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Background: Bone suppression of chest X-ray holds the potential to improve the accuracy of target 
localization in image-guided radiation therapy (IGRT). However, the training dataset for bone suppression 
is limited because of the scarcity of bone-free radiographs. This study aims to develop a deep learning-based 
bone suppression method using CT-derived features to reduce the reliance on the bone-free dataset.
Methods: In this study, 59 high-resolution lung CT scans were processed to generate the lung digital 
radiographs (DRs), bone DRs, and bone-free DRs, for the training and internal validation of the 
proposed cascade convolutional neural network (CCNN). A three-stage image processing framework 
(CT segmentation, DR simulation, and feature expansion) was developed to expand simulated lung DRs 
with different weightings of bone intensity. The CCNN consists of a bone detection network and a bone 
suppression network. In external validation, the trained CCNN was evaluated using 30 chest radiographs. 
The synthesized bone-suppressed radiographs were compared with the bone-suppressed reference in terms 
of peak signal-to-noise ratio (PSNR), mean absolute error (MAE), structural similarity index measure 
(SSIM), and Spearman’s correlation coefficient. Furthermore, the effectiveness of the proposed feature 
expansion method and CCNN model were assessed via the ablation experiment and replacement experiment, 
respectively. 
Results: Evaluation on real chest radiographs showed that the bone-suppressed chest radiographs closely 
matched with the bone-suppressed reference, achieving an accuracy of MAE =0.0087±0.0030, SSIM 
=0.8458±0.0317, correlation of 0.9554±0.0170, and PNSR of 20.86±1.60. After removing the feature 
expansion from the CCNN model, the performance decreased in terms of MAE (0.0294±0.0093, −237.9%), 
SSIM (0.7747±0.0.0416, −8.4%), correlation (0.8772±0.0271, −8.2%), and PSNR (15.53±1.42, −25.5%) 
metrics.
Conclusions: We successfully demonstrated a novel deep learning-based bone suppression method 
using CT-derived features to reduce the reliance on the bone-free dataset. Implementation of the feature 
expansion procedures resulted in a remarkable reinforcement of the model performance. For the application 
of target localization in IGRT, the clinical testing of the proposed method in the context of radiation therapy 
is a necessary procedure to move from theory into practice.
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Introduction

Lung cancer is the most common cause of cancer-related 
death worldwide. In 2018, there were 1.7 million death 
cases caused by lung cancer, accounting for 11.6% of the 
total cancer patients worldwide (1). The large majority of 
lung cancer patients present with non-small cell lung cancer 
(NSCLC), and of these, approximately 30% present with 
locally advanced (Stage III) disease. The current standard 
treatment for locally advanced unresectable NSCLC 
is definitive chemo-radiotherapy followed by adjuvant 
immunotherapy (2,3). Image-guided radiation therapy 
(IGRT) for lung cancer aims to deliver a more accurate 
dose to the target region and reduce radiation damage to 
the surrounding normal tissue (4,5). To achieve this goal, 
different on-board imaging (OBI) methods have been 
applied to reduce the positioning variations of patient 
setup during the course of radiation therapy (6). The 2-D 
radiography is the most commonly used OBI for target 
localization before the IGRT treatment. Specifically, the 
X-ray generator of the OBI system delivers kilovolt (KV) 
photon beams, which are collected by the detector on the 
opposite of the radiation source. This chest radiography 
produced by the OBI system is used to determine the 
target position in relation to the landmarks for patient 
setup in IGRT. Compared with other OBI techniques, 
such as CBCT, radiography imaging has advantages in 
the convenience and low delivered radiation dose (7,8). 
However, bony structures like ribs often obscure the 
localization of lung tumors or landmarks, limiting the target 
localization accuracy in IGRT (9,10). The localization 
accuracy using radiography imaging has a mean difference 
of 6±2 mm with a maximum error of 22 mm in a study with 
6,000 individual fractions (11).

