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Background: The non-invasive characterization of glioma metabolites would greatly assist the management of 
glioma patients in the clinical setting. This study investigated the applicability of intra-subject inter-metabolite 
correlation analyses for differentiating glioma malignancy and proliferation.
Methods: A total of 17 negative controls (NCs), 39 low-grade gliomas (LGGs) patients, and 25 high-
grade gliomas (HGGs) subjects were included in this retrospective study. Amide proton transfer (APT) and 
magnetization transfer contrast (MTC) imaging contrasts, as well as total choline/total creatine (tCho/tCr) 
and total N-acetylaspartate/total creatine (tNAA/tCr) ratios quantified from magnetic resonance spectroscopic 
imaging (MRSI) were co-registered voxel-wise and used to produce three intra-subject inter-metabolite 
correlation coefficients (IMCCs), namely, RAPT vs. MTC, RAPT vs. tCho/tCr, and RMTC vs. tNAA/tCr. The correlation between 
the IMCCs and tumor grade and Ki-67 labeling index (LI) for tumor proliferation were explored. The differences 
in the IMCCs between the three groups were compared with one-way analysis of variance (ANOVA). Finally, 
regression analysis was used to build a combined model with multiple IMCCs to improve the diagnostic 
performance for tumor grades based on receiver operator characteristic curves.
Results: Compared with the NCs, gliomas showed stronger inter-metabolic correlations. RAPT vs. MTC was 
significantly different among the three groups (NC vs. LGGs vs. HGGs: −0.18±0.38 vs. −0.40±0.34 vs. −0.70±0.29, 
P<0.0001). No significant differences were detected in RMTC vs. tNAA/tCr among the three groups. RAPT vs. MTC and 
RAPT vs. tCho/tCr correlated significantly with tumor grade (R=−0.41, P=0.001 and R=0.448, P<0.001, respectively). 
However, only RAPT vs. MTC was mildly correlated with Ki-67 (R=−0.33, P=0.02). RAPT vs. MTC and RAPT vs. tCho/tCr 
achieved areas under the curve (AUCs) of 0.754 and 0.71, respectively, for differentiating NCs from gliomas; and 
0.77 and 0.78, respectively, for differentiating LGGs from HGGs. The combined multi-IMCCs model improved 
the correlation with the Ki-67 LI (R=0.46, P=0.0008) and the tumor-grade stratification with AUC increased to 
0.85 (sensitivity: 80.0%, specificity: 79.5%). 
Conclusions: This study demonstrated that glioma patients showed stronger inter-metabolite correlations than 
control subjects, and the IMCCs were significantly correlated with glioma grade and proliferation. The multi-
IMCCs combined model further improved the performance of clinical diagnosis.
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Introduction 

Glioma is the most common malignant brain tumor. It is 
associated with a high post-surgical disability rate and a 
high mortality rate, resulting in an enormous healthcare 
system burden (1). The current standard treatment 
regimen involves maximum extent resection plus radio-
chemotherapy following adjuvant chemotherapy. However, 
this is not sufficient to significantly prolong a patient’s 
overall survival (2). Obvious substance metabolism changes 
and accumulation characterize the rapid growth of gliomas 
compared to normal brain tissue. High-grade gliomas 
(HGGs) typically have high proliferating rates and possess 
high and active metabolite transformation rates; thus, 
they have a distinct metabolic profile compared to low-
grade gliomas (LGGs) (3). Many metabolites play a vital 
role in maintaining tumor malignancy, and invasiveness, 
and quantitative metabolic markers are necessary to 
explore tumor subtypes’ characteristics. Understanding the 
correlations between metabolites and tumor subtypes may 
help develop personalized therapies targeting unique tumor 
metabolic profiles (4).

PET-CT (positron emission tomography-computed 
tomography) is the most common non-invasive tool for 
imaging in vivo metabolism. With multiple radiolabeled 
tracers, such as 18F-fluorodeoxyglucose (18F-FDG), 
1C-methionine, 18F-fluoroethyltyrosine (18F-FET), and 
18F-fluorothymidine (18F-FLT), PET provides significant 
clinical benefits in detecting anaerobic glycolysis and 
metabolism of amino acids and nucleosides for protein 
and DNA synthesis in cancer cells (5). Such quantitative 
information might help forecast variations in genetic, 
epigenetic, and proteomic factors or variations in invasion, 
proliferation, and immune-infiltration in gliomas (5,6). 
However, the need for radiant nuclear contrast agents and 
their time limitations mean PET-CT is not as convenient 
as magnetic resonance imaging (MRI) in routine clinical 
applications. Moreover, the ability of 18F-DOPA (18F-f
luorodihydroxyphenylalanine) uptake parameters from 
PET-CT to reflect molecular and histological features is 
limited, and the prediction of prognosis is inefficient (7).  
In contrast, MRI markers can better reflect glioma 
biological features and predict a patient’s progression-free 
survival (8,9).

