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Introduction

Breast cancer is the most diagnosed cancer and the leading 
cause of cancer death among women worldwide (1). Breast-
conserving therapy (BCT), which involves a wide local 
excision followed by radiotherapy to the whole breast, 
has become the standard treatment for early-stage breast  

cancer (2). In postoperative breast cancer radiotherapy, 
accurate delineation of the breast tumor bed and its target 
volume is essential, and registering the image acquired 
before surgery to the image acquired after surgery can 
help to define target volumes. Recently, deformable image 
registration (DIR) has been introduced to define the breast 
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tumor bed with different image modalities, including CT (3), 
contrast CT (4), MRI (5), and PET-CT (6). However, most 
of these are intensity-based methods, and no application 
of feature-based or hybrid methods has been reported in 
breast cancer radiotherapy.

As reported by many researchers, incorporating contour 
information with intensity-based DIR can achieve better 
registration accuracy (7,8). However, in the registration of 
breast CT, the region of interest (ROI) that could be used 
as constraints are almost unavailable except the unaffected 
breast gland. In this study, the contour of breast gland was 
only used for input of DIR algorithm and not for treatment 
planning purpose. The contour of breast gland is important 
for ROI-based image registration algorithms. It could 
not only be used as additional feature in conjunction with 
intensity-based DIR for finer searching of tumor bed and 
its target volume, but also serve as ROI for quantitative 
assessment of registration accuracy. However, contouring 
of breast gland is quite difficult in planning CT. For one 
reason breast gland do not have a unique CT number 
distribution in CT images. Thus, it cannot be segmented 
by simply using traditional segmentation methods based on 
CT numbers (such as gray-level thresholding and region 
growing) or shape-based methods (such as snakes and 
active shape model). For another reason, due to surgical 
interference (deformation and removal of glandular tissue) 
and post-surgical changes (seroma and edema, etc.) the 
density of breast gland regions may be affected considerably, 
which may potentially result in poorer contrast from 
surrounding tissue.

The manual contouring process is time-consuming 
and subject to considerable inter-and intra-observer  
variability (9). As an auxiliary tool, the automatic contouring 
of breast gland has mostly been investigated in the field 
of diagnostic CT with higher contrast. Zhou et al. (10,11) 
proposed a fully automated scheme for segmenting 
breast gland in non-contrast CT images. This scheme 
calculates each voxel’s probability of belonging to breast 
gland or chest muscle in CT images as the reference of 
the segmentation and identifies breast gland based on CT 
number automatically. The probability is estimated from 
the location of breast gland and chest muscle in CT images, 
and the location is investigated from a knowledge base that 
stores pre-recognized anatomical structures using different 
CT scans. Using the probabilistic atlas and density (CT 
number) estimation, the proposed method was efficient and 
robust for breast gland segmentation. However, there are 
challenges for planning CT with low-contrast ROIs. Firstly, 

the location and shape of breast gland vary considerably and 
it is difficult to construct a “universal atlas” for all patients. 
Secondly, surgical interference and post-surgical changes 
may compromise the accuracy of breast gland locations 
based on CT number.

Deep learning (DL) methods are capable of many 
computer vision tasks, and there has been increasing 
interest in their application to radiation therapy. In this 
study, a prior information guided DL network was used 
to contour breast gland automatically from planning 
CT. In Methods section, the prior information for 
prediction is first introduced. Then, the DL network for 
segmentation is described in detail. Next, the prediction 
model’s performance is evaluated quantitatively. In Results 
Section, the results of DL network for auto-contouring are 
summarized. Finally, the proposed method’s advantages 
and disadvantages are discussed, and the future work is 
prospected.

Methods

Datasets

Six left-sided breast cancer patients who underwent breast-
conserving surgery and postoperative radiotherapy in 
our hospital were enrolled in this study. The mean age 
of patients was 50 years (range, 44–59 years), and the 
pathological diagnosis in all was invasive ductal carcinoma 
with a stage of T1–T2N0M0. All patients underwent a 
lumpectomy with sentinel lymph node dissection, and 
tumor-negative margins were ensured during a single 
operation. The breast volumes varied from 373 to 919 cm3, 
averaging 617 cm3. The study was approved by the local 
Ethics Committee and informed consent was waived in this 
retrospective study.