To improve the setup accuracy, bone suppression in 
CXR images has been perceived as a promising solution 
(12). Previous methods for the task of bone suppression 
can be categorized as supervised and unsupervised methods 
(13). Unsupervised methods do not need chest radiography 
for training; however, they require segmentation of bones 
and then reconstruct bone-free images using the blind-
source separation approach (14-17). The performance of 
unsupervised methods is heavily affected by segmentation 
accuracy. Supervised methods suppress bone structure 
in chest radiographs by regression prediction. With 
the advance of deep learning techniques, a variety of 
convolutional neural networks (CNNs) have achieved 
notable progress for the task of bone suppression. For the 
supervised models, the born suppressed images acquired 

by the dual-energy radiography system are used as model 
training ground truth, including multiple massive-training 
artificial neural network (18), filter learning (19), massive 
training artificial neural network (20), a cascade of multi-
scale CNNs (13), frequency-specific deep neural network 
convolution (21), adversarial networks (22), etc. 

In this study, we proposed a deep learning-based 
method using the features acquired from pulmonary CT 
for achieving bone suppression in chest radiographs. 
Pulmonary CT images were used to derive lung digital 
radiographs (DRs) and bone-free lung DRs to simulate 
chest radiographs and bone-free chest radiographs, 
respectively. The CCNN training was trained on the 
DR dataset to learn bone suppression features. To 
increase the model generalizability in real lung chest 
radiographs, a feature expansion approach was developed 
to expand lung DRs with different weightings of bone 
intensity. Considering the scarcity of the bone suppressed 
radiographs, we developed a novel digital reconstruction-
based feature expansion strategy to inflate the types of 
features from CT images. To our best knowledge, this 
is the first attempt to ascertain bone suppression in 
chest radiographs using CT-derived features. This study 
provides valuable insights for relevant research studies in 
the future, and encourages scientists in the field of IGRT 
to leverage the feature expansion from CT images for 
training deep learning models for bone suppression to 
enhance localization accuracy in IGRT study.

Methods

Dataset and study design

In this study, two publicly available datasets were utilized 
for model training and validation. The first dataset is the 
Reference Image Database to Evaluate Therapy Response 
(RIDER) lung CT scans from The Cancer Imaging Archive 
(TCIA) (23,24). This dataset contains 59 high-resolution 
CT (HRCT) scans of the chest from non-small cell lung 
cancer patients. Each CT slice was reconstructed into a 
matrix size of 512×512 with a pixel size of 0.576×0.576 mm2 
and a slice thickness of 1.25 mm. This dataset was used to 
derive the lung DRs, bone DRs, and bone-free DRs for the 
training of the model. The second dataset was collected 
from the Japanese Society of Radiological Technology 
(JSRT) (25), which includes chest radiographs from subjects 
with or without lung nodules. The matrix size and pixel size of 
the chest radiographs are 2,048×2,048 and 0.175×0.175 mm2, 
respectively. In this study, 30 cases (~50% of the training 
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Figure 1 The study design of the proposed method. HR, high-resolution; DR, digital radiograph; CCNN, cascade convolutional neural 
network.

set) were randomly selected from the JSRT dataset for 
external validation of the model performance on real chest 
radiographs. To the best of our knowledge, there are no 
publicly available datasets of bone-free images acquired 
from the dual-energy X-ray system (26). Juhász et al. 
generated a group of bone suppressed images using a semi-
automatic method for the JSRT dataset, which were made 
available at Kaggle (27) and used as the bone-suppressed 
reference in this study. 

Figure 1 illustrates the overall study design for bone 
suppression in chest radiographs. Firstly, the HR lung 
CT images were processed to generate DRs. This image 
processing included CT segmentation, DR simulation, and 
feature expansion. Then, the expanded dataset was used for 
training and internal validation of the proposed CCNN. 
Of the expanded data, 80% was used for training, and 20% 
for internal validation. The performance of the proposed 
CCNN was evaluated using mean absolute error (MAE) 
and structural similarity index measure (SSIM) to measure 