Advanced MRI sequences, such as proton magnetic 
resonance spectroscopic imaging (MRSI) and chemical 
exchange saturation transfer (CEST) imaging, provide 
quantitative parameters reflecting tissue metabolism at 

the molecular level (10-12). Magnetic resonance (MR) 
spectroscopy allows non-invasive detection of total choline 
(tCho), total N-acetylaspartate (tNAA), and total creatine 
(tCr) levels in cerebral tissue. Amide proton transfer 
imaging (APT) contrast, a type of CEST, detects cellular 
mobile proteins and peptides. Semi-solid magnetization 
transfer contrast (MTC) quantifies the number of 
macromolecular substances, such as structural proteins 
and carbohydrates (13-15). Increased metabolites and 
varied metabolism typically accompany the rapid growth 
of gliomas. The in vivo detection of these metabolic 
parameters with MRI/MRSI may allow the non-invasive 
quantification of key metabolites associated with tumor 
malignancy, tumor grades, proliferation, or genetic features 
(16-18). Moreover, these quantitative metabolic MR 
parameters may also help predict glioma genetic types and 
monitor tumor responses to treatments (19,20). Compared 
to PET examinations, MRI tests are more comprehensive, 
widely available, and safe. 

Recently, increasing attention has been directed to the 
correlation patterns between different MRI modalities. 
The inter-modality correlations may reflect vital biological 
processes and the characterization of tumors. For example, 
the qualitative biomarker T2/FLAIR mismatch, which 
describes the consistency between T2 and T2FLAIR (T2 
fluid-attenuated inversion recovery imaging), is a highly 
specific imaging biomarker for the isocitrate dehydrogenase 
(IDH)-mutant, 1p/19q non-co-deleted molecular subtype 
in lower-grade gliomas (21,22). Moreover, previous studies 
have demonstrated the feasibility of using inter-imaging-
modality correlations for assessing tumor prognosis. For 
example, the higher pixel-wise correlation between the 
PET signal and the apparent diffusion coefficient (ADC) 
value from MRIs suggests a shorter time progression (8,23). 
Hence, exploring inter-metabolite correlations with non-
invasive MRI/MRSI contrasts may lead to an improved 
understanding of gliomas.

Our previous study found that APT contrast and 
MTC were significantly correlated with the tCho and  
tNAA (24). However, the group-level correlation analysis 
might be confounded by inter-subject heterogeneity. 
Since the inter-metabolite correlations at the individual 
level have not been systematically investigated, this 
current study examined the intra-subject inter-metabolite 
correlation with MRI/MRSI contrasts and utilized inter-
metabolite correlation coefficients (IMCCs) to differentiate 
cancer malignancy and proliferation in clinical glioma  
patients. 
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Methods 

Patients

This retrospective study was approved by the institutional 
review board, and all activities during this study abided by 
the basic principles of the Helsinki Declaration. Between 
June 2015 and September 2018, a total of 145 scans were 
performed using a 3.0 Tesla MR750 scanner (GE Medical 
Systems, Milwaukee, WI, USA) with a 32-channel coil. 
Informed consent was obtained from each participant 
before scanning. During the scan, patients were instructed 
to hold their heads still, while a soft sponge mat was used 
to comfort and reduce potential head movement. The 
inclusion criteria were as follows: (I) patients scanned 
with anatomical MRI, CEST, and MRSI; and (II) primary 
gliomas confirmed by pathological examinations. The 
following exclusion criteria were applied: (I) unsatisfactory 
MRSI or CEST scans (14 cases), including mismatched 
imaging slices between CEST and MRS, severe head 
motion, and no CEST or MRSI scans; (II) lesions with 
an insufficient number of voxels (less than 9 voxels) in 
the MRSI (18 cases); (III) non-tumors confirmed by 
histopathological examination (6 cases); (IV) patients not 
receiving surgical operations (8 cases) and duplicated 
scans (1 case); (V) patients with no gliomas, including  
5 cases of lymphomas (1 non-Hodgkin’s lymphoma and  
4 diffuse large B cell lymphoma), 7 cases of meningiomas, 
and 1 case of metastasis tumor; and (VI) no primary 
gliomas, including 17 cases of recurrent gliomas, 3 cases 
of treatment injuries confirmed at 6-month follow-up, and  
1 recurrent primitive neuroectodermal tumor. Following 
the selection criteria, a total of 17 negative controls 
(NCs) and 64 glioma patients were enrolled in this study, 
including 39 LGGs (2 grade I and 37 grade II gliomas) 
and 25 HGGs (13 grade III and 12 grade IV gliomas). 

