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Introduction

Glioma is the most common neuroepithelial tumor, 
accounting for about 40% of primary intracranial  
tumors (1), and those of a high-grade are characterized 
by rapid progression, severe symptoms, and poor quality 
of life. The 5-year survival rate of glioblastoma (GBM) 
is less than 5%, with a median survival of approximately  
14 months (2,3), and while surgical resection is the current 

primary treatment approach, the postoperative residual 
tumor is an important factor in the prognosis of patients 
(4,5). Low-grade glioma refers to grade I–II, and high-grade 
glioma refers to grade III–IV based on the World Health 
Organization (WHO) criteria (6). The selection of surgical 
procedures is partly determined by the grade of glioma and 
by assessing the complexity of surgical resection (7-10). 
To ensure patient management is continuously improved, 
it is extremely important to implement accurate glioma 
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classification strategies that rely on intraoperative imaging.
Preoperative magnetic resonance imaging (MRI) is 

the primary diagnostic modality for the classification of 
glioma and residual tumors (11). However, it shows the 
poor diagnostic performance when tumor calcification and 
hemorrhagic necrosis are present, and its sensitivity for the 
diagnosis of high-grade glioma is highly variable, ranging 
from 55.1–83.9% (12). On this basis, MRI cannot be used as 
an objective method for diagnostic grading before surgery.

Intraoperative B-mode ultrasound is a safe, convenient, 
and effective imaging tool for intraoperative monitoring 
that has been widely used in neurosurgery. Studies have 
shown that intraoperative ultrasound monitoring can help 
neurosurgeons locate intraoperative tumors, guide surgery, 
and identify residual tumors (13-15), and its application has 
also been found to help improve the postoperative quality 
of life of glioma patients (16,17). However, there are few 
studies on the classification of glioma by intraoperative 
B-mode ultrasound. 

As an emerging ultrasonic technique, shear wave 
elastography (SWE) can differentiate tissues by assessing 
their stiffness quantitatively according to Young’s modulus 
and can provide more supplementary information to 
improve diagnostic accuracy. SWE tracks the propagation 
of the shear wave generated by the acoustic radiation force 
and shows that the shear wave travels faster through stiffer 
tissues. Some studies have reported different SWE patterns 
for different types of brain tumors (18,19), but at present, 
the use of SWE to predict the grade of glioma has seldomly 
been reported.

This study aimed to assess the value of intraoperative 
B-mode ultrasound and SWE in the diagnostic grading of 
glioma by analyzing gliomas’ characteristics using these 
methods and providing a theoretical basis for identifying 
residual tumors using SWE.

Methods

The Ethics Committee approved this study of the Beijing 
Tiantan Hospital (KY2018-097-02), and all participating 
patients or their guardians provided written informed 
consent. 

Research population

Patients with single supratentorial superficial glioma 
who were scheduled to undergo brain tumor removal at 
the Neurosurgery Department of our hospital between 

December 2018 and June 2019 were enrolled in this 
study. Patients with multiple gliomas, tumor recurrence, 
chemotherapy, or other types of intracranial tumors such as 
meningioma or neurofibroma were excluded. All enrolled 
patients underwent MRI examination before surgery and 
were diagnosed with intracranial glioma by postoperative 
pathological examination.

B-mode and SWE examinations

A Hitachi Noblus scanner (Hitachi, Japan) with a C42 
convex array probe (frequency: 3–12 MHz) and an Aixplorer 
scanner (SuperSonic Imagine, France) with an SMC12-
3 convex array probe (frequency: 3–12 MHz) were used to 
acquire B-mode and SWE images, respectively. 

B-mode images were acquired after craniotomy and 
before dural opening. The probe was protected with sterile 
sheets and positioned perpendicularly over the dura while 
images were acquired. The size, morphology, border, echo, 
cystic area, degree of edema, and calcification of tumors 
were recorded. The diameter of the tumor was measured 
at the largest part of the tumor, and tumor size was divided 
into <3 cm, 3–5 cm, and >5 cm categories (20). The extent 
of peripheral edema was also assessed at the largest part of 
the tumor, with mild edema defined as ≤2 cm and severe 
edema as >2 cm (21).

