was recorded.

To analyze the LN images blindly, avoiding influence 
from the primary tumor, radiologist R1 manually segmented 
the selected LNs on the maximum cross-sectional slices 
of the original images (including axis, sagittal, and 
coronal T2W images) using free, open-source software 
(Scrtopic1.0). All the LN screenshots underwent a minimal 
rectangular segmentation along the margin of the LNs. 
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60 cases
99 positive LNs

1)	patients defined by endoscope biopsy 
with rectal cancer and scheduled to 
undergo surgery within 2 weeks after 
MRI; 

2)	no history of treatment before 
proceeding MRI;

3)	no contraindication and could 
undergo high-resolution MRI; 

4)	patients with one or more LN around 
mesorectal (peritumoral) and superior 
mesenteric on MRI could be observed 
no matter suspicious or not; 

5)	 the maximum short-axis diameter of 
LN ≥3mm.

319 images

69 cases
128 negative LNs

325 images

322 cases

Rectal carcinoma 
MR Scan [682]

CRT or abandon treatment 
[360]

Unsatisified Images
[19]

No identified LN
[105]

Unable to find the target LN 
during surgery [69]

303 cases

198 cases

129 cases

Figure 1 A flow diagram showing the inclusion and exclusion criteria for this study. 

Each LN screenshot of T2W images in different directions 
in JPEG form was obtained for further analysis as a separate 
sample (Figure 2). 

Qualitative evaluation of LN images 
A second radiologist (R2) with 5-years’ experience and a third 
(R3) with 10-years’ experience reviewed the LN screenshots 
of the T2W images without SA diameter (Cohort 1) and 
identified their status independently. The criteria were 
based on irregular borders, heterogeneous signal intensity, 
and round shape. LNs with two or more of these criteria 
were considered suspicious positive. Radiologists R2 and R3 
then reviewed the LN screenshots of the T2W images with 
SA diameter measurements (Cohort 2) and identified their 
status independently. The criteria were LNs with irregular 
borders, heterogeneous signal intensity, and round shape. 
For LNs with SA diameter <5 mm, 3 criteria were considered 
suspicious positive. For LNs with SA diameter between 5 and 
9 mm, two criteria had to be suspicious, and for LNs with SA 
diameter >9 mm, all criteria had to be suspicious positive (17). 

Ex vivo LN localization for node-by-node matching 
Total mesorectal excision (TME) was performed within  
2 weeks after MRI by a specialized colorectal surgeon. After 
surgery, the pathologist and radiologist R1 cooperatively 
matched the postoperative specimen with preoperative 
examination findings and located the target LN, which 

was then harvested for pathological examination (Figure 2). 
The LN status (benign and malignant) were depended on 
postoperative pathological results and classified as positive 
or negative.

Transfer learning: fine-tuning the convolutional neural 
network

Deep transfer learning is an AI method that is used for pre-
training on large public imaging databases of networks 
and for extracting characteristics, such as edge, texture, 
and grayscale (18). These textures are applied to the target 
domain that contains small samples. Therefore, this method 
is suitable for medical imaging analysis. This study’s 
transfer learning method was executed on a pretrained 
Inception-v3 model, which had been trained for ImageNet 
Visual Recognition Challenge. As each LN’s size varied, 
the screenshots obtained were different (20×21 to 102×111 
pixels). The Inception_v3 pre-trained model requires an 
input image dimension with 299×299 pixels. However, the 
cropped regions of interest (ROIs) were smaller than this 
size. Therefore, the samples were padded to match the 
dimensions of the model. All uniformed LN screenshots 
of T2W images were then inputted into the model. The 
first step was data set preparation. To maximize the training 
data volume and reduce the differences in neural network 
recognition performance, the medical imaging data was 
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randomly divided into a training group and a validation 
group based on the images (each LN was considered a 
subject rather than each patient). The training dataset was 
80% of the T2WI images, while the validation dataset was 
20% of T2WI images, and these were distinct from the 
training datasets. For each image, the training set image was 
subtracted, and the input image was resized to match the 
input layer dimension of Inception-v3. Data augmentation 
was used to increase samples because it can expand the 
training dataset’s size, avoid overfitting, and help improve 
network performance (19). The data argument methods 
included horizontal flip, random Gaussian, random rotation, 
and vertical flip (15).