Scanning protocols

Anatomical MRI, CEST, and MRSI were conducted. 
Anatomical MRI scans included T2 fluid-attenuated 
inversion recovery imaging (T2FLAIR), T1 fluid-
attenuated inversion recovery imaging (T1FLAIR), T2-
weighted fast spin-echo (T2FSE), and T1 post-contrast 
(T1C). All anatomical MRI scans were collected with the 
same field of view (FOV, 240×240 mm2), slice thickness 
(5.0 mm), slice spacing (1.5 mm), and a total of 20 slices 
covering the whole brain. Both CEST and MRSI were 
scanned on the same slices: the largest transverse slice of 

the solid tumor parts and the centrum semiovale in healthy 
volunteers. For CEST, image acquisition with 2 numbers 
of excitations was implemented before T1C scanning. 
A frequency list of +15.6, ±6, ±5, ±4.5, ±4, ±3.75, ±3.5, 
±3.25, ±3, ±2.5, ±2, ±1.5, ±1, ±0.75, ±0.5, ±0.25, and 0 ppm 
was acquired to collect 64 images and 2 reference images 
without saturation. The radiofrequency (RF) saturation 
pulse train consisted of 4 pulses at 2 μT amplitude and  
400 ms durat ion for  each.  Other CEST imaging 
parameters are listed as followed: repetition time/echo 
time (TR/TE) =3,000/22.6 ms, matrix size 128×128, 
slice thickness 5 mm, and FOV 240×240 mm2. The total 
acquisition time for the CEST MRI of a single transverse 
brain slice was 3 minutes 18 seconds. For MRSI, two-
dimensional multi-voxel MRS was implemented with 
point-resolved spectroscopy (PRESS) pulse sequence with 
the following parameters: TR =1,000 ms, TE =144 ms,  
FOV 240×240 mm2 with the matrix size of 128×128, slice 
thickness 14 mm, and NEX =0.8. The voxel size was 
7.5×7.5×14 mm3, with a total scanning time of 4 minutes 
20 seconds. Areas of hemorrhage, calcification, cystic 
components, and large vessels were carefully avoided 
to reduce the potential interference with MRSI, and 
saturation slabs were applied in 6 directions to reduce 
potential fold-over and motion artifacts. 

Data processing

The scanned data were transferred to an AW4.6 workstation 
(AW462) with post-processing capability. For the MRSIs, 
the following steps were included in the preprocessing: 
filtering to reduce noise, zero-filling the signal, water signal 
suppression, signal translating from the time domain to 
frequency domain with fast Fourier transformation, baseline 
correction, and phase correction. The total choline/
total creatine (tCho/tCr) and total N-acetylaspartate/
total creatine (tNAA/tCr) for each voxel were quantified 
as ratios of the areas of tCho, tNAA, and tCr peaks which 
were calculated via curve fitting using the post-processing 
program from the scanner workstation. Amide proton 
transfer (APT), with the asymmetric magnetization transfer 
ratio at 3.5 ppm, was derived from the raw CEST data, B0-
shifted by fitting the Z-spectrum according to the report by 
Zhou et al. (25). The quantitative parameter of the MTC, 
that is, the magnetization transfer ratio, was calculated using 
the following equation (S0 − Ssaturation)/S0, where Ssaturation is 
the signal intensity at +15.6 ppm, and S0 is the signal with 
no saturation (26). 
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Multi-voxel segmentation and quantification of metabolites 

Using the AW4.6 workstation, anatomical MRIs were 
automatically matched with MRSI scanning slabs, and 
quantitative parameters were reconstructed according to 
the acquisition matrix. MRSI voxels that fell completely 
within the tumor solid parts were included, and voxel-wise 
quantitative parameters were obtained. After that, voxel 
positions were recorded concerning anatomical images, based 
on which corresponding APT and MTC in each voxel were 
produced. The detailed flowchart of voxel segmentation and 
co-registration is illustrated in Figure 1. 