The image data originally consisted of six preoperative 
CT scans and six planning CT scans. The preoperative 
CT scan was contrast-enhanced and performed 1 week 
before breast conserving surgery (BCS), while the planning 
CT scan was non-contrast-enhanced and performed 
on average 10 weeks after BCS. Patients undergoing 
preoperative CT were placed in the supine position, with 
their hands naturally extended and placed on both sides 
of the head. Image acquisitions were performed according 
to the standard clinical protocol, 60 s after the injection 
of 100 cm3 intravenous contrast agent. The dimensions 
of preoperative CT volume varied from 512×512×51 to 
512×512×60 in voxels, and the slice thickness was 5.0 mm. 
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The in-plane image resolution varied from 0.68×0.68 mm to 
0.94×0.94 mm. In postoperative CT simulation, the patients 
were in the supine position, immobilized on a breast bracket 
with no degree of incline and placed using arm support (with 
both arms above the head). The dimensions of planning CT 
volume varied from 512×512×41 to 512×512×53 in voxels, 
and the in-plane image resolution varied from 1.18×1.18 mm  
to 1.37×1.37 mm. The slice thickness was also 5.0 mm. 
The contour of breast gland in both preoperative CT and 
planning CT was delineated and peer-reviewed by two 
radiation oncologists in our department using the Pinnacle 
treatment planning system (Phillips Medical Systems). For 
any inconsistent contours, an agreement was reached based 
on their union. The breast gland contour in planning CT 
was defined as the ground truth label.

All preprocessing was performed in the 3D Slicer 
platform (12) (www.slicer.org). The volumes were all 
resampled to an isotropic resolution of 1×1×5 mm and 
then cropped to 256×256×32 pixels around the breast’s 
centroid. Data augmentation was implemented using the 
SlicerIGT extension (13). To realistically simulate human 
body deformation (equivalent to repeat scanning), a smoothly 
changing dense deformation field was applied on both 
image data and ground truth labels. For this purpose, two 
fiducial point lists (each including 57 points) were specified 
on one image. Two pairs of these points defined the LR-
direction displacements (one chosen from 1/2/3 mm and 
the other chosen from 4/6/8 mm), which resulted in nine 
combinations, while the remaining pairs of points stayed 
at the same position. Thin-plate spline transform was 
then used to align each pair of points in the point list, 
and the resulting transform was then interpolated and  
smoothed (14). Each image data and ground truth label was 
deformed nine times using the resulting transform, resulting 
in 120 sets of CT scan and label images available for the 
model training. All CT scan and label images were resized to 
240×240×152 to meet the input requirement of 3D U-Net, 
and the voxel size was changed to 1.07×1.07×1.05 mm  
after resizing.

Prior information

The overall workflow, which consists of training and testing 
stages, is shown in Figure 1. The dashed line indicates the 
data flow for model training, while the solid line indicates 
the data flow for model testing. The preoperative CT with 
its contour and the planning CT with its contour were 
exported from the treatment planning system. The affine 

registration between the preoperative CT and planning 
CT was first performed using Elastix registration software 
(15,16) integrated in 3D Slicer. The resulting transform 
was then applied to map the contour of breast gland in 
preoperative CT to its correspondence in planning CT. 
The affine registration and label transformation were all 
performed in 3D. This transformed contour provides a 
preliminary estimation of breast gland in planning CT and 
facilitates the searching of more accurate contour by the 
prediction model.

As shown in Figure 1, both preoperative and planning 
CT images with the masked contour of breast gland 
were generated via intersection operator and used as two 
input channels of the prediction model. The contour of 
breast gland in preoperative CT was masked, as shown in  
Figure 2A, and the transformed contour of breast gland in 
planning CT was used as prior information and masked 
in the same way as shown in Figure 2B. The CT number 
for both masked areas was set to −3,024, which is the 
cutoff value of CT image and easily identified from the 
surrounding tissue. For reference, the original preoperative 
CT and planning CT images without mask are shown in 
Figure 2C,2D, respectively. The ground truth labels for 
breast gland and non-gland in planning CT are represented 
by white and black colors, as shown in Figure 2E, which is 
the third input channel of the prediction model.

3D U-Net architecture

A 3D U-Net architecture previously used for brain tumor 
segmentation was employed in this study (17), as shown 
in Figure 3. The initial series of convolutional layers were 
interspersed with max pooling layers and successively 
decreased the input image’s resolution from 132 to 9 in the 
encoding process (left part of Figure 3). These layers were 
followed by a series of convolutional layers interspersed 
with upsampling operators, successively increasing the input 
image’s resolution from 9 to 132 in the decoding process 
(right part of Figure 3). A batch normalization layer was 
introduced before each rectified linear unit (ReLU) layer. 
In the original U-Net implementation, all convolution, 
max pooling, and upsampling operations were carried out  
in 2D (18). This was later extended to a 3D U-Net by Çiçek 
et al. (17).

