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Introduction

Functional magnetic resonance imaging (fMRI) measures 
brain activity by detecting changes associated with blood 
flow. The primary imaging of fMRI uses blood-oxygen-
level-dependent (BOLD) contrast. Resting-state fMRI (rs-
fMRI or R-fMRI) is an fMRI method that measures brain 

activity by detecting associated blood flow changes. Task-
based fMRI measures BOLD signal changes between 
task-stimulated and control states. FMRI has permeated 
numerous aspects of neuroscience and is widely used to 
investigate the brain’s structure and functions (1-3). Studies 
have commonly analyzed fMRI data across a population 

Original Article

Functional magnetic resonance imaging progressive deformable 
registration based on a cascaded convolutional neural network

Qiaoyun Zhu1,2,3, Guoye Lin1,2,3, Yuhang Sun1,2,3, Yi Wu1,3, Yujia Zhou1,2,3, Qianjin Feng1,2,3

1School of Biomedical Engineering, Southern Medical University, Guangzhou, China; 2Guangdong Provincial Key Laboratory of Medical Image 

Processing, Guangzhou, China; 3Guangdong Province Engineering Laboratory for Medical Imaging and Diagnostic Technology, Southern Medical 

University, Guangzhou, China

Correspondence to: Yujia Zhou, PhD; Prof. Qianjin Feng. School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, China. 

Email: zyj.shmily08@gmail.com; 1271992826@qq.com.

Background: Intersubject registration of functional magnetic resonance imaging (fMRI) is necessary 
for group analysis. Accurate image registration can significantly improve the results of statistical analysis. 
Traditional methods are achieved by using high-resolution structural images or manually extracting 
functional information. However, structural alignment does not necessarily lead to functional alignment, and 
manually extracting functional features is complicated and time-consuming. Recent studies have shown that 
deep learning-based methods can be used for deformable image registration.
Methods: We proposed a deep learning framework with a three-cascaded multi-resolution network (MR-
Net) to achieve deformable image registration. MR-Net separately extracts the features of moving and 
fixed images via a two-stream path, predicts a sub-deformation field, and is cascaded three times. The 
moving and fixed images’ deformation field is composed of all sub-deformation fields predicted by the MR-
Net. We imposed large smoothness constraints on all sub-deformation fields to ensure their smoothness. 
Our proposed architecture can complete the progressive registration process to ensure the topology of the 
deformation field.
Results: We implemented our method on the 1000 Functional Connectomes Project (FCP) and Eyes Open 
Eyes Closed fMRI datasets. Our method increased the peak t values in six brain functional networks to 19.8, 
17.8, 15.0, 16.4, 17.0, and 13.2. Compared with traditional methods [i.e., FMRIB Software Library (FSL) 
and Statistical Parametric Mapping (SPM)] and deep learning networks [i.e., VoxelMorph (VM) and Volume 
Tweening Network (VTN)], our method improved 47.58%, 11.88%, 18.60%, and 15.16%, respectively.
Conclusions: Our three-cascaded MR-Net can achieve statistically significant improvement in functional 
consistency across subjects.

Keywords: Functional magnetic resonance imaging (fMRI); deformable image registration; Multi-resolution 

network (MR-Net); cascaded network

Submitted Nov 20, 2020. Accepted for publication Mar 18, 2021.

doi: 10.21037/qims-20-1289

View this article at: http://dx.doi.org/10.21037/qims-20-1289

3583

https://crossmark.crossref.org/dialog/?doi=10.21037/qims-20-1289


3570 Zhu et al. fMRI registration based on a cascaded network

© Quantitative Imaging in Medicine and Surgery. All rights reserved.   Quant Imaging Med Surg 2021;11(8):3569-3583 | http://dx.doi.org/10.21037/qims-20-1289

of subjects (4-6). When performing group-level statistical 
analysis and making a population inference, each voxel is 
assumed to be located in the same anatomical region for all 
subjects. Therefore, an accurate intersubject registration 
method, which aligns the group fMRI data to an atlas (7) 
[e.g., MNI152 atlas (8)], can significantly improve the 
reliability of a group-level analysis.

Typically, an intersubject registration of fMRI is often 
achieved with the help of the corresponding structural 
MRI (sMRI), owing to its high spatial resolution and 
rich texture information. In particular, deformable image 
registration establishes the nonlinear spatial correspondence 
between sMRI and an atlas. After that, the nonlinear spatial 
correspondence is applied to its corresponding fMRI. 
The common techniques are Talairach normalization (9), 
FMRIB’s Linear Image Registration Tool (FLIRT) (10), 
and advanced non-rigid registration methods (11,12). 
Considerably powerful techniques are guided by the 
sulcus/gyrus landmarks or curvature maps to align cortical 
neuroanatomy (13,14).

