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Background: To develop a fuzzy clustering neural network to predict radiation-induced pneumonitis (RP) 
using four-dimensional computed tomography (4DCT) ventilation image (VI) based dosimetric parameters 
for thoracic cancer patients. 
Methods: The VI were retrospectively calculated from pre-treatment 4DCT data using a deformable image 
registration (DIR) and an improved VI algorithm. Similar to dose-volume histogram (DVH) of intensity 
modulated radiotherapy (IMRT), dose-function histogram (DFH) was derived from dose distribution and 
VI. Then, the dose-function metrics were calculated from DFH. For comparison, the dose-volume metrics 
were calculated from DVH. Correspondingly, two sets of feature vectors were formed from the dose-volume 
metrics and the dose-function metrics, respectively. For the feature vectors of each set, they were first pre-
processed by principal component analysis (PCA) to reduce feature dimensions. Then, they were grouped 
to few clusters determined by fuzzy c-means (FCM) algorithm. Next, the neural network was trained 
to correlate the dosimetric parameters with RP based on the feature vectors of each cluster. Finally, the 
occurrence of RP was predicted by the neural network on the test data.
Results: Through PCA analysis, the top 5 principal components were selected. Their contribution is more 
than 98%, which is adequate to represent the original feature space of input data. Based on the clustering 
validity indexes, the optimal number of clusters is 4 and used for subsequent fuzzy clustering of the input 
data. After network training, the areas under the curve (AUC) of the prediction model is 0.77 using VI-based 
dosimetric parameters and 0.67 using structure-based dosimetric parameters.
Conclusions: Compared to the structure-based dosimetric features, the VI-based dosimetric features 
are more relevant to lung function and presented higher prediction accuracy of RP. The fuzzy clustering 
neural network improved the prediction accuracy of RP compared to the conventional neural network. The 
combination of VI-based dose-function metrics and fuzzy clustering neural network provides an effective 
predictive model for assessing lung toxicity risk after radiotherapy.
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Introduction

Radiation pneumonitis (RP) is a type of irreversible 
lymphocytic alveolar inflammation, which usually occurs 

1–6 months after radiotherapy with symptoms of dry cough, 

low-grade fever, and dyspnea. Severe radiation pneumonitis 

can lead to extensive fibrosis of the lung and damage of 
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respiratory function. It affects the life quality of patients after 
radiotherapy and even endanger patient life. It is also the 
main factor in restricting the dose escalation of radiotherapy 
dose (1,2). The incidence of RP was 5–50% and the 
mortality was as high as 50%. At present, there is no specific 
treatment for radiation pneumonitis and pulmonary fibrosis 
after radiotherapy. How to avoid and reduce the occurrence 
of RP is one of the important parts in thoracic radiotherapy. 
The establishment of an effective RP prediction model can 
reflect the risk of RP to a certain extent, which is of great 
clinical significance to prevent RP (3,4).

Current research suggests that dosimetric metrics have 
important predictive value for RP. The occurrence and 
severity of RT-induced pulmonary injury is closely related 
to the volume of lung irradiated. Numerous studies have 
attempted to identify features that correlate with RP. 
Dosimetric metrics that describe features of the spatial dose 
distribution have been already reported to correlate with 
the development of RP (5-9). However, an agreement has 
not been reached about which of these dose-volume metrics 
should be used to predict the risk of RP (10). In addition to 
the structure-based dosimetric metrics, there is another type 
of dosimetric metric extracted from the functional images 
such as perfusion image and ventilation image (VI). Single 
photon emission computed tomography (SPECT), positron 
emission computed tomography (PET), and magnetic 
resonance (MR) imaging have been used as functional 
imaging techniques for radiation therapy for many years and 
potentially provide information on perfusion in addition 
to ventilation (11-13). However, these functional imaging 
techniques require additional costs and time which is more 
expensive in clinic.

Recently, a new technique for ventilation imaging using 
four-dimensional computed tomography (4DCT) with 
deformable image registration (DIR) has been investigated 
(14,15). In clinic, 4DCT images are usually acquired for 
lung cancer patients to allow a higher accurate contouring 
of the target volume with respiratory motion. The 4DCT 
ventilation imaging technique can be used for treatment 
planning, allowing ventilation imaging to be obtained 
without the additional costs and time of other functional 
imaging modalities (16). The 4DCT ventilation information 
can be calculated using DIR performed from the peak-
exhale and peak-inhale images. The 4DCT-based VI has 
been used to assess the functional changes in lung tissue 
(17-20), assess lung toxicity risk (14,21), and in guiding the 
planning of radiotherapy treatments (22-26). 