the difference and the similarity estimation between 
the predicted and actual values. To evaluate the model 
performance on real lung DRs, external validation was also 
conducted on 30 chest radiographs. The lung region of the 
real radiograph was manually segmented and cropped to 
the border of the lung. Then, the cropped image was then 
resized to 256×256 matrices. In the external validation, 
we also added the Spearman’s correlation coefficient 
and peak signal-to-noise ratio (PSNR) to evaluate the 
statistical similarity and reconstruction quality, respectively. 
Detailed descriptions of image processing, the CCNN, and 
evaluating metrics were presented in the following sections. 
To further assess the effectiveness of the feature expansion, 
an ablation experiment, in which feature expansion 
procedures were removed, was conducted, followed by 
performance evaluation on the external validation dataset. 
The effectiveness of the proposed CCNN compared to the 
U-Net model was also examined by analyzing the impact on 
the performance.
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Figure 2 Image processing for CCNN training, which consists of three major stages: CT segmentation for separating lungs and bones, DR 
simulation for generating bone DR and bone-free DR, and feature expansion for network training. DR, digital radiograph; CCNN, cascade 
convolutional neural network.
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Figure 2 illustrates a three-stage workflow of image 
processing to overcome the limited accessibility of bone-
free chest radiographs in the training CCNN. The three 
stages are described as follows. 

CT segmentation
To extract lung parenchyma region, lung masks in 3D CT 
were generated using a pretrained U-Net (R231) model (28),  
which was trained on multifarious lung CT scans. Bone 
structures were segmented by using thresholding, with a 
cutoff of larger than +300 HU. The bone and lung masks 
were subsequently applied to the CT images to generate 
bone CT and bone-free lung CT. 

DR simulation
To generate the bone DR and corresponding bone-free 
lung DR, a digitally reconstructed radiograph (DRR) 
technique in the Insight Segmentation and Registration 
Toolkit (ITK) package was adopted for the simulation using 
Python, which is an open-source toolkit for medical image 
analysis and image processing. To focus on the lung regions, 
the lung and bone DRs were masked by another 2D lung 
mask generated from the bone-free lung DR images using 
morphologic transformation. The masked images were 
cropped to the border of the lung for yielding segmented 

bone and bone-free DR images. The cropped images were 
then resized to 256×256 to save calculation memory.

Feature expansion
This step aims to expand the bone intensity features in the 
lung DRs. To simulate different bone intensities in real 
DRs, a feature expansion strategy was implemented for 
network training, in which the segmented bone and lung 
DRs were integrated at varying ratios of intensity between 
bone DR and bone-free DR images. The strategy can be 
mathematically expressed as Eq. [1]:

( )1lung bone bone freeI I Iα α −= + − 

	
[1]

where Ilung is the simulated lung DR, Ibone is the bone DR, 
Ibone−free is the bone-free lung DR, and α denotes the bone 
ratio between the bone DR and bone-free DR, where 
α is 0.5, 0.4, 0.3, 0.2, and 0.1 in this study. Examples of 
simulated DRs are illustrated in Figure 3. All the simulated 
images were resized to a matrix size of 256×256 to alleviate 
the computational cost. 

Architecture of cascade convolutional neural network 
(CCNN)

We proposed a CCNN for the bone suppression task, 
which consists of a bone detection network and a bone 
suppression network, as shown in Figure 4. Both networks 
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Figure 3 Demonstration of results from the feature expansion, indicated as different bone intensity ratios in each column, for simulated lung 
radiographs (top row: expanded lung DRs; bottom row: bone DRs). DR, digital radiograph.

Figure 4 The architecture of the proposed CCNN. CCNN, cascade convolutional neural network.

contain an encoder with convolutional layers for extracting 
image features and a decoder with transpose convolutional 
layers for reconstructing output images. Sixteen layers of 
convolutions were used to learn features in DR images. 
Each convolution has a size of 3×3 and is coupled with 
batch normalization and a Parametric Rectified Linear Unit 
(PReLU). Similar to the U-Net architecture (29), multi-
skip connections were adopted in the proposed CCNN to 
translate the local details captured in the feature maps from 

the encoding path to the decoding path, and were designed 
in the middle of the network to fully utilize the high-level 
features. To facilitate the process of bone suppression, 
the bone detection network was firstly used to detect the 
bone structure location. The output of the bone detection 
network was then concatenated with the original lung DR 
images to be the input of the second bone suppression 
network for bone-free DR generation.