However, structural alignment does not necessarily 
lead to functional alignment (15) because functional 
regions are not consistently located relative to anatomical 
landmarks (7,16). Some areas (e.g., visual motion area) 
can vary by more than 2 cm between individuals (17). 
Accordingly, deformable image registrations based on 
functional information were later developed to improve 
brain functions’ consistency across subjects (16,18-22). 
Sabuncu et al. (16) used the fMRI time series to index the 
local functional response profile. After that, the registration 
of task-related fMRI data was achieved by maximizing each 
cortical node time series’s correspondence. However, this 
method was based on the assumption that functional signals 
are synchronized between different subjects. Research has 
shown that no evident correlation exists between rs-fMRI 
scanned at different times, even if the stationary subject 
was in the same position (18). To overcome this limitation, 
Langs et al. (22) proposed a method to achieve image 
registration by maximizing the similarity of the functional 
connectivity (FC) patterns at the same spatial position 
across different subjects.

The FC pattern between the two regions was measured 
using the correlation coefficient between their functional 
signals. Conroy et al. (18) utilized the whole-brain FC 
matrix as a descriptor of cortical surface functional 
information and registered subjects by minimizing the 
Frobenius norm of the difference between their FC 
matrices. Jiang et al. (20) proposed a functional information 

description based on the local FC pattern because the 
whole-brain FC matrix is sensitive to local interference. 
The local FC pattern is computed in a small spatial local 
neighborhood of each voxel to describe the fMRI functional 
information. Furthermore, Jiang et al. (19) proposed a 
multi-region FC mode. They used a local FC mode to 
hierarchically guide the registration and gradually increased 
the size of the local area to capture the FC information 
on a large scale. However, registration methods based on 
functional information also have certain limitations.

The preceding traditional methods solve the registration 
optimization problems by manually extracting and 
aligning structural/functional features. However, manually 
extracting the structural/functional features is complicated 
and time-consuming. Several registration methods (23-25)  
based on deep convolutional neural networks (CNNs) 
have emerged in recent years, in which robust structural/
functional corresponding information was automatically 
extracted, thereby substantially reducing computation 
time. Chee et al. (23) proposed an affine image registration 
network (AIRNet), which uses the mean square error (MSE) 
between the predicted and ground truth affine transforms 
as a loss to train the network. Yang et al. (24) predicted the 
two-dimensional/three-dimensional (2D/3D) deformation 
field of intersubject brain MR volumes with a UNet-like (25)  
architecture. They trained the architecture using the 
ground truth obtained by numerical optimization of the 
large deformation diffeomorphic metric mapping (26)  
registration model. However, the ground truth affine matrix/
deformation field was difficult to obtain. Uzunova et al. (27)  
used statistical appearance models to generate ground 
truth data to solve this problem. However, the simulated 
data must be sufficiently similar to the clinical data. This 
challenge motivated several groups to explore unsupervised 
deep learning registration methods (28-31) with the help of 
the spatial transformer network (STN) (32). Balakrishnan  
et al. (28,29) proposed a general framework for unsupervised 
deformable image registrat ion.  Kuang et  a l .  (30)  
used a framework inspired by CNN and STN (32) to 
perform deformable registration of T1-weighted brain MRI 
volumes. The aforementioned deep learning registration 
methods have achieved good results in sMRI registration.

However, these methods have consistently focused on 
improving the similarity between the warped and fixed 
images while disregarding the reasonability (with less 
“folding” issue) of the deformation field. To address the 
“folding” issue of the deformation field, previous studies 
have used a straightforward solution that adds a smoothness 
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constraint to penalize the folding area. Although smoothness 
constraint can avoid the “folding” issue, the registration 
accuracy may be reduced by 15% or more (30,31). Current 
deep learning methods set small smoothness constraints 
to achieve high image similarity; however, the cost is 
considerably more “folding” and high complexity of the 
deformation field (Figure 1A). Setting a large smoothness 
constraint will limit the freedom degree of the deformation 
field (Figure 1B), leading to poor image similarity.