Histological examinations

Histological tumor grades were assigned according to 

2016 WHO classification criteria on surgically resected 
specimens (27). Also, immune-histochemical staining was 
performed on 51 tissue specimens from 64 patients. The 
Ki-67 labeling index (Ki-67 LI) was used to quantify the 
tumor cell proliferation status. Ki-67 LI was measured as 
the percentage of positive cells among all cells counted in 
the stained area with the highest density of cells. Cells with 
nuclear staining of any intensity were considered positive.

Statistical analysis

All data are expressed as mean ± standard deviation. To 
explore the inter-metabolite correlation among NCs, 
LGGs, and HGGs, three inter-metabolites correlation 
coefficients (IMCCs), namely RAPT vs. MTC, RAPT vs. tCho/tCr, 

The Included MR sequences and multi-metabolites parameters in within-subject analyses

The coregistration between MRSI and MRI contrast map

T2FLAIR T1 post-contrast APT (%) MTC (%) tCho (AU) tNAA (AU) tCr (AU)

MRSI matrix

MRSI quantification

Obtaining voxel locations
Obtaining MRI contrast  
from the voxels in MRSI

M
TC

A
P

T
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B

Figure 1 Analysis of the MRSI and MRI parameters and the co-registration flow chart. (A) Representative multi-parametric maps from MRSI 
and CEST sequences in gliomas. Signals from MRSI (tCho, tNAA, tCr) are color-coded and overlayed on T2-FLAIR images. (B) The flowchart 
illustrates the co-registration between the MRSI and MRI contrast maps. The MRSI was quantified according to the acquisition matrix and the 
voxel locations in reference to the MRI were obtained. The voxel locations were then used to obtain the corresponding MRI contrast information. 
MRSI, magnetic resonance spectroscopic imaging; MRI, magnetic resonance imaging; CEST, chemical exchange saturation transfer; AU, arbitrary 
unit; APT, amide proton transfer; MTC, magnetization transfer contrast; tCho, total choline; tCr, total creatine; tNAA, total N-acetylaspartate.
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and RMTC vs. tNAA/tCr, were defined as Pearson’s correlation 
coefficients of APT vs. MTC, APT vs. tCho/tCr, and MTC 
vs. tNAA/tCr, respectively, of solid-tumor voxels in each 
subject. For example, RAPT vs. MTC for a certain patient is the 
correlation coefficient between APT and MTC contrasts 
of all tumor voxels from that patient. To investigate 
the dependency of the IMCCs, regression analysis was 
conducted between included voxel numbers and the 
IMCCs. The correlation among the IMCCs and tumor 
grades was explored with Spearman’s rank correlation 
analysis, and the correlation between each IMCC and Ki-
67 LI was quantified using Pearson’s correlation analysis. 
To examine the differences of the IMCCs among NC, 
LGGs, and HGGs, one-way analysis of variance (ANOVA) 
was implemented, followed by the post hoc analysis of the 
least-significant difference method. To combine multi-
IMCCs and remove collinearity IMCCs, multi-variate 
linear regression or binary logistic regression was used to 
build combined models to predict the tumor proliferation 
and grades. The diagnostic performance of the IMCCs 
was evaluated by the receiver operating characteristic curve 
(ROC). The differences in the Ki-67 LI between LGGs and 
HGGs were tested with the independent Student’s t-test, 
and the differences in gender composition between NCs, 
LGGs, and HGGs were tested using the Kruskal-Wallis 
test. All statistical analyses were performed with either 
SPSS, IBM 18, or Prism 5.0 GraphPad software, with two-
tailed P values ≤0.05 considered statistically significant.