The 3D U-Net was trained on image patches, and the 
test patches were finally stitched into a complete segmented 
test volume through an overlap-tile strategy. A random 
patch extraction datastore that contains the training image 

http://www.slicer.org
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and pixel label data was used to feed the training data to the 
network. The patch size was 132×132×132 voxels, and 16 
randomly positioned patches were extracted from each pair 
of volumes and labels during training. For prediction, the 
overlap-tile strategy was used to predict the labels for each 
test volume, which was then padded to make the input size 
a multiple of the network’s output size and compensated for 
the effects of valid convolution. The overlap-tile algorithm 
selected overlapping patches, predicted the labels for each 
patch, and then recombined the patches, which avoids 
border artifacts using the valid part of the convolution in 
the neural network (18).

Like the standard U-Net, the deep-learning network 
used in this study has an encoding path and a decoding 
path. In the encoding path, each layer contains two 3×3×3 
convolutions, each followed by a ReLu, and then a 2×2×2 
max pooling with strides of two in each dimension. In the 
decoding path, each layer consists of an up-convolution of 
2×2×2 by strides of two in each dimension, followed by two 
3×3×3 convolutions, each followed by a ReLu. Shortcut 
connections from layers of equal resolution in the analysis 

path provide the essential high-resolution features to 
the synthesis path. In the last layer, a 1×1×1 convolution 
reduces the number of output channels to the number 
of labels which was 2 in our case. The architecture has 
1.907e7 parameters in total. Bottlenecks could be avoided 
by doubling the number of channels already before max 
pooling, as suggested in (19) and this scheme was adopted 
in the synthesis path.

Evaluations

A three times five-fold cross-validation procedure was 
applied to the 60 patient datasets. Each fold (containing  
12 patients) was selected as the test data, and the remaining 
four folds (containing 48 patients) were used as training 
data. Averaging the prediction accuracy on five folds led 
to the overall accuracy estimate of the proposed method. 
The dice similarity coefficient (DSC), which is frequently 
used for training U-Nets (18), was used as the loss function. 
The prediction model’s performance with the input of prior 
information (as shown in Figure 2A,2B) was compared to 

Figure 1 The workflow of the deep learning network. The dashed line indicates the data flow for model training, while the solid line 
indicates the data flow for model testing. Pre-CT and P-CT are the abbreviations of preoperative CT and planning CT, respectively. The 
intersection is the operator to mask out the intersection and set its value to the cutoff value (−3,024) of CT image.
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the prediction model without the input of prior information 
(as shown in Figure 2A,2D). The average DSC, together 
with standard deviation of the prediction model with two 
types of input images were calculated, and the average 
Hausdorff distance (HD), together with standard deviation, 
were also calculated. Paired t-test was used to compare the 
results, and P<0.05 was considered statistically significant. 
All statistical analyses were performed in R statistical 
software (version 3.6.3).

The Adaptive moment estimation (Adam) was used to 
optimize the loss function. The initial learning rate was 
set as 0.0005, the learning rate drop factor as 0.95, and the 
validation frequency as 20. The network was trained with 

maximal 50 epochs and tested on a workstation equipped 
with NVIDIA Geforce GTX 1080 TI GPU with 11 GB of 
memory.

Results

The training time for 3D U-Net was approximately 
30 hours, while the prediction time was 20 seconds per 
patient. In this binary segmentation, each pixel is labeled 
as breast gland or non-gland, as shown in Figure 2E. 
Without the input of prior information, the average DSC 
of breast gland was 0.775±0.065, while with the input of 
prior information, this was 0.830±0.038. The difference 

Figure 2 Input images and labels for the deep learning network. (A) Preoperative CT masked with the contour of breast gland; (B) planning 
CT masked with the transformed contour of breast gland; (C) original preoperative CT without mask; (D) original planning CT without 
mask; (E) ground truth labels of ROIs for planning CT (white: breast gland; black: non-gland). ROI, region of interest.
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between the average DSC of breast gland resulting from 
the prediction models without and with the input of prior 
information was statistically significant (0.775 vs. 0.830, 
P=0.0014<0.05). Comparatively, the average DSC of 
breast gland was 0.70±0.01 using the traditional gray-level 
thresholding segmentation method. For fair comparison, 
without the input of prior information, the average HD of 
breast gland was 44.979±20.565, while with the input of 
prior information, this was 17.896±5.737. The difference 
between the average HD of breast gland resulting from 
the prediction models without and with the input of prior 
information was statistically significant (44.979 vs. 17.896, 
P=0.002<0.05). Comparatively, the average HD of breast 
gland was 55.898±25.345 using the traditional gray-level 
thresholding segmentation method.