To overcome fMRI registration shortcomings based on 
structural/functional features, we trained a deep learning 
network directly based on fMRI data. This deep learning 
method can automatically extract features from the fMRI 
data, making the registration process faster. We propose a 
cascaded CNN, namely, a three-cascaded multi-resolution 
network (MR-Net), to obtain high registration accuracy 
and ensure the deformation fields’ geometrical properties. 
Moreover, we set a large smoothness constraint (e.g., 0.5) 
to the deformation field predicted by MR-Net to penalize 
the unreasonable deformation field. A single MR-Net with 
large smoothness constraints limits the deformation field’s 
freedom degree, thereby resulting in poor image similarity. 
Thus, we propose a cascade strategy to successively warp 
the moving image (Imoving) to achieve good registration 
accuracy. First, we used MR-Net (33) as our subnetwork to 
extract the robust features of the moving and fixed images 
(Ifixed) via a two-stream path. The MR-Net can relatively 
ensure that points in Imoving can find their matching points 
in Ifixed  when a large smoothness constraint is added to the 
deformation field. Second, we cascaded the MR-Net three 
times, each taking the current warped and fixed images as 

inputs and learning the network parameters of different 
sub-deformation fields. For example, the first MR-Net takes 
Imoving and Ifixed as inputs, and outputs the sub-deformation 
field ϕ(1). After that, Imoving can be warped to the warped 
moving image Iwarped_1 using ϕ(1), however, the registration 
accuracy is low due to a large smoothness constraint. 
The second MR-Net takes Iwarped_1 and Ifixed as inputs, and 
outputs ϕ(2). Thereafter, Iwarped_1 can be warped to Iwarped_2. By 
repeating this procedure, Imoving can perform a part of the 
registration in each MR-Net until it finally aligns to the 
fixed image. The final deformation field can be regarded 
as the combination of all sub-deformation fields predicted 
by MR-Net. We imposed large smoothness constraints on 
all sub-deformation fields to ensure their topology. Lastly, 
we optimized our three-cascaded MR-Net parameters by 
measuring the similarity between the warped image of each 
MR-Net and Ifixed. The main contributions of this study are 
summarized as follows:

(I)	 We performed a deep learning deformable image 
registration method directly based on the fMRI 
data to address the limitations of methods based on 
sMRI or functional features;

(II)	 To obtain a diffeomorphism deformation field, we 
added large smoothness constraints to the MR-Net. 
To mitigate poor image similarity caused by large 
constraints, we propose a cascade strategy to register 
the moving image to the fixed image progressively.

Methods

Let Imoving∈R3 and Ifixed∈R3 denote the moving and fixed 

Figure 1 Illustration of two deformation fields using (A) a small smoothness constraint (0.01) and (B) a large smoothness constraint (0.5), 
respectively.
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images, respectively. Deformable image registration aims to 
find the optimal deformation field ϕ between Imoving and Ifixed 
to minimize the energy:

 ( ) ( )argmin , Rmoving fixedD I I
φ

φ φ φ= + 	 [1]

where D(.) denotes the similarity term, and R(ϕ) is a 
regularization term.

Subnetwork

This section describes the particular subnetwork 
architecture used in our experiments. The traditional 
deep learning registration network architecture (29,34) 
simultaneously extracts the moving and fixed images’ 
features by concatenating them. However, the features 
should be separately extracted between the atlas echo planar 
imaging (EPI) and fMRI (Figure 2) to learn the moving 
and fixed images (35). Accordingly, we selected a well-
designed framework MR-Net (33), as our subnetwork. The 
MR-Net is a CNN architecture similar to VoxelMorph 
(VM) (29) with Pyramidal Residual Deformation Field 
Estimation (PRDFE)-Module. We listed the MR-Net 
reference (33) to provide further architectural details. The 
MR-Net constructs two dual-stream network channel 
paths to extract multiple resolution features of moving 
and fixed images, similar to a pyramid feature set. Also, 
the MR-Net uses a feature-warping model to estimate the 
“residual” deformation fields for each resolution scale. The 
final output deformation field that warps Imoving to Ifixed is 
obtained by weighing the “residual” deformation fields of 

all scales. MR-Net can effectively and accurately convert 
the deformation field from low to high resolution, thereby 
ensuring that the receptive field of the convolution kernel 
on the high-resolution scale can cover the corresponding 
points in Imoving and Ifixed.

Cascade strategy

The MR-Net can perform a voxel-level 3D medical 
deformable image registration by using an end-to-end 
CNN. However, the MR-Net may continue to predict 
an unreasonable deformation field when the smoothness 
constraint is small. When we set a large smoothness 
constraint, the deformation field’s freedom degree is limited, 
thereby resulting in poor image similarity. Therefore, we 
propose an effective method by cascading the MR-Net 
for progressive alignment. In each cascade, the MR-Net 
can predict a sub-deformation field ϕ(i). Then, Imoving can be 
warped progressively to Iwarped_i as follows:

 ( ) ( )1
_ i

i
warped movingI I φ φ=   	 [2]

Each cascade takes the current warped image Iwarped_i  
and fixed images Ifixed as inputs, and outputs a sub-
deformation field ϕ(i). With this cascaded subnetwork 
strategy, the final predicted deformation field ϕfinal can be 
constructed by the following sub-deformation fields:

 ( ) ( ) ( )1  i n
finalφ φ φ φ=   	 [3]

Moreover, the moving image is warped to the final 

Figure 2 EPI (left) and fMRI (right) spaces. EPI, echo planar imaging; fMRI, functional magnetic resonance imaging.
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warped image as follows:

 
_warped final moving finalI I φ=  	 [4]

In each cascade network, we added a large smoothness 
constraint to each sub-deformation field to maintain 
its topology. Meanwhile, each cascade can warp Imoving 

progressively to Ifixed to achieve good registration performance.
Figure 3 shows a two-cascaded subnetwork structure. 