Results 

No significant differences in age or gender were observed 
in NCs, LGGs, and HGGs (Table 1). HGGs were marked 
with more rapid cellular proliferative activities. The Ki-
67 LI in HGGs was significantly higher than that in LGGs 

(26.19±19.29 vs. 5.62±4.56, P<0.001). The total included 
voxels in NCs, HGGs, LGGs at the group level were 458, 
764, and 558, respectively. The included voxel number of 
NCs was significantly more than both LGGs and HGGs 
(34.65±2.12 vs. 19.59±8.3 and 22.32±13.39, respectively; 
P<0.0001). However, no significant correlations were 
observed between included voxel numbers and RAPT vs. MTC 
(R=0.11, P=0.387), RAPT vs. tCho/tCr (R=−0.008, P=0.951), and 
RMTC vs. tNAA/tCr (R=−0.172, P=0.174), indicating that IMCCs 
might be independent biomarkers.

Compared with NCs, gliomas showed higher absolute 
IMCC values. However, HGGs demonstrated much greater 
inter-metabolite correlation. The representative cases of 
NCs, LGGs, and HGGs are displayed in Figure 2, and the 
corresponding metabolite correlation scatters are shown in 
Figure 3A,B,C. RAPT vs. MTC and RAPT vs. tCho/tCr increased with 
tumor grade. RAPT vs. MTC was significantly different in the three 
groups (NCs vs. LGGs vs. HGGs: −0.18±0.38 vs. −0.40±0.34 
vs. −0.70±0.29, P<0.0001, Figure 3D). RAPT vs. tCho/tCr was 
significantly higher in HGGs compared to NCs (0.52±0.32 
vs. 0.01±0.25, P<0.0001) and LGGs (0.52±0.32 vs. 0.13±0.34, 
P<0.0001) (Figure 3D). There appeared to be no significant 
differences between NCs and LGGs (P=0.231, Figure 3D). 
Furthermore, no differences in RMTC vs. tNAA/tCr were observed 
among the three groups (P=0.116, Figure 3D). 

RAPT vs. MTC and RAPT vs. tCho/tCr were significantly correlated 
with tumor grades with corresponding R values of −0.41 
(P=0.001) and 0.448 (P<0.001), while no significant 
correlation was observed in RMTC vs. tNAA/tCr (R=−0.17, P=0.2). 
With tumor proliferation, only RAPT vs. MTC was negatively 
correlated with Ki-67 LI (R=−0.33, P=0.02), and neither 
RAPT vs. tCho/tCr nor RMTC vs. tNAA/tCr exhibited any significant 
correlation (Figure 4A,B,C). Predictive models combining 
different IMCCs were built with regression analysis to 
evaluate the Ki-67 LI. The combined model, expressed as Y 

Table 1 The demographic data of the included subjects

Variables NC LGGs HGGs P value

Numbers 17 39 25 N/A

Age 42.47±11.23 43.38±13.57 47.2±12.18 0.40

Gender*

Male 8 20 14 0.85

Female 9 19 11

All data are expressed as mean ± standard deviation or N. * represents statistical analysis by the Kruskal-Wallis test. No significant 
differences were observed in patient age and gender composition. NC, healthy control; LGG, low-grade glioma; HGG, high-grade glioma; 
N/A, not applicable.
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(predictive Ki-67 expression level) =12.48–17.08*RAPT vs. MTC  
−14.66*RMTC vs. tNAA/tCr, displayed improved correlation with 
Ki-67 LI (R=0.46, P=0.0008, Figure 4D).

In distinguishing between healthy and tumor status, 
RAPT vs. MTC, RAPT vs. tCho/tCr, and RMTC vs. tNAA/tCr achieved 
areas under the curve (AUCs) of 0.754, 0.71, and 0.637, 
respectively (Figure 5A). However, relatively low AUCs 
(RAPT vs. MTC 0.66; RAPT vs. tCho/tCr 0.60; RMTC vs. tNAA/tCr 0.69) 
were obtained in differentiating NCs from LGGs. The 
differentiation between NCs and HGGs, RAPT vs. MTC and 
RAPT vs. tCho/tCr, resulted in excellent diagnostic efficiencies 
with AUCs of 0.90 and 0.88, respectively. However, 
RMTC vs. tNAA/tCr showed poor diagnostic performance with 
an AUC of 0.55. In differentiating LGGs and HGGs, 
comparable AUCs were obtained in RAPT vs. MTC and  
RAPT vs. tCho/tCr (0.77 and 0.78); however, relatively low 
AUC with a value of 0.62 was detected in RMTC vs. tNAA/tCr 

(Figure 5B). Using regression analysis, predictive models 

were built by combining different IMCCs to provide 
complementary information in differentiating glioma 
malignancy. The logistic regression model was expressed 
as ln [(1−Y)/Y] =−2.497*RAPT vs. MTC + 2.663*RAPT vs. tCho/tCr 
−2.591*RMTC vs. tNAA/tCr −1.595, in which Y indicates tumor 
grade. The AUC of the combined multi-IMCCs model 
improved to 0.854, with sensitivity and specificity of 
80.0% and 79.5%, respectively (Figure 5B).