The proposed CCNN model learns the optimal 
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parameters by minimizing the loss function, which is 
composed of two parts. The first loss was the mean square 
error (MSE) between the predicted and ground truth bone 
DR, and is expressed as Eq. [2]:

( ) ( )2

1 lung bone bone predL I I I
−

= − 	 [2]

where Ibone_pred represents the output of the first network. The 
second loss was the MSE between the generated and ground 
truth bone-free lung DR, and is expressed as Eq. [3]:

( ) ( )2

2 _,lung bone pred bone free bone free predL I I I I
− − −= −

	
[3]

where Ilung_pred denotes the output of the second network. 
The overall loss function of CCNN was calculated using 
Eq. [4]:

1 2L L Lγ= +
	

[4]

where γ is the weighing factor of the second network loss 
and was empirically set to five. During optimization, each 
layer was updated using error backpropagation with an 
adaptive moment estimation optimizer (ADAM). The 
CCNN was trained using lateral flips to augment the 
training dataset and trained for 600 epochs. The CT 
images and chest radiographs were processed prior to 
model training and validation. The initialization of the 
convolutional layers was configurated using the Kaiming 
Uniform method (30). The CNN model was built in 
Pytorch 1.1 framework and coded in Python. All the deep 
learning tasks were performed using a computer with 
NVIDIA GTX 2080 TI with 11GB memory.

Performance evaluation 

For the internal validation, we adopted SSIM and MAE 
to measure the similarity approximation and intensity 
difference, respectively. 

The SSIM contains three terms as the comparisons of 
three measurements between the samples of the generated 
image and reference image: luminance term, contrast 
term, and the structural term (31). The overall SSIM is a 
multiplicative combination of these terms as Eq. [5]:

1 2
2 2 2 2

1 2

2 2
pred pred

pred pred

I I I I

I I I I

C C
SSIM

C C

µ µ σ

µ µ σ σ
⋅+ +

=
+ + + +



	

[5]

where Iµ ,  
predIµ , Iσ ,  

predIσ , and  predI Iσ ⋅  are the local means, 
standard deviations, and cross-variance for image I and Ipred, 
respectively. C1 = (k1L)2, C2 = (k2L)2 are the two variables that 
stabilize the division with a weak denomination. L is the 
dynamic range of the pixel values. k1 =0.01 and k2 =0.03 by 

default. SSIM is within the range of [−1, 1] and represents 
the intensity monotonicity of spatially correlated voxels.

MAE was used to measure the arithmetic average of 
the absolute difference between the reference images and 
predicted images (13), calculating as Eq. [6]: 

( ) ( ) 1
 n

pred i ii
I I

MAE
n

=
−

=
∑

	
[6]

where Ipred(i) is the synthesized image; I(i) is the reference 
image; and i is the index of the pixel. 

For the external validation, the Spearman’s correlation 
coefficient {Eq. [7]} and PSNR {Eq. [8]} were also used to 
evaluate the statistical similarity and reconstruction quality, 
respectively. 

( )( ) ( )( )
( )( ) ( )( )

 1

2 2

 1 1
 

n
predi pred ii

n n
predi pred ii i

I I I I
R

I I I I

=

= =

 − − =
− −

∑

∑ ∑



	

[7]

where Ipred denotes the predicted bone-suppressed image 
obtained from the proposed framework, and I denotes 
the bone-suppressed reference. R is within the range of  
[−1, 1] and represents the intensity monotonicity of spatially 
correlated voxels.

( ) ( )( )2

 1
 n

pred i ii
I I

MSE
n

=
−

=
∑

	

[8]

1020 log MAXPSNR
MSE

 
=  

 


	
[9]

where MAX denotes the maximum possible pixel value 
of the image. MSE is the mean square error between 
the predicted bone-suppressed image obtained from the 
proposed framework and the bone-suppressed reference.

Results

Evaluation on the internal validation group 

In the internal validation group, the performance of this 
model was evaluated on the DR dataset. The training time 
of the model was approximately 2.58 hours. The CCNN 
model achieved an average MAE of 0.0613±0.0230 and 
an average SSIM of 0.8856±0.0415. A biphasic trend of 
model performance on the internal validation set with an 
increasing percentage of bone intensity can be observed in 
Figure 5. The trained model yielded the best performance 
on the lung DR image with 30% bone, with an MAE value 
of 0.0362±0.0043, and SSIM value of 0.9266±0.0120. 
From the qualitative perspective in Figure 6, the absolute 
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difference between the predicted and reference DR 
changed remarkably with the changing bone intensity ratio; 
the minimum difference was observed on the lung DR 
image with 30% bone structures. For images with a larger 

percentage of bone intensity ratio, the bone structures could 
not be fully suppressed from the synthesized image. For 
images with a lower bone ratio, while the bone structures 
can be easily suppressed, it simultaneously weakens the 
intensity of surrounding tissue, such as lung nodules, as 
perceived from Figure 6. 