The first subnetwork takes Imoving and Ifixed as inputs and 
outputs the sub-deformation field ϕ(1). After that, the Imoving is 
warped to Iwarped_1 through ϕ(1), and the Iwarped_1 is the input of 
the second subnetwork for further prediction. The second 
subnetwork predicts ϕ(2) to warp Iwarped_1. Thus, Iwarped_2 is 
obtained.

Loss function

The final deformation field ϕfinal is a composition of all sub-
deformation fields ϕ(i) predicted by the MR-Net. We added 
relatively large smoothness constraints to all predicted 
sub-deformation fields ϕ(i) to maintain their topology. A 
smoothness penalty in the form of l2-norm was used as the 
smoothness constraint in our study. To ensure that all Iwarped_i  
was similar to Ifixed, we added a similarity loss MSE between 
Iwarped_i and Ifixed.

In our n-cascaded MR-Net, the loss function can be 
defined as follows:

 ( ) ( ) 2

n cascaded MR Net _ ,= i
warped i fi dn xe iL I IMSE λ φ− − + ∑ ∇∑   [5]

where λi is the regularization parameter corresponding to 
each sub-deformation field ϕ(i).

Dataset

Our experiment used a publicly available 1000 Functional 

Connectomes Project (FCP) dataset (http://fcon_1000.
projects.nitrc.org). Each subject folder contains a functional 
image and a T1 structural image. We excluded missing 
and selected data with a resolution of 3±1 mm through 
preliminary selection. Eventually, we selected 515 subjects 
as our dataset, 90% of which were used as the training 
dataset and 10% of which were used as the testing dataset. 
The registration of the rs-fMRI data could also be validated 
based on task-based fMRI data (19). To further evaluate our 
method, we added an eyes open eyes closed (EOEC) fMRI 
dataset (http://fcon_1000.projects.nitrc.org/indi/IndiPro.
html?tdsourcetag=s_pcqq_aiomsg), which is a task-based 
fMRI dataset collected by the Beijing Normal University 
in China, to our testing dataset. This dataset consists of 48 
subjects, each with three scans [the first scan participants 
were instructed to rest with their eyes closed; while the 
second and third scans were between eyes open (EO) and 
eyes closed (EC)].

We used the rs-fMRI data processing software package 
[DPARSF (rfmri.org/DPARSF)] in MATLAB to preprocess 
all data according to the conventional fMRI processing 
procedure, including deleting the first 10 time points, slice 
time correction, head motion correction, and 0.01–0.1 Hz  
band-pass filtering. Our experiment focused only on 
the nonlinear transformation part of the registration. 
Therefore, we used the FLIRT algorithm (13) in FMRIB 
Software Library (FSL) (36) to linearly register all rs-fMRI 
images to the MNI space’s EPI template. In our experiment, 
the EPI template is regarded as Ifixed. Subsequently, we 
calculated the average of the rs-fMRI image of each subject 
at all time points and represented the average image as 
Imoving. All moving images are resampled to 64×64×64 with a 
3-mm isotropic voxel size.

Implementation

This study used Keras (https://github.com/fchollet/keras) 

Figure 3 A two-cascaded subnetwork structure. STN, spatial transformer network.
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with a TensorFlow backend on the NVIDIA GeFORCE 
RTX 2080 GPU. Our three-cascaded MR-Net was trained 
for 1,000 epochs with 500 iterations per epoch by using 
a batch size of four. The optimizer is Adam (37) with a 
learning rate of 1e−4. We set the regularization parameter 
λ of the n-cascade network to a series of values to find the 
optimal parameter.