Currently, the following three calculation algorithms 

have been proposed for 4DCT VI image: (I) the density-
based algorithm which determines the ventilation in 
term of Hounsfield Unit (HU) change corresponding to 
inhalation and exhalation breathing phases (27); (II) the 
Jacobian-based algorithm which derives the ventilation 
from the Jacobian determinant of the deformable vector 
field (28); and (III) the regional-based algorithm which 
estimates the ventilation in terms of the 4D time-averaged 
regional product of air and tissue densities at each  
voxel (29). However, the correlation between the VIs 
resulted by these algorithms and the clinical gold standards, 
including [99mTc-SPECT (30) and 68Ga-Galligas PET (31)], 
are highly variable (32). Several investigations applied dose-
function metrics for treatment planning and evaluation. 
Studies have shown that dose-function metrics are more 
predictive of radiation toxicity than dose alone (33-35). 
In our previous study, a simplified regional-based VI 
generation algorithm was proposed, which only requires 
the average 4DCT as input and is more accurate and 
computational efficiency comparing to the other three 
algorithms (36). It is unclear whether it would also provide 
better dose-function metrics for evaluating the risk of 
radiation-induced lung toxicity.

Numerous linear or non-linear classifiers in the field of 
pattern recognition and intelligent controlling have been 
proposed over the past decades. Among them, the feed-
forward neural network has been used mostly as a predictive 
model for evaluating RP risk (37-39). The traditional feed-
forward neural network algorithm has a strong learning 
ability but suffers from slow convergence and overfitting 
of model. To overcome this, feature selection (40), such 
as principal components analysis (PCA), was introduced 
in this study to reduce the dimensionality of feature space 
and to enhance the performance of predictive model. In 
addition, unsupervised learning (41,42), such as clustering, 
was used to group samples into different clusters before 
they proceeded to the predictive model. This enhanced the 
similarity of features within each cluster and improved the 
efficiency of supervised learning.

In this study, a hybrid neural network was proposed and 
used as a primary prediction model for correlating dose-
function metrics generated by the simplified regional-based 
algorithm with the occurrence of RP. PCA was employed 
to reduce the feature vector to few dimensions. The fuzzy 
c-means (FCM) method was used to group samples into few 
clusters according to the unsupervised learning. Then the 
feed-forward neural network was trained on the samples 
of each cluster to learn the correlation between (structure-
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based or ventilation-based) dosimetric parameters and 
category labels. The performance of the neural network 
based on structure-based and ventilation-based dosimetric 
parameters was evaluated. The rest of this paper is 
organized as follows. In Section Methods, the generation 
of VI and dose-function formulation was described at first. 
Then the principles of PCA and FCM were explained in 
detail. Later, the prediction model and evaluation methods 
were introduced. In section Results, the prediction accuracy 
of hybrid neural network with respect to the two types of 
dosimetric metrics was presented. Finally, the advantages 
and disadvantages of the ventilation-based dosimetric 
metric and hybrid neural network were discussed in section 
Discussion.

Methods

Clinical data

A total of 244 patients with lung cancer who underwent 
intensity-modulated radiotherapy (IMRT) and 4DCT 
simulation from January 2015 to January 2018 were 
enrolled in this study, including 171 males and 73 females, 
aged 40–78 years. All patients were followed up for more 
than 6 months after completion of radiotherapy. Symptoms 
of radiation pneumonitis were recorded according to the 
common toxicity criteria of adverse events (CTCAE), 
version 4.03. According to this classification, the clinical 
data was divided into two groups, namely RP group  
(≥3 grade) and No-RP group (≤2 grade). All patients were 
planned using Pinnacle treatment planning system (Version 
9.0, Philips Radiation Oncology Systems). IMRT or VMAT 
plans were designed for each patient. A total of 95% of 
target volume should be encompassed by 95% of the 
prescribed dose.