Discussion

Compared with normal controls, gliomas showed a stronger 
inter-metabolites correlation. Quantitative biomarkers of 
inter-metabolites correlation, that is, the IMCCs, revealed 
different metabolic correlation patterns in NCs, LGGs, 
and HGGs. Moreover, some patient-specific IMCCs 
significantly correlated with tumor grade and Ki-67 LI. 
The combined multi-IMCCs model could effectively 

T2FLAIR APT (%) MTC (%) tCho (AU) tNAA (AU) tCr (AU)
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H
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Figure 2 Representative cases of healthy control, low-grade glioma, and high-grade glioma. Representative images from (A) healthy 
control; (B) grade II glioma patient; and (C) grade IV glioma patient. Compared with healthy controls, gliomas showed increased APT 
signal and tCho, and reduced MTC signal and tNAA levels. AU, arbitrary unit; NC, healthy control; LGG, low-grade glioma; HGG, high-
grade glioma; APT, amide proton transfer; MTC, magnetization transfer contrast; tCho, total choline; tCr, total creatine; tNAA, total 
N-acetylaspartate.
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Figure 3 The scatter patterns and bar plots of the inter-metabolite correlation coefficients in healthy controls, low-grade glioma, and high-
grade glioma patients. Scatter plots of the IMCCs in (A) healthy control; (B) grade II glioma patient; and (C) grade IV glioma patient. 
Subjects correspond to those in Figure 2. From left to right, the plots are correlations of APT vs. MTC, APT vs. tCho/tCr, and MTC 
vs. tNAA/tCr, sequentially. (D) Bar plot of RAPT vs. MTC, RAPT vs. tCho/tCr, and RMTC vs. tNAA/tCr in the three groups. RAPT vs. MTC and RAPT vs. tCho/tCr  
are significantly different among the three groups, except in the case of RAPT vs. tCho/tCr in differentiating NCs from LGGs. No significant 
differences were observed in RMTC vs. tNAA/tCr among the three subject groups. IMCC, inter-metabolite correlation coefficient; NC, healthy 
control; LGG, low-grade glioma; HGG, high-grade glioma; APT, amide proton transfer; MTC, magnetization transfer contrast; tCho, total 
choline; tCr, total creatine; tNAA, total N-acetylaspartate. *, 0.01<P≤0.05; **, 0.001<P≤0.01; ***, P≤0.001.
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predict tumor proliferation and differentiate LGGs from 
HGGs. This may represent a vital non-invasive metabolic 
biomarker for pre-surgical evaluation of gliomas. 

Personalization of metabolic therapies may be an effective 
cancer treatment strategy. However, this requires the fine-tune 
matching of therapy to an individual’s unique physiology (28). 
Hence, cancer risk stratification with individual IMCCs might 
guide personal treatment regimens. As quantified by advanced 
MRI technologies, tCho, tNAA, APT, and MTC represent 
total choline concentrations, total N-acetylaspartate, cellular 
mobile proteins and peptides, and immobile macromolecular 
substances (3,5,15,29,30). The ratios of tCho/tCr and tNAA/
tCr are frequently used to evaluate tumor burden and losses 
of neurons, respectively (31). The rapid growth of tumors 
increases the demands on metabolic substances, which leads to 
the accumulation of choline and an increase in mobile peptide 
and protein concentrations or the APT signal (25,32). The 
invasiveness of tumors on brain tissues causes the reduction 

of tNAA and immobile macromolecular substances (13,32). 
Thus, to identify the different metabolic statuses in patients 
with gliomas, it is meaningful to correlate APT with MTC, 
APT with tCho/tCr, and MTC with tNAA/tCr.

Moreover, the rapid growth of the tumor relies on a 
higher metabolic turnover, and it has been shown that the 
metabolism of many substances, such as peptides, lipids, 
and carbohydrates, accelerates during carcinogenesis 
(30,33). Due to different cell proliferation rates, metabolite 
transformation rates in tumor tissue differ according to 
the tumor malignancy, contributing to a different IMCC 
for each patient. Hence, patient-specific IMCC allows the 
individual evaluation of metabolite correlation in different 
tumor types. 