We compared our algorithm with the commonly used 
rs-fMRI traditional registration algorithms, including 
FSL5.0.8 (36) and SPM12 (https://www.fil.ion.ucl.ac.uk/
spm), and the unsupervised deep learning methods VM (29) 
and Volume Tweening Network (VTN) (38). In particular, 
we used FLIRT and FMRIB’s Nonlinear Image Registration 
Tool (FNIRT) for registration. In this experiment, we used 
a 12-degree-of-freedom registration for FLIRT and the 
FSL standard configuration for FNIRT. The registration 
was performed using a sum of squared differences (SSD) as 
the cost function. Trilinear interpolation was used to obtain 
an improved result. Lastly, registration was performed until 
the required deformation was achieved [constraint of the 
minimum acceptable Jacobian value of the deformation 
(default 0.01)]. We used the SPM_EPI algorithm in 
the SPM12 toolbox, which involves an affine transform 
followed by a nonlinear registration of the fMRI image 
to an EPI atlas. The cost function was the SSD between 
the atlas and moving image. The number of iterations of 
nonlinear registration was set to a default value of 16. The 
interpolation method was 4th degree B-spline interpolation. 
After that, the warped images were smoothed [6-mm full 
width at half maximum (FWHM)] for statistical analysis.

Evaluation

Rs-fMRI
The current evaluation of the rs-fMRI registration 
performance was based on the resting-state brain functional 
networks’ group-level statistical maps. We measured the 
consistency of the functional brain networks identified 
by independent component analysis [ICA (21)] between 
subjects, which was implemented by Group ICA [GIFT 
(http://icatb.sourceforge.net/groupica.htm)], to evaluate the 
registration results across subjects. In particular, ICASSO (39)  
was used to perform 100 times on ICA with different 
initial settings on the testing dataset, and 20 independent 
components were generated. After group ICA, back 
reconstruction was used to restore the individual parts of 
each subject. We identified and selected six brain networks 
by calculating the correlation between 20 components and 

the corresponding network template (40). These networks 
included the default mode network (DMN), visual network 
(VN), central execution network (CEN), sensorimotor 
network (SMN), right memory network (RMN), and parts 
of the visual cortex network (VCN).

After the six brain functional networks were identified, 
we used the fol lowing indicators  to evaluate the 
performance of the algorithm:

(I)	 We performed a one-sample t-test on each brain 
functional network across all subjects to generate 
a group-level t-map of each functional brain 
network. A significant, consistent voxel activated in 
all subjects would appear with a high t-value in the 
generated t-map. Therefore, a high peak t-value of 
the t-map indicated a high functional consistency, 
signifying improved alignment.

(II)	 We further evaluated the functional consistency of 
several major components in DMN. We selected 
the posterior cingulate cortex (PCC), precuneus, 
Angular_R, and Angular_L covered by the main 
functional nodes in the DMN. We set a specific 
threshold to the t-map and calculated the number 
of voxels that exceeded the statistical threshold. 
More suprathreshold voxels of the t-map could be 
detected after using a registration method if the 
registration method was better.

(III)	 The intersubject functional network correlation was 
established. Each subject’s six individual functional 
networks could be obtained after group ICA 
using back reconstruction. Pearson’s correlation 
coefficient was used to measure the correlation 
between a specific network of a pair of testing data 
to assess the specific functional network’s alignment 
performance among individuals in the group. The 
value of the correlation ranged from 0 to 1. So, 
if the alignment of the functional brain network 
across subjects was improved, then the correlation 
value will approximate 1. We used bar plots with 
error bars to represent the correlation between the 
specific brain networks across subjects.

(IV)	 We further measured the overlap percentage 
between each subject-specific and group brain 
network. In particular, we transformed group-
level t-map to z-map. A set of binary images of 
the subject-specific and group brain networks 
could be generated using a certain threshold. 
The overlap between each subject-specific and 
group binary images was computed using the Dice 

https://www.fil.ion.ucl.ac.uk/spm
https://www.fil.ion.ucl.ac.uk/spm
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score. A larger overlap percentage indicated better 
functional consistency across different subjects and 
a better registration method.

Task-based fMRI
To assess the functionally homologous regions’ alignment, 
we utilized two widely used fMRI metrics for the EOEC 
dataset. These metrics have been widely applied to detect 
alterations in brain activities (41,42).

(I)	 The amplitude of low-frequency fluctuation  
[ALFF (43)]. ALFF detects the regional intensity of 
fluctuations in the BOLD signal, thereby reflecting 
specific regions’ neural activities. We performed 
a paired t-test to detect voxel-level differences in 
the ALFF maps between EC and EO. A larger 
difference between EC and EO results in a higher 
t-value. The differences between EO and EC have 
been consistently reported in previous studies 
(44,45). In cases without registration, only a small 
area showed higher fluctuation in EO than in EC. 
However, after registration, more areas showed 
significantly higher EO fluctuation than in EC in 
the visual cortex, resulting in a larger difference. 
Therefore, a higher peak t-value in the paired-t 
map indicated better registration performance.