The predicted labels of breast gland with the input of 
prior information overlaid on the planning CT images 
with the ground truths for all six patients are shown in 
Figure 4, with the predicted labels in white and the ground 
truths in black. The segmentation results are displayed in 
three orthogonal views. It showed that the majority of both 
contours were highly similar. The predicted contour had 
smoother boundary than the contour which was manually 
delineated by radiation oncologist.

Discussion

In this study, a prior information guided DL network was 
developed to contour breast gland automatically from 
planning CT. To the best of our knowledge, no similar 
study has been reported in the field of postoperative breast 
cancer radiotherapy. The preliminary results showed that 
the introduction of prior information with affine transform 
successfully improves the prediction accuracy of breast 
gland contour. This improvement may be attributed to 
the geometrical information provided by the preliminary 
estimation of breast gland in planning CT, which facilitates 
the searching of more accurate contour in subsequent step 
by the DL model.

An early reported DL based method for segmentation of 
breast was specified for diagnostic CT with higher contrast 
between anatomical structures (20). The advantage of the 
DL based method in comparison with the regional intensity 
based or overall histogram-based unsupervised learning 
methods (21) is obvious. It depends not only on the voxel 
intensities but also morphological variations and gradients 
within the CT image. However, this method is based on 2D 
U-Net, which is insufficient in learning spatial information 
between adjacent slices. Also, it could fail when planning 

Figure 3 The 3D U-Net architecture. Blue boxes represent feature maps. The number of channels is denoted above each feature map.
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CT with low-contrast ROIs are presented. In our study, 
the prior information was introduced to lend preliminary 
geometrical distribution of breast gland to the training 
model and guide the searching of more accurate and reliable 
contour.

Both preoperative CT and planning CT images (without 
mask) were initially used for the input of network training 
but it didn’t work well (average DSC =0.33). It looks like 
there were few high-contrast features in breast region 
which made less attention to network training. Therefore, 
the contour of breast gland in preoperative CT was masked 
with the cutoff value of CT image to enhance the contrast 
and it did work well (average DSC =0.78). Furthermore, 
the transformed contour of breast gland (presented as prior 
information) in planning CT was masked in the same way, 
and its effectiveness was validated by experiments (average 
DSC =0.83). It may be possible to provide an additional 
channel for prior information, although this will cost more 
resource of network. This would be a good attempt and will 
be tested in the future.

In this study only diagnostic CT and planning CT 
were used. There could be more input image modalities 
such as CBCT, ultrasound, and MRI. With more imaging 
information, the prediction accuracy of this model could 

be further improved. Besides, prior information with 
affine transform is less accurate. In our study, the affine 
registration only provided a preliminary estimation of breast 
gland in planning CT. It would be fine for patients with 
significant contour overlapping and could fail otherwise. 
For those patients without significant overlapping, more 
advanced non-rigid (deformable) transform would be 
introduced, which bring more accurate prior information to 
the training model.

There are several limitations of this study. First, the 
training set is limited even after data augmentation. In 
the data augmentation step, the deformation field was 
introduced to simulate real human body motion, which 
could be regarded as serial CT images acquired from a 
patient over multiple days. The augmented data could 
correlate with the original data moderately, and the 
correlation could be a factor causing bias in the network 
training. However, for validation of the effectiveness of 
prior information, its effect would be less influential. 
Second, massive cross-validation is needed to ensure the 
training’s stability due to the relatively small sample size. In 
the future, more data will be collected to make the model 
more reliable. Finally, the contouring of breast gland was 
manually performed on preoperative CT, and it would be 

Figure 4 The predicted labels of breast gland with the input of prior information overlaid on the planning CT images with the ground 
truths for all six patients (A,B,C,D,E,F). The predicted labels are shown in white, and the ground truths are shown in black.
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better to accomplish this by automatic methods (21,22). 
In the future, traditional auto-contouring tools will be 
employed to accelerate this process.

Conclusions

A significant improvement in the prediction accuracy of 
breast gland contour was achieved with the introduction 
of prior information. This prior information provided an 
initial estimation of geometrical distribution of breast gland 
in planning CT and facilitated the subsequent searching of 
the refined contour by the prediction model. This method 
provides an effective way of identifying low-contrast 
ROIs in planning CT for postoperative breast cancer 
radiotherapy.
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