The complex metabolic correlations in tumor tissue 
could be a vital pathophysiological basis for seeking useful 
biomarkers that reflect tumor metabolic procedures (34). 
The current study identified multi-quantitative metabolite-
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related biomarkers for glioma evaluation. Moreover, different 
IMCCs can be used to evaluate different aspects in stratifying 
tumors. For example, RAPT vs. tCho/tCr reflects the correlation of 
choline (an indicator of tumor cell membrane formation) and 
mobile peptides and proteins, and RMTC vs. tNAA/tCr reflects the 
semisolid macromolecular substance (indicating the integrity 
of the brain structure) and tNAA decrease (a biomarker of 
neuron loss) (25,31). Different tumor malignancies contribute 
to varied pathological processes, and noninvasive IMCCs 
allow the quantitative description of those processes. Thus, 
the combination of multi-IMCCs provides a more effective 
index for predicting tumor proliferation and differentiating 
tumor grades. Also, intra-subject IMCCs can be more 
specific in differentiation LGGs and HGGs compared to 
group-level correlation analysis (35). 

IMCCs, such as RAPT vs. MTC, are novel biomarkers for 
glioma malignancy and proliferation. Previously, we 
reported a positive correlation between APT contrast, 
tumor grades, and Ki-67 LI (17). While the present study 
demonstrated a negative correlation between RAPT vs. MTC and 
tumor grade or Ki-67 LI, this does not conflict with the 
previous study since RAPT vs. MTC represents the correlation 
coefficient between the inter-metabolites APT and MTC. 
RAPT vs. MTC is a different signal compared to APT contrast 
itself. IMCCs may be less influenced by inter-subject and 

spatial tumor heterogeneity compared to studies using 
metabolic imaging contrasts themselves for differentiating 
glioma malignancy (35). Therefore, IMCCs may be effective 
novel biomarkers for differentiating glioma malignancy and 
proliferation.

Three IMCCs, namely, RAPT vs .  tCho/tCr,  RAPT vs .  MTC, 
and R MTC vs .  tNAA/TCr,  were included based on their 
pathophysiological meanings in this study. APT and tCho/
tCr were significantly correlated with tumor malignancy 
and proliferation, while MTC and tNAA/tCr represent 
brain structures and neurons (36). In this study, tCho/tCr 
and tNAA/tCr were examined rather than tCho and tNAA 
because tCho/tCr and tNAA/tCr are considered more 
reliable than tCho and tNAA alone. Moreover, a relatively 
short time of repetition (TR =1,000 ms) and a relatively 
long echo time (TE =144 ms) were utilized in our MRSI 
protocols. A relatively short TR can reduce the scanning 
time, allowing more averages within a clinically feasible 
scanning period. Meanwhile, a longer TE can preferably 
suppress the signals from macromolecules to achieve 
more stable spectroscopic baselines, contributing to more 
reliable quantifications (37,38). As demonstrated in this 
study results, the IMCCs showed no significant correlation 
with the number of included voxels. The inter-metabolite 
correlation analyses may have been less sensitive to tumor 
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size and spatial location. 
There are several limitations to this study. First, while 

the study demonstrated the adequacy of single-slice MRI 
and MRSI for glioma grading, three-dimensional APT and 
MRSI might provide more comprehensive information 
regarding cancers’ spatial heterogeneity. Second, the 
mismatch in slice thickness between MRSI and CEST MRI 
may have caused some inaccuracy in our quantification. 
Third, IDH gene status and the 1p19q codeletion were not 
measured in the dataset included in this study. Considering 
the increasingly important roles of these latter genetic 
biomarkers in glioma risk-stratification and treatment 
guidance (39,40), future correlation analyses among 
IMCCs, IDH status, and 1p/19q codeletion may provide 
further diagnostic information in the clinical setting. 

Conclusions

Compared with normal controls, IMCCs generally showed 
an increase in glioma malignancy, and some IMCCs were 
effective at predicting tumor proliferation, and combining 
multiple IMCCs further improved cancer characterization. 
In conclusion, IMCCs might be an important novel clinical 
biomarker for the non-invasive characterization of gliomas 
in patients.
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