(II)	 Regional homogeneity [ReHo (42)]. ReHo can 
evaluate the similarity between the time series of 
a given voxel and its nearest neighbors, rapidly 
mapping the level of regional activities across the 
whole brain. Our experiment used a cluster size of 
27 voxels to include all neighboring voxels adjacent 

to a given voxel. We also used a voxel-wise paired 
t-test to reveal the differences between EO and 
EC. A higher peak t-value in the paired-t map of 
ReHo indicated improved brain functional network 
registration performance across subjects.

Results

Number of cascades

We gradually increased the number of our cascades to 
determine the optimal performance. Every parameter 
regularization item λi of each cascaded subnetwork in the 
experiment was carefully modulated manually. Figure 4 
shows the peak t-value of DMN when we set a series of 
combinations of regularization parameters λ1 and λ2 in the 
two-cascaded MR-Net. A high peak t-value was obtained 
when λ1 =0.1 and λ2 =0.5. Therefore, we chose λ1 =0.1 and 
λ2=0.5 to train the two-cascaded MR-Net. When training 
an n-cascaded MR-Net, we set a series of regularization 
values and combined them in different ways to search for 
the optimal parameter combination. Table 1 shows the peak 
t-value of the n-cascaded MR-Net of the six networks. 
Also, Table 1 shows that our cascaded network improved the 
performance of a limited number of cascades. The number 
of cascades increases and does not constantly obtain a 
positive performance improvement. The shallower cascaded 
network benefits more from this cascade strategy than 
the deeper cascaded network because the image remains 
poorly registered. Our experimental results showed that 
the three-cascaded MR-Net achieved the best results. 

Figure 4 Peak t-value of DMN when we set a series of combinations of regularization parameters λ1 and λ2 in the two-cascaded MR-Net. 
DMN, default mode network; MR-Net, multi-resolution network.
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More than three cascades are likely to affect the composed 
field’s smoothness and deteriorate the registration quality. 
Figure 5 plots our results to better illustrate the trend. 
According to the results of our experiments, we chose 
a three-cascaded MR-Net for our registration task and 
regularization parameters λ1, λ2, and λ3 used for each 
cascade were 0.5, 0.5, and 1, respectively. Figure 6 shows 
the sub-deformation field output by each subnetwork 
after using the three-cascaded MR-Net. Each cascade was 
allowed to measure a part of the deformation field and 
could avoid folding. The final deformation field could be 
decomposed into three sub-deformation fields that can 
maintain topology by adding reasonable regularization 
items. The progressive alignment of the moving images 
can be achieved during testing. The number of cascades 
causes linear increments to the testing times. Figure 7 
shows the time cost of registering one of the subject fMRI 

Figure 5 Result of the n-cascade MR-Net is plotted to better 
reflect the trend corresponding to the data in Table 1. MR-Net, 
multi-resolution network; DMN, default mode network; VN, 
visual network; SMN, sensorimotor network; CEN, central 
executive network; RMN, right memory network; VCN, visual 
cortex network.

Figure 6 Sub-deformation field output by each subnetwork after the three-cascaded MR-Net. The rectangular areas show that the sub-
deformation field predicted by each cascade is allowed to learn a part of the deformation field. As the depth of the network increases, the 
subnetwork learns less deformation because the moving image is well aligned. MR-Net, multi-resolution network.

Table 1 Peak t-value of DMN, VN, CEN, SMN, RMN, and VCN of the n-cascaded MR-Net

Number of cascades DMN VN SMN CEN RMN VCN

1 16.9 14.3 14.5 14.9 14.1 12.1

2 19.3 17.4 14.7 15.8 16.0 12.7

3 19.8 17.8 15 16.4 17 13.2

4 17.9 17.0 14.7 15.9 16.2 12.4

5 17.9 16.8 14.6 16.2 16.2 12.3

DMN, default mode network; VN, visual network; SMN, sensorimotor network; CEN, central executive network; RMN, right memory  
network; VCN, visual cortex network.
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with different registration algorithms.

Evaluation based on rs-fMRI

Figure 8 shows the group-level t-maps of DMN with 
t>2.689 (P<0.01) by using six different registration 
algorithms. The t-value of DMN significantly increased 
using our three-cascaded MR-Net. Table 2 provides the 
peak t-values of the group-level t-maps of DMN, VN, 
CEN, SMN, RMN, and VCN. Our method increased the 
peak t-values of the six networks to 19.8, 17.8, 15, 16.4, 17, 
and 13.2. Compared with FSL, SPM, VM, and VTN, our 

three-cascaded MR-Net had an improvement of 47.58% 
{i.e., [(19.8 – 12.4)/12.4 + (17.8 – 9.9)/9.9 + (15 – 10.3)/10.3 
+ (16.4 – 14.1)/14.1 + (17 – 13.2)/13.2 + (13.2 – 8.5)/8.5]/6 
= 47.58%}, 11.88%, 18.60%, and 15.16%, respectively.