External validation on real chest radiographs

On the real chest radiographs, the trained model achieved an 
accuracy of MAE =0.0087±0.0030, SSIM =0.8458±0.0317, 
and PSNR =20.86±1.60. The bone-suppressed radiographs 
had a very high correlation of 0.9554±0.0170 with the 
unsupervised reference. In the qualitative evaluation of the 
representative case, five nodules remained detectable after 
applying bone suppression. However, some texture details 
could not be observed in the 0–1 color scale (Figure 7).

Overall performance analysis

Figure 8 illustrates the effectiveness of the proposed CCNN 
and feature expansion in image processing. After the removal 
of feature expansion, the CCNN models demonstrated 
remarkable degradation in performance. The drop in 
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Figure 5 Quantitative evaluation of performance on the internal 
validation group. MAE, mean absolute error; SSIM, structural 
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Figure 7 A representative case on the external validation group. The red arrows indicate the nodules.
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Figure 8 Quantitative comparison of the CCNN model on the external validation group. CCNN, cascade convolutional neural network.

performance was severe in terms of MAE (0.0294±0.0093, 
−237.9%), followed by a comparative reduction in PSNR 
(15.53±1.42, −25.5%), SSIM (0.7747±0.0.0416, −8.4%) and 
correlation metrics (0.8772±0.0271, −8.2%). Compared 
with the proposed method, the U-Net coupled with feature 
expansion achieved a decreased performance in PSNR 

(11.6%), MAE (4.1%), SSIM (0.8%), and correlation (0.4%), 
with an average PSNR =18.43±2.26, MAE =0.0164±0.0092, 
SSIM =0.8390±0.0385, and correlation =0.9513±0.0199. 
After the removal of feature expansion, the performance of 
U-Net model was also drastically degraded in terms of MAE 
(0.0480±0.0191, −192.7%), followed by PSNR (13.53±1.81, 
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Figure 9 Performance comparison of CCNN and U-Net of a representative case on the external validation group. The red arrows indicate 
the nodules. CCNN, cascade convolutional neural network. 

−26.6%), SSIM (0.7396±0.0388, −11.8%) and correlation 
metrics (0.8977±0.0218, −5.6%). In the qualitative evaluation 
of the representative case (Figure 9), the nodule remained 
detectable for both scenarios. 

Discussion

In this study, we developed a novel deep learning-based 
bone suppression method in chest radiographs using CT-
derived features. The HRCT images were processed 
for feature simulation prior to model training. In this 
processing, feature expansion was used to increase the 
generalizability of the proposed method. The expanded 
dataset was used to train and validate the proposed CCNN, 
which is composed of two networks, for bone detection 
and bone suppression, respectively. In external validation, 
the comparative evaluation in real chest radiographs 
showed that the bone-suppressed radiograph had a high 
approximation with the bone-suppressed reference (MAE 
=0.0087±0.0030, SSIM =0.8458±0.0317, correlation 
=0.9554±0.0170 and PSNR =20.86±1.60). Therefore, 
the study successfully demonstrated the feasibility of 
generalizing this model to OBI chest radiographs. 

In image processing, we generated lung DRs and 
corresponding bone-free DRs with changing bone ratios 
to simulate the diversity of bone structures in real chest 
radiographs. In model evaluation of the internal validation 
dataset, there was a biphasic change in performance of 

the CCNN model with increasing bone ratios. The best 
performance was observed on the lung DR image with 30% 
bone structures. For images with a larger percentage of 
bone ratio, the bone structures could not be fully suppressed 
from the synthesized image. For images with a lower bone 
ratio, the bone structures can be easily suppressed without 
compromising surrounding tissue signals, such as lung 
nodules. To further analyze the impact of feature expansion, 
ablation experiments were conducted with CCNN and 
U-Net models. Removal of the feature expansion steps 
dramatically decreased the performance, as shown in  
Figure 8 .  This f inding indicates the effectiveness 
and importance of feature expansion for the model 
generalization on the external real chest radiograph dataset. 