The SWE examination was conducted after the B-mode 
scan. This saw the dura opened, and patients treated with 
cerebrospinal fluid drainage and mannitol infusion to 
reduce cranial pressure and avoid excessive bulging of brain 
tissue, which may influence SWE measurement accuracy. 
The probe was coated with ultrasound transmission gel, 
protected with sterile sheets, placed perpendicularly over 
the dura, then placed lightly on the brain’s surface with 
minimal pressure. The tumor was focused and centered in 
the B-mode display; the probe kept steady to obtain a clear 
B-mode image and then switched to SWE mode. The SWE 
sampling frame was controlled at a size of 2–4 cm and depth 
of 1–4 cm to adjust to the solid center of the tumor, and no 
additional pressure was applied by the operator during the 
whole process. When the color stably filled more than 80% 
of the sampling frame area, the image was frozen and played 
back to obtain a qualified SWE image for measurement. 
A region of interest (ROI) that was filled with color was 
chosen, then Young’s modulus was measured automatically 
(color bar: 0–55 kPa). When the color filled the ROI and 
the minimum Young’s modulus of the ROI was greater 
than 0, the measurement was considered successful, and if 
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unsuccessful, re-measurement was performed. A patient 
with five consecutive unsuccessful measurements was 
excluded from SWE examination, and the average of three 
measurements of the mean Young’s modulus was used for 
further analysis. SWE examination was performed on both 
the solid portion of the tumor and the peritumor tissues. 
Peritumor tissue was defined as tissue that was within 2 cm 
of the edge of the tumor and tissue exhibiting edema was 
avoided. The SWE measurement was performed at the 
same horizontal position with the tumor. 

Two observers performed the SWE examination to 
assess the reproducibility and reliability of SWE in glioma 

grading, and following the above protocol; the first SWE 
examination was performed by observer A after the dura 
was opened. The second examination was performed by 
observer B at the same position and depth of the tumor. 
Then a second SWE examination was performed by 
observer A. Observer A had 5 years of experience in 
ultrasonic elastography, and each observer was blind to the 
other’s result and the clinical information of the patients. 
The agreement between the same observer and between 
different observers was assessed.

After the operation, tumor tissue was taken for 
pathologic analysis to determine the glioma’s pathological 
type and grade.

Statistical analysis

SPSS 20.0 statistical software was used for data analysis 
(IBM Corp., Armonk, NY, US). According to a normality 
assessment using the Shapiro-Wilk test, all measurement 
data were expressed as the mean ± standard deviation or the 
median and interquartile range. t-tests or nonparametric 
rank-sum tests were used to compare two groups of 
measurement data, the χ2 test was used for counting data, 
and logistic regression was used for multifactor analysis. 
The Kruskal-Wallis test was used to compare multiple 
measurement data, and post hoc analysis was performed using 
the Mann-Whitney U test with Bonferroni correction. The 
diagnostic performance was evaluated by receiver operating 
characteristic (ROC) curve analysis. Finally, an optimal 
cutoff point was determined to obtain a numerical value that 
would allow discrimination between low-grade and high-
grade gliomas, and the intra- and interobserver reliability 
was assessed using the intraclass correlation coefficient 
(ICC). The effect size, 95% confidence intervals (CIs), and 
P values were calculated with a P value <0.05 considered to 
be statistically significant.