The pre-trained model weights were loaded into 
the Inception-v3 architecture. After data preparation, 
augmented data were used to train Inception-v3. Various 
model parameter values were adjusted. In training, 
parameters of the deep pretrained model were set as follows: 
a different number of layers were frozen at the beginning of 
the experiment [no freeze and fine-tuning to all transferred 

layers; freezing layers from 1 to n (n=1, 2, 3, 5, 7, and 9)].  
Freezing the first three layers had the best diagnostic 
performance in our samples. Therefore, the weights of the 
first three layers were frozen, and the other parameters were 
fine-tuned. The optimizer was stochastic gradient descent; 
batch size was 64; learning-rate was 10-4; decay was 10-6; 
momentum was 0.95; epoch was 200; the loss function was 
binary cross-entropy. The training was performed on the 
graphics processing unit  (GPU; NVIDIA, GTX1080Ti). 
A nonlinear operation was added in each convolution layer 
with the following activation function (20): 

max 0, *
n

w x bϕ
 

= + 
 
∑ 	

[1]

where φ denotes the feature map of the convolution layer, 
n is the number of convolution filters, x denotes input, w 
denotes filter, and b denotes bias. This design improved the 
computing power of the network and increased the depth 
and nonlinearity of the network. The feature map matrix 
was flattened into a column vector by a full connection 

B
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Figure 2 Patients with suspected positive LNs. Pathological LN in a 56-year-old man with T3N1 stage rectal cancer. (A) Axial, (B) sagittal, 
and (C) coronal T2W images show a suspiciously positive LN located in the mesorectum. (D) Gross specimen of the LN and the rectal 
tumor. (E) Pathological examination of the positive LN. (F) A screenshot of the target LN. LN, lymph node.
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layer. Finally, an activation function, such as sigmoid, was 
used to classify the output as the final result (Figure 3).

Statistical analysis

All statistical analyses were performed using SPSS for 
Windows version 24.0 (SPSS Inc., Chicago, IL, USA). 
Quantitative data were summarized on our dataset as the 
mean ± standard deviation (SD). Qualitative data were 
summarized as the total number of cases on our dataset 
and percentages. The independent sample t-test and chi-
square test were used for different features. Interobserver 
agreement was assessed using Cohen’s kappa statistic (21). 
The receiver operating characteristic (ROC) curves were 
constructed to determine the best diagnostic accuracy based 
on the Youden index. The sensitivity, specificity, positive 
predictive value (PPV), and negative predictive value (NPV) 
were calculated for each method in the different groups. 
P<0.05 was considered to be statistically significant.

Results

A total of 129 patients were enrolled in the study, including 
83 males and 46 females aged between 33 and 80 years of 
age. In this cohort, 21 patients were in the T2 stage (16.3%), 
105 in the T3 stage (81.4%), and 3 patients were in the 
T4a stage (2.30%) (Table 1). Preoperative MRI revealed 
227 targeted LNs that were isolated and the biggest in 
the LN drainage area of each patient, which could seek in 
the TME operation. After the operation, the pathologist 

Table 1 Clinical features and T stage of patients

Parameter LN− (n=83) LN+ (n=46) P

Age 56.4±11.3 60.4±9.24 0.042

Gender

Male 56 (43.4%) 27 (20.9%) 0.421

Female 27 (20.9%) 19 (14.8%)

T stage

T2 20 (15.5%) 1 (0.80%) 0.005

T3 61 (47.3%) 44 (34.1%)

T4a 2 (1.55%) 1 (0.75%)

Continuous variables are presented as mean ± standard 
deviation. Categorical variables are presented as n (%). 
Significant P values are in bold. LN+, lymph node positive; LN−, 
lymph node negative; T, tumor.
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Table 2 A comparison of radiologists and cohorts