There are two categories of CNN architectures for 
achieving bone suppression. The first one can be referred 
to as a direct synthesis, such as the U-Net, where the bone-
suppressed image is directly generated from the initial 
input images. The second one can be regarded as a guided 
synthesis, such as the proposed CCNN model, where 
the ultimate formation of the bone-suppressed image is 
guided by the interim output of a bone detection network, 
providing location information of bone structures prior to 
image synthesis. In this study, we compared these two types 
of models. Compared with the CCNN model, the U-Net 
model led to degraded performance in terms of PSNR 
(11.6%), MAE (4.1%), correlation (0.4%), and SSIM 
(0.8%). U-Net worked better for recovering structure 
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Figure 10 Illustration of unwanted nodule suppression of U-Net. The red arrows indicate the nodules. CCNN, cascade convolutional 
neural network.

details because of the multi skip connections. However, 
there was a higher risk of unwanted suppression in 
surrounding tissues, such as lung nodules, when performing 
bone suppression using the U-Net model (Figure 10). 
Herein, we recommend the CCNN architecture since it is 
effective in suppressing the bone structures while preserving 
desirable detectability of lung nodules. In the future, we 
will continue to develop a more efficient CNN model, 
which can recover the lung nodule and detailed structure 
simultaneously.

Before our study, most of the CNN models for bone 
suppression were trained on their own dataset acquired by 
the dual-energy X-ray system, achieving very promising 
performance with high detail recovery (22). However, for 
the application in IGRT, the generalizability of dual-energy 
X-ray based models can be influenced by the heterogeneity 
in radiograph systems and imaging protocols. Our study 
attempts to extract bone suppression features from the CT 
image, which is widely available in the radiation therapy 
department. There was only one existing study that used 
the CT-derived features to detect the bone structure in 

chest DR and achieved an SSIM =0.7000±0.0800 (32). Our 
study used the CT-derived features for bone suppression 
in DR and achieved an SSIM =0.8458±0.0317. This 
accuracy would be satisfying since the recovery of the 
detailed information for target localization in IGRT is not 
the first consideration. Besides, the contrast to noise ratio  
(CNR) (33) was also calculated to evaluate the visibility of 
lung tumors. After bone suppression, the average CNR 
value increased from 0.9282±0.4018 to 1.1239±0.5093 
(P=0.002), suggesting the increased visibility of lung 
anatomy after bone suppression. Considering the scarcity 
of bone-free radiographs for model training, our study 
provides valuable insights for relevant studies in the future. 
It encourages scientists in the field of radiation therapy 
to leverage the feature expansion from CT images to 
train models for radiography enhancement and improve 
localization accuracy in the IGRT study. The CT-derived 
features also hold the promise to generate enhanced 
radiography for OBI radiography at different angles for 
different organs.

Despite the demonstrated feasibility of our proposed 
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CCNN model, the accuracy of the synthesized bone-
suppressed radiograph remains to be improved. For 
instance, lung nodules located in the edge regions are hard 
to be detected owing to the minimal difference in signal 
intensity between lung nodules and nearby peripheral 
lung tissues, which poses challenges in the process of DR 
simulation in our study. In the future, a transfer learning 
on a small number of bone-suppressed chest radiographs 
should be used to improve the detectability of nodules in 
the peripheral lung regions. Besides, the generalizability 
of our model can be influenced by heterogeneities in 
different X-ray projections, imaging protocols, and bone 
individualities (such as previous fractures and calcifications). 
To achieve broader model deployment, a case-by-case 
evaluation is warranted to ensure model generalizability 
across various clinical conditions. Lastly, since the external 
validation cohort is still limited in X-ray projections, 
a large-scale study using CXRs acquire from LINAC 
is required to further examine the effectiveness of the 
proposed method in the context of IGRT, which will be 
considered as an extension of this feasibility study.

Conclusions

We successfully demonstrated the feasibility of using CT-
derived features for bone suppression in chest radiographs 
with the deep learning-based framework. Implementation 
of the feature expansion procedures resulted in a remarkable 
reinforcement of the model performance. The findings of 
this result provide valuable insights for future radiography 
enhancement study in IGRT, especially in view of the severe 
data scarcity of bone-free radiographs. For the application 
of target localization in IGRT, the clinical testing of the 
proposed method in the context of radiation therapy patients 
is a necessary procedure to move from theory into practice.
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