Results

All patients enrolled in the study underwent tumor 
resection, and a summary of their clinical characteristics 
and the tumors is shown in Table 1. We performed a B-mode 
examination on 172 patients (64 women and 108 men; 
mean age: 43.7±15.0 years old), and SWE on 52 patients, 
including 28 patients with low-grade glioma and 24 with 
high-grade glioma. The Young’s modulus value of the 
peritumor tissue could not be measured in several patients 
because of limitations related to the bone flap size and 

Table 1  Clinical information of the patients and tumor 
characteristics

Characteristics Total n=172

Age (years), range (mean ± SD) 18–69 (43.7±15.0)

Sex

Male 108

Female 64

Tumors size (mm), range (mean ± SD) 12–81 (41.8±14.6)

Tumors location

Frontal lobe 78

Parietal lobe 48

Temporal lobe 27

Occipital lobe 19

Pathology

Low-grade

WHO Grade I –

Pilocytic astrocytoma 6

Angiocentric glioma 1

WHO Grade II

Diffuse astrocytoma 30

Oligodendroglioma 49

High-grade

WHO Grade III –

Anaplastic astrocytoma 14

Anaplastic oligodendroglioma 16

WHO Grade IV –

Glioblastoma 56
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tumor location, which resulted in only 33 patients included 
for further analysis. 

B-mode examination

Glioma has various B-mode manifestations, which can be 
hyperechoic, isoechoic, or mixed echogenicity with regular 
or irregular morphology, and clear or unclear boundaries, 
while some may have necrotic cystic degeneration. 
Representative B-mode images are shown in Figure 1.

Data on the age, sex, and B-mode manifestations of 
patients with low- and high-grade glioma were analyzed, 
and the results revealed significant differences in age, 
tumor morphology, clear boundaries, tumor echo, cystic 
degeneration, degree of peripheral edema, and uniform 
internal echo (all P<0.05) (Table 2). Univariate analysis was 
used for screening, and eligible factors were included in 
the multivariate logistic regression analysis, which showed 
patient age, cystic tumor degeneration, and peripheral 
edema were independent risk factors for high-grade glioma 
(OR >1, P<0.05) (Figure 2).

SWE examination

The Young’s modulus values of peritumor tissue, low-
grade glioma, and high-grade glioma were 8.20 (7.50, 9.70) 
kPa, 19.65 (15.30, 24.75) kPa, and 9.55 (8.50, 13.80) kPa, 
respectively, with significant differences found among the 
groups (P<0.05) (Table 3). The representative SWE images 
are shown in Figure 3. The post hoc analysis revealed that 
pairwise comparisons of the different Young’s modulus 
values for peritumor tissue, low-grade glioma, and high-

grade glioma also showed significant differences (all P<0.05) 
(Table 3). The Young’s modulus value increased in the order 
of peritumor tissue, high-grade glioma, and low-grade 
glioma, and a comparison of Young’s modulus between low-
and high-grade gliomas, excluding GBM, is listed in Table 4.

ROC curves were used to analyze the diagnostic 
performance of SWE for high-grade glioma, and the area 
under the curve was 0.859 (95% CI: 0.758 to 0.961, P<0.05) 
(Figure 4). The best cutoff value was 12.1 kPa, with 89.3% 
sensitivity and 75.0% specificity.

Finally, as the duration of surgery, the intra- and the 
interobserver reliability of SWE were determined for only 
12 patients. The ICCs for intraobserver and interobserver 
reliability ranged only from 0.921 to 0.965. The details are 
shown in Table 5.

Discussion

This study verified the value of intraoperative B-mode 
ultrasound and SWE in the diagnostic grading of glioma 
and indicated that patient age, cystic tumor degeneration, 
and peripheral edema were independent risk factors for 
high-grade glioma. High-grade gliomas had a lower Young’s 
modulus than low-grade gliomas, and the best cutoff 
value for the diagnosis of high-grade glioma in SWE was  
12.1 kPa.