We also calculated the suprathreshold voxels of the main 
components of DMN given three specific thresholds to 
evaluate our registration algorithm further. Figure 9 shows 
the number of suprathreshold voxels using three different 
thresholds after registration by different methods. The 
number of suprathreshold voxels in different algorithms 
gradually decreased with a considerably stringent threshold, 
whereas they remained highest using our method.

Figure 7 Average calculation time of different registration algorithms (in minutes). FSL, FMRIB Software Library; SPM, Statistical 
Parametric Mapping; VM, VoxelMorph; VTN, Volume Tweening Network.

Figure 8 Group-level t maps of DMN with t>2.689 (P<0.01) after registration by FSL, SPM, VM, VTN, and our method. DMN, default 
mode network; FSL, FMRIB Software Library; SPM, Statistical Parametric Mapping; VM, VoxelMorph; VTN, Volume Tweening Network.
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Table 2 Peak t-values of six brain networks with different registration methods

Method DMN VN SMN CEN RMN VCN

FSL 12.4 9.9 10.3 14.1 13.2 8.5

SPM 17.6 14.5 14.6 15.2 14.4 12.3

VM 15.5 13 14.6 14.8 14.1 11.7

VTN 16.4 14.7 14.3 14.9 13.9 11.8

Our method 19.8 17.8 15 16.4 17 13.2

DMN, default mode network; VN, visual network; SMN, sensorimotor network; CEN, central executive network; RMN, right memory  
network; VCN, visual cortex network; FSL, FMRIB Software Library; SPM, Statistical Parametric Mapping; VM, VoxelMorph; VTN, Volume 
Tweening Network.

We calculated the correlations of the six brain 
networks at the individual level. Figure 10 depicts the 
correlations between individuals using a bar plot with an 
error bar. We conducted a one-way analysis of variance 
(ANOVA) to demonstrate whether our registration 
method exhibited a significant improvement. In the 
one-way ANOVA [95% confidence interval (CI)], the P 
value was below the 0.01 significance level. After that, 
we performed a multiple pairwise-comparison to further 
demonstrate that our method had markedly improved the 
correlations between individuals in each specific brain 
functional network.

We computed the overlap percentages of the specific 
functional network after using different registration 
methods. We applied different thresholds to evaluate the 
functional consistency across subjects after using different 
methods. Figure 11 illustrates the overlap percentages for 
different registration methods. The overlap percentages 
of all methods decreased when given a more stringent 

threshold; however, our method remained the highest. 
One-way ANOVA (95% CI) and multiple pairwise-
comparison were applied to our result. As expected, there 
were statistically significant differences between our method 
and the others.

Evaluation based on task-fMRI

Paired t-tests were performed for the EOEC dataset using 
the ALFF and ReHo evaluations after registration by FSL, 
SPM, VM, VTN, and our method. Table 3 and Figure 12 
show the results using the different registration methods. We 
could detect higher peak t values of the ALFF and ReHo 
paired-t maps in some regions in the visual cortex, including 
the bilateral middle occipital gyrus (P<0.01). Compared 
with FSL, SPM, VM, and VTN, our three-cascaded MR-
Net had an improvement of 83.54% (i.e., [(6.98 – 4.02)/4.02 
+ (8.57 – 4.43)/4.43]/2 = 83.54%), 23.89%, 55.43%, and 
40.59%.

Figure 9 Total number of suprathreshold voxels in PCC, precuneus, Angular_R, and Angular_L after registration via FSL, SPM, VM, 
VTN, and our method by using different thresholds: t>2.689 (P<0.01), t>3.520 (P<0.001), and t>4.269 (P<0.0001). PCC, posterior cingulate 
cortex; FSL, FMRIB Software Library; SPM, Statistical Parametric Mapping; VM, VoxelMorph; VTN, Volume Tweening Network.
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Discussion

A common preprocessing challenge associated with 
group-level fMRI analysis is to register multiple subjects 
into a standard space. Presently, registration using the 
EPI template in the MNI space as the fixed image is a 
common technique used to achieve spatial consistency 
among multiple subjects. Accurate image registration can 
significantly improve the statistical analytical results.