PPV NPV Sensitivity Specificity AUC Accuracy

R2 without SA diameter 64.70% 61.60% 54.70% 70.90% 0.626a,b 62.70%

R2 with SA diameter 62.70% 66.10% 68.20% 60.40% 0.643a,c 64.30%

R3 without SA diameter 65.50% 68.50% 69.80% 64.10% 0.671b,d 67.10%

R3 with SA diameter 64.60% 69.40% 72.30% 61.30% 0.670c,d 66.90%

Deep transfer learning method 95.20% 95.30% 95.30% 95.20% 0.994 95.70%

Note: Compared to the radiologist’s AUC: c, P<0.05; a, b, and d, P>0.05. R2, radiologist 2 with 5-year experience; R3, radiologist 3 with 10-
year experience; SA, short axial; PPV, positive predictive value; NPV, negative predictive value; AUC, area under the receiver operating 
characteristic curve.
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Figure 4 A comparison of the receiver operating characteristic (ROC) curves for distinguishing metastatic lymph nodes (LNs) among 
different modes. The area under the curve (AUC) for radiologist R2 without SA diameter, R2 with SA diameter, radiologist R3 without SA 
diameter, R3 with SA diameter, and the deep transfer learning method were 0.626, 0.643, 0.671, 0.670, and 0.994, respectively.

and radiologist R1 cooperatively sought the targeted LNs 
corresponding to the MR images node by node. The 
postoperative pathological examination confirmed that 
99 LNs were positive (43.6%), as shown in  319 T2W 
images (including axis, sagittal and coronal images), and 
128 LNs were negative (56.4%), as shown in  325 T2W 
images (including axis, sagittal and coronal images). The 
SA diameters of positive and negative LNs were 4–22 and  
3–9 mm, respectively.

Radiologist R2 found that PPV, NPV, sensitivity, and 
specificity in Cohort 1 were 64.7%, 61.6%, 54.7%, and 
70.9%, respectively, while the AUC and accuracy were 0.626 
and 62.7%, respectively. In Cohort 2, PPV, NPV, sensitivity, 
and specificity were 62.7%, 66.1%, 68.2%, and 60.4%, 
respectively, while the AUC and accuracy were 0.643 and 
64.3%, respectively. Radiologist R3 found that PPV, NPV, 
sensitivity, and specificity in Cohort 1 were 65.5%, 68.5%, 
69.8%, and 64.1%, respectively, with an AUC and accuracy 

of 0.671 and 67.1%, respectively. In Cohort 2, PPV, NPV, 
sensitivity, and specificity were 64.6%, 69.4%, 72.3%, and 
61.3%, respectively, with an AUC and accuracy of 0.670 and 
66.9%, respectively. In the deep transfer learning method, 
PPV, NPV, sensitivity, and specificity were 95.2%, 95.3%, 
95.3%, and 95.2%, respectively, and the AUC and accuracy 
were 0.994 and 95.7%, respectively (Table 2).

When the same radiologist analyzed data, the AUC 
showed no significant difference between the cohort with 
SA diameter measurements and the cohort without SA 
diameter measurements (P>0.05). However, a significant 
difference in the AUC was detected between the results of 
radiologists R2 and R3 when the SA diameter of LNs was 
known (P<0.05), but no significant difference was found 
when the SA diameter was unknown (P>0.05) (Figures 3,4).

In Cohort 1, Cohen’s kappa coefficient value between 
the two radiologists was 0.359 [95% confidence interval 
(CI) 0.228 to 0.430], indicating fair agreement (P<0.01). In 
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Cohort 2, Cohen’s kappa coefficient value between the two 
radiologists was 0.465 (95% CI, 0.396 to 0.534), indicating 
moderate agreement (P<0.01).

Discussion

Accurately determining the status of LNs in rectal cancer, 
including number and location, can guide treatment 
planning and provide reference indicators for patients’ 
prognosis (4,5). The existing diagnostic rates of LN 
metastasis in rectal cancer using multimodal examination 
methods such as CT/MRI/positron emission tomography–
CT/EUS are not satisfactory (22–85%) (6-8).