A total of 172 patients with glioma were observed for 
routine B-mode ultrasonographic manifestations, including 
tumor size, echo intensity, boundary, internal echo 
uniformity, peripheral edema degree, cystic degeneration, 
and calcification. The results revealed significant differences 
between low-grade glioma and high-grade glioma in terms 

A B

Figure 1 Representative B-Mode images. (A) A hyperechoic tumor with a clear boundary determined to be a low-grade glioma with the 
white arrows indicating the tumor. (B) A hyperechoic tumor with an unclear boundary and cystic degeneration determined to be high-grade 
glioma with the red arrow indicating cystic degeneration.
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Table 2 Comparison of B-mode signs between low-grade and high-grade glioma

Groups Low-grade glioma High-grade glioma t/χ2 P Effect size (Cohen’s d/Φ)

Age (years) 38.5±13.1 48.9±15.1 4.818 <0.001 0.736

Sex 0.100 0.752 0.024

Male 53 (54.0) 55 (54.0)

Female 33 (32.0) 31 (32.0)

Size (cm) 3.737 0.154 0.147

<3 28 (23.5) 19 (23.5)

3–5 38 (37.5) 37 (37.5)

>5 20 (25.0) 30 (25.0)

Morphology 17.591 <0.001 0.320

Regular 34 (22.0) 10 (22.0)

Irregular 52 (64.0) 76 (64.0)

Border 10.591 0.001 0.248

Clear 38 (28.0) 18 (28.0)

Unclear 48 (58.0) 68 (58.0)

Echo 7.394 0.025 0.207

Iso-echo 27 (27.0) 27 (27.0)

High echo 50 (43.5) 37 (43.5)

Mixed echo 9 (15.5) 22 (15.5)

Cystic area 21.697 <0.001 0.355

Yes 15 (29.5) 42 (29.5)

No 71 (56.5) 44 (56.5)

Brain edema degree 43.518 <0.001 0.503

No 60 (41.5) 23 (41.5)

Mild 20 (20.5) 21 (20.5)

Severe 6 (24.0) 42 (24.0)

Internal echo 23.766 <0.001 0.372

Homogeneous 48 (32.5) 17 (32.5)

Heterogeneous 38 (53.5) 69 (53.5)

Calcification 0.874 0.350 0.071

Yes 79 (80.5) 82 (80.5)

No 7 (5.5) 4 (5.5)

Data are shown as n (theoretical numbers). 
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of age, tumor morphology, boundaries, tumor echo, cystic 
degeneration, degree of peripheral edema, and internal 
echo. Multivariate logistic regression analysis showed that 
age, cystic tumor degeneration, degree of edema around 
the tumor, and uneven internal echogenicity of the tumor 
were independent risk factors for high-grade glioma, which 
indicated that the older the patient was and the more 
severe the degree of peritumoral edema, the greater the 
probability of high-grade glioma. These results are partly 
consistent with the findings obtained by MRI (22), and they 
may relate to the growth pattern of high-grade gliomas, 
which grow rapidly and have an insufficient blood supply, 
leading to necrosis of the emergent tissues (23). Also, high-
grade glioma’s growth process often leads to the destruction 
of the blood-brain barrier and an increase in vascular  
permeability (24), causing edema in the surrounding brain 
tissue. Therefore, attention should be paid to these signs 
during an intraoperative ultrasound examination.

In this study, 52 of 172 patients with glioma were 

examined by intraoperative SWE, which showed that 
Young’s modulus of low-grade glioma was significantly 
higher than that of high-grade glioma, which is similar to 
the results of a previous study (19). This may be related 
to the pathological characteristics of glioma. Low-grade 
glioma mostly shows a dense and uniform cell arrangement 
with less bleeding and necrosis, while the differentiation 
of high-grade glioma cells is immature, the arrangement is 
disordered, and there are more bleeding and necrosis areas 
inside, resulting in the low stiffness of high-grade gliomas. 
In clinical practice, surgery and postoperative treatment 
are mainly conducted by neurosurgeons according to the 
presence of a high-grade or low-grade glioma. However, 
the ultrasound characteristics of GBM are recognizable for 
any experienced examiner, and many neurosurgeons are 
concerned about the differences in SWE characteristics 
between low-grade and high-grade gliomas, excluding 
GBM. Our results indicate that Young’s modulus of low-
grade gliomas was higher than that of high-grade gliomas, 

Figure 2 Logistic regression analysis of the independent risk factors for high-grade glioma. Patient age, tumor cystic degeneration, and 
peripheral edema were found to be independent risk factors for high-grade glioma.