This study proposed a deep learning deformable image 
registration network structure three-cascaded MR-Net 
to register a group of subjects. We used MR-Net as our 
subnetwork, as it considers the situation when the receptive 
field cannot cover the corresponding points in moving 
and fixed images. In particular, the accuracy of registration 
depends on its ability to find the corresponding points in 
moving and fixed images, regardless of the type of deep 
learning registration methods. A correct displacement can 
be output only when the convolution kernel’s receptive 
field can cover the corresponding points in the moving 
and fixed images. For example, if an image is ×16 down-

sampled, a kernel with a size of 3×3 can cover size of 48×48 
receptive fields and easily find the corresponding points. At 
present, unsupervised registration network architectures 
make a straightforward prediction for the deformation 
field between intensity images (29,34) based on the UNet 
structure. However, previous studies (29,34) only warp the 
moving image in the original spatial resolution. Therefore, 
a 3×3 convolution kernel may be unable to cover the 
corresponding points that are distant in the moving and 
fixed images when aligning images at the original resolution.

The MR-Net can address the aforementioned issue. It 
trains a pyramidal feature descriptor to extract the moving 
and fixed features at multi-scales via a two-stream path. 
After that, the MR-Net constructs a warping module that 
can warp the moving features at each scale to the fixed 
features. In this manner, corresponding features with large 
deformation can be covered by a small kernel size’s receptive 
field at the low-resolution scale. Therefore, the moving 
image can easily find the fixed image’s corresponding points, 
even with a small kernel size, when the moving image is 
down-sampled numerous times. Therefore, we used the 

Figure 10 Bar plot with the error bar of the distribution of intersubject functional network correlation for six networks DMN, VN, SMN, 
CEN, RMN, and VCN. [*** indicates significant improvement via one-way repeated-measures ANOVA (P<0.001); ** indicates significant 
improvement via one-way repeated-measures ANOVA (P<0.01)]. DMN, default mode network; VN, visual network; SMN, sensorimotor 
network; CEN, central executive network; RMN, right memory network; VCN, visual cortex network; ANOVA, analysis of variance; FSL, 
FMRIB Software Library; SPM, Statistical Parametric Mapping; VM, VoxelMorph; VTN, Volume Tweening Network.
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MR-Net as our subnetwork and cascaded it three times.
To evaluate our algorithm, we compared our method 

with commonly used traditional fMRI registration 
algorithms, such as FSL and SPM, and advanced deep 
learning algorithms, such as VM and VTN. We extracted 
six brain functional networks to evaluate our registration 
performance and performed a one-sample t-test on each 
network. Our algorithm obtained the highest peak t-value. 
To further evaluate our method, we further used a task-

based fMRI dataset (EOEC dataset). The peak t-values in 
the ALFF and ReHo paired-t maps were the highest. The 
experiments showed that our proposed three-cascaded MR-
Net could achieve a good deformable image registration 
performance. However, the cascade strategy is limited after 
increasing the number of cascades by more than three times. 
Future research expects to further improve the deformable 
registration performance by exploring an effective method 
to deepen the cascaded network.

Figure 11 Overlap between each subject-specific and group brain networks with different thresholds after using varying registration 
methods. [*** indicates significant improvement via one-way repeated-measures ANOVA (P<0.001); ** indicates significant improvement 
via one-way repeated-measures ANOVA (P<0.01)]. DMN, default mode network; VN, visual network; SMN, sensorimotor network; CEN, 
central executive network; RMN, right memory network; VCN, visual cortex network; ANOVA, analysis of variance.
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Table 3 Peak t-values in the ALFF and ReHo paired-t maps with different registration methods

Evaluation metrics FSL SPM VM VTN Our method

ALFF 4.02 5.53 4.24 4.86 6.98

ReHo 4.43 7.05 5.86 6.23 8.57

ALFF, amplitude of low-frequency fluctuation; ReHo, regional homogeneity; FSL, FMRIB Software Library; SPM, Statistical Parametric 
Mapping; VM, VoxelMorph; VTN, Volume Tweening Network.
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Figure 12 Paired t-test for the EOEC dataset using ALFF and ReHo evaluations after registration by FSL, SPM, VM, VTN, and our 
method. EOEC, eyes open eyes closed; ALFF, amplitude of low-frequency fluctuation; ReHo, regional homogeneity; FSL, FMRIB Software 
Library; SPM, Statistical Parametric Mapping; VM, VoxelMorph; VTN, Volume Tweening Network.

Conclusions

This study proposed a three-cascaded MR-Net for 
fMRI deformable registration to achieve progressive 
fMRI registration while ensuring the deformation fields’ 
reasonability. In our experiment, six brain networks (i.e., 
DMN, VN, CEN, SMN, RMN, and VCN) of a group of 
subjects were analyzed using group-level statistical t-maps 
after registration. The experimental results showed that our 
three-cascaded MR-Net improved the group-level analysis 
and achieved advanced performance compared with the 
traditional fMRI registration methods (i.e., FSL and SPM) 
and deep learning frameworks (i.e., VM and VTN).
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