This study used a node-by-node examination method, 
providing a gold standard for data analysis with high 
credibility. To our knowledge, LN involvement is a 
predominant factor in poor prognosis, but preoperative 
radiological LN staging is currently not satisfactory (2,3,6). 
There could be two reasons for this. First, it is not easy to 
match the imaging nodes with the histopathological nodes, 
with each bringing about unreliable results. Second, the LN 
size may be too small to distinguish internal details, leading 
to inconsistency and inaccuracy. 

There are many AI methods for the diagnosis of LN 
status in rectal cancer. Tse et al. used an improved computer 
algorithm to quantitatively analyze MRI morphological 
features (including chemical shift artifact, relative mean 
signal intensity, signal heterogeneity, and nodal size) to 
predict LN status in rectal cancer. The predicting accuracy 
using combinations of these quantified features were 
67–86% (22). Huang et al. used radiomics nomogram to 
improve the accuracy by 23% compared with traditional 
CT in the preoperative evaluation of LN status (5). 

However, these results were all lower than the deep transfer 
learning method used in this current study to identify 
LNs metastasis from rectal cancer. Deep learning has 
been widely recognized in various fields and has achieved 
good results in studying medical images. Kai et al. used a 
multiparametric deep learning model on MR images and 
achieved accurate automated detection and segmentation 
of meningioma tissue despite diverse scanners (23). Wang  
et al. engineered and trained a convolutional neural network 
to establish a deep learning model on MRI for liver tumor 
diagnosis (24). Given the small sample size of most medical 
imaging data, the method of deep transfer learning may 
be beneficial. This method was very effective in predicting 
LN status in colorectal cancer (25). We further applied 
this method of deep transfer learning to predicting LN 

metastasis in rectal cancer by optimizing the algorithm. In 
this study, good outcomes were achieved with deep transfer 
learning by freezing the first three layers. The PPV, NPV, 
sensitivity, and specificity were 95.2%, 95.3%, 95.3%, and 
95.2%, respectively, and the AUC and accuracy were 0.994 
and 95.7%, respectively. This was higher than the accuracy 
achieved by the radiologists (62.7–67.1%), meanwhile it 
also avoided the diagnosis inconsistency from different 
radiologists (kappa =0.359–0465). Therefore, using the 
deep transfer learning method can improve the accuracy of 
rectal cancer N staging and provide more reliable treatment 
guidance and prognosis. 

The senior radiologist R3 compared with the junior 
radiologist R2 had better diagnostic performance, although 
there was no significant difference. This illustrates that 
although experience is important for clinical diagnosis, 
uniform standards can narrow the experience gap. Another 
notable result is that, although SA diameter enhanced 
consistency, the cohort with LN SA diameter measurements 
did not significantly improve AUC and accuracy compared 
to the cohort without SA diameter measurements. However, 
the sensitivity improved in Cohort 2, while the specificity 
declined for both R2 and R3. These results suggested that 
LN SA diameter helps positive LN diagnosis but may 
simultaneously increase false-negative results. Therefore, 
SA diameter is not a decisive factor in evaluating LN status 
and may lead to over-staging. In our research, the LN 
T2W screenshot images were analyzed alone without the 
SA diameter, and thus any influence from node size was 
avoided, and good results were obtained. Therefore, this 
study suggests that in rectal LN diagnosis, the internal 
details of the LNs, such as border, signal intensity, and 
morphology, should be used as the main criteria in MRI.

This study had some limitations. First, only the largest 
visible LN in one region on the MRI were enrolled, while 
LNs with SA diameter <3 mm were excluded. Second, 
all the LNs were from the mesorectal and rectal superior 
arterial regions, while pelvic sidewall LNs were not 
considered. Third, the data used for deep transfer learning 
analysis included only T2W images and T1- and diffusion-
weighted images were not considered. Lastly, the study was 
conducted in a single-center study. Future studies should 
address these limitations to achieve improved results. 

In conclusion, the deep transfer learning method is 
suitable for medical image analysis, especially in small 
samples. Most importantly, based on the algorithms used, 
deep transfer learning showed an encouraging performance 
in classifying rectal LNs, using detailed internal features 
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alone without SA diameter. This method can influence the 
preoperative clinical staging and treatment decisions for 
patients with rectal cancer. 
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