Table 3 Comparison of Young’s modulus in groups of peritumor tissue, low-grade, and high-grade glioma

Groups Young’s modulus/kPa
Groups

H P ES (η2)
Peritumor tissue Low-grade glioma High-grade glioma

Peritumor tissue 8.20 (7.50, 9.70) – – – 44.646 <0.001 0.324

Low-grade glioma 19.65 (15.30, 24.75) 6.210† (P<0.001) – –

High-grade glioma 9.55 (8.50, 13.80) 2.773† (P=0.018) 4.434† (P<0.001) –

Data are shown as the median and interquartile range. †, the testing value by post hoc analysis using the Mann-Whitney U test. ES, effect 
size. 

Factors OR (95% confidence interval)      P

Age

Size

Border

Cystic

Morphology

Internal echo

Brain edema degree

2.437 (1.390~4.273)

0.890 (0.507~1.561)

2.073 (0.798~5.390)

2.922 (1.082~7.894)

1.324 (0.444~3.951)

1.704 (0.970~2.995)

2.725 (1.640~4.527)

0.002

0.684

0.135

0.034

0.615

0.064

0.000

0.2                      1         2                    8
OR
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A

B

C

Figure 3 Representative SWE images of peritumor tissue and glioma tissue. (A) peritumor tissue with a Young’s modulus of 8.7 kPa; (B) 
low-grade glioma with a Young’s modulus of 27.2 kPa; (C) high-grade glioma with a Young’s modulus of 10.0 kPa. The Young’s modulus was 
increased in the order of peritumor tissue, high-grade glioma, and low-grade glioma.

Table 4 Comparison of Young’s modulus between low-grade and high-grade glioma, excluding GBM

Grade Number of cases Young’s modulus/kPa Z P ES (η2)

Low-grade glioma 28 19.650 (15.300, 24.750) −2.52 0.011 0.172

High-grade glioma (w/o GBM) 10 12.550 (8.425, 18.700)

Data are shown as the median and interquartile range. GBM, glioblastoma; ES, effect size.
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excluding GBM. The pathological results were taken as the 
gold standard in our study, and the area under the ROC 
curve to analyze the diagnostic performance of SWE in 
predicting glioma grading was 0.859. The best cutoff value 
was 12.1 kPa, indicating that tumors with Young’s modulus 
less than 12.1 kPa tended to be high-grade glioma, and 
those with Young’s modulus over 12.1 kPa tended to be low-
grade glioma. Intraoperative pathologic diagnosis, including 
frozen sections and cytology smears, provides a real-time 
diagnosis for surgeons, but the heterogeneity of the tumor, 
accuracy of sampling, and duration of examination limit its 
diagnostic accuracy, ranging from 71.40% to 96.06% (25). 
As a real-time, quantitative, and objective tool, SWE could 
provide additional information to obtain a more precise 
real-time diagnosis for neurosurgeons when distinguishing 
high-grade glioma from low-grade glioma intraoperatively. 
SWE also compensates for the deficiency of distinguishing 
glioma levels by morphological changes and has guiding 
significance for adjusting the surgical plan and selecting a 
suitable treatment strategy.

In addition to the grade identification of glioma, the 
residual tumor size is also of great importance to patient 
treatment and prognosis. Some reports have shown that 
patients’ postoperative survival is related to the degree of 
glioma resection (26). Accordingly, identifying residual 
tumor tissues from normal brain tissue has become the 
focus and represents a major challenge for an intraoperative 
ultrasound. In this study, the SWE results revealed that 
Young’s modulus of peritumor tissue was lower than that 
of glioma tissues, indicating that SWE may be used to 
identify residual glioma from the surrounding normal tissue 
and could provide a research direction for intraoperative 
localization and residual tumor identification. Some studies 
have even shown that ultrasound elastography helped 
assess the completeness of resection in epilepsy surgery 
and brain tumor surgery (27,28). However, a case series 
study demonstrated that it could not detect boundaries 
between lesions and normal brain tissue (29). The choice of 
elastography methods may affect the results because strain 
elastography requires an external force while SWE does 
not. Our results show that differences between peritumor 
tissue and high-grade glioma tissue existed, but these 
findings were limited. Therefore, distinguishing the two by 
SWE only may be infeasible and requires further study.

The variation in intra- and interobserver reliability in 
SWE limits its applicability at present. In this study, the 
intra- and interobserver reliability was verified by ICCs, 
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Figure 4 Analysis of the ROC curve of SWE for the diagnosis of 
high-grade glioma. The area under the curve was 0.859 (95% CI: 
0.758 to 0.961).

Table 5 Agreement assessment of SWE in grading gliomas 

Observers and 
groups

Young’s modulus (kPa) ICC (95% CI)

Observer A,  
observation 1

Total (n=12) 12.500  
(10.900–19.775)

–

Low-grade  
glioma (n=7)

18.800  
(13.100–25.700)

–

High-grade  
glioma (n=5)

10.800  
(9.400–11.550)

–

Observer A,  
observation 2

Intraobserver

Total (n=12) 12.650  
(11.700–19.750)

0.958  
(0.862–0.988)

Low-grade  
glioma (n=7)

19.300  
(13.100–22.900)

0.921  
(0.614–0.986)

High-grade  
glioma (n=5)

11.600  
(10.200–12.100)

0.955  
(0.635–0.995)

Observer B Interobserver

Total (n=12) 13.000  
(9.900–18.725)

0.965  
(0.885–0.990)

Low-grade  
glioma (n=7)

18.200  
(14.100–23.200)

0.922  
(0.619–0.986)

High-grade  
glioma (n=5)

9.800  
(8.900–10.450)

0.954  
(0.630–0.995)

Data are shown as the median and interquartile range. SWE, 
shear wave elastography; ICC, intraclass correlation coefficient; 
CI, confidence interval.
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and the results showed that SWE exhibited satisfactory 
reliability in determining the stiffness of gliomas of different 
grades.

This study also has limitations. Firstly, the sample size 
for the SWE evaluation was small and further studies 
with larger samples are needed to understand better its 
value for the intraoperative determination of residual 
tumor. Secondly, all cases in this study were supratentorial 
superficial tumors, and Young’s modulus of the deep 
basement nuclear mass was not considered. Finally, contrast-
enhanced intraoperative ultrasound (CE-IoUS) was not 
used in our study. The future of intraoperative ultrasound 
could be revolutionized by the advent of CE-IoUS, which 
may serve as a surrogate for more expensive intraoperative 
imaging modalities such as computerized tomography and 
MRI. Therefore, the future armamentarium for neuro-
oncology surgeons could expand over time as the number 
of contrast media currently under advanced laboratory 
testing will continue to increase (30-34). Despite the above 
deficiencies, intraoperative B-mode ultrasound and SWE 
are undoubtedly valuable for neurosurgeons due to their 
ability to distinguish high-grade gliomas from low-grade 
gliomas. 

Conclusions

High-grade glioma is associated with significantly more 
severe necrotic cystic degeneration and peritumoral edema 
on B-mode and lower stiffness on SWE than low-grade 
glioma. Further, SWE exhibits excellent intraobserver and 
interobserver reliability. Therefore, intraoperative B-mode 
ultrasound combined with SWE can provide morphological 
information of gliomas and enable the assessment of glioma 
stiffness both objectively and quantitatively, which will help 
neurosurgeons in grading glioma and adjusting the surgical 
plan during the operation. 
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