4DCT-based VI

Free-breathing 4DCT was acquired with patients in a 
supine position using a Brilliance Bigbore CT scanner 
(Philips Healthcare, Andover, MA) with no i.v. contrast. 
For each patient, 4DCT images of the entire target and 
thorax, as well as upper abdomen were obtained. Real-time 
Positioning Management (RPM, Varian Medical Systems, 
Palo Alto, CA) was used for respiratory monitoring. The 
entire respiratory cycle was recorded and divided into ten 
equal temporal phases, defining the peak inhalation phase as 
T00 and peak-exhalation phase as T50 (29). The raw data 
was sorted into corresponding phase bins and reconstructed 

into ten phase CT datasets (T00-T90, respectively) with 
the dimension of 512×512 and 5 mm slice thickness. 
Average CT was reconstructed from 10-phase 4DCT data 
with respect to the percentage of time in the same spatial 
resolution. 

The lung volume was contoured on each CT phase using 
threshold-based approach with intensity cutoff between 
−250 and −1,000 HU in MIMvista. Central airway and 
great vessels where the 99mTc-Technegas physiologically 
concentrated were manually trimmed to define the region of 
interest for comparison. The lung volume was transformed 
into a 3D binary mask in which the value of voxel inside 
and outside the lung was set equal to 1 and 0, respectively. 
Binary lung masks, ten phases of 4DCT (T00, …, T90) 
and average CTs were saved as matrices using an in-house 
developed image toolkit called FLICT (i.e., functional lung 
image based on 4DCT) on MATLAB (Mathworks Inc.).

The ventilation was originally estimated by the regional-
based algorithm in terms of 4D time-averaged regional 
product of air and tissue densities at each voxel (29) as 
below.

1
( ) ( ) /N

HUCTVI x v x N∅∅=
=∑ ，where	

( ) ( )
( )

0

( ) ( ) 1000
          = 1000 1000

0

Air Tissuref x f x if x L
v x

if x L

HU X HU X if x L

if x L

∅ ∅ ∅
∅

∅

∅ ∅
∅

∅

 × ∈= 
∉

+ × ∈
−

 ∉
	 [1]

Here, HU∅(x) was the HU value at voxel x and φ was the 
4DCT phase bin (T00, T10, … , T90). L is the binary lung 
mask defined on each phase CT. As indicated in Eq. [1], all 
phases of 4DCT and the corresponding binary lung masks 
are required. 

For the convenience of clinical use with less input 
requirement and faster calculation speed, we proposed a 
simplified algorithm, which only required average CT and 
the corresponding binary lung mask (36): 
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here HUAVG(x) and LAVG are the HU value at voxel x and the 
binary lung mask defined on average CT, respectively.

Dose-volume metric and dose-function metric

Dose-volume metrics was calculated from the 3D dose 
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distribution based on average CT (planning CT). For each 
patient, dose-volume histogram (DVH) and mean lung dose 
(MLD) were calculated. The lung dose index Vx is defined 
as the percentage volume of lung receiving dose more 
than x Gy. For x =1 Gy, ..., 60 Gy, the values of Vx were 
calculated from DVH. The indexes of Vx and MLD jointly 
formed a one-dimensional feature vector with length of 61 
for each patient. 

Dose-function metrics was calculated from the 3D dose 
distribution and 4DCT-based VI. Using methods proposed 
for perfusion imaging (6), dose-function histograms (DFHs) 
was calculated by replacing volume with ventilation-based 
function. The functional MLD (fMLD) was calculated 
by weighting each dose voxel by its ventilation value. The 
functional Vx (fVx) is defined as the percentage ventilation 
function of lung receiving dose more than x Gy. For x = 
1 Gy, ..., 60 Gy, the values of fVx were calculated from 
DFH. The indexes of fVx and fMLD jointly formed 
another one-dimensional feature vector with length of 61 
for each patient.

The structure-based dose-volume feature vectors (MLD 
and Vxs) formed one set of samples, while the ventilation-
based dose-function feature vectors (fMLD and fVxs) 
formed another set of samples. Both sets of feature vectors 
were first processed by PCA analysis. The few components 
with top-ranking were kept to represent the original feature 
space and the other components were discarded. PCA 
analysis reduced the dimensions of feature vector, which 
improved training efficiency and avoided overfitting of 
neural network.

Fuzzy clustering 

The purpose of clustering is to identify natural groups 
of data from a large data set and produce a concise 
representation of a system’s behavior. FCM (42) is a 
clustering technique that the degree of each data point 
belonging to a cluster is quantified by a membership grade. 
FCM is popularly used in pattern recognition and provided 
in many scientific software for engineers and researchers. In 
this study, we built our application based on FCM module 
of Fuzzy Logic Toolbox provided by MATLAB (The 
MathWorks, Natick, MA 01760, USA).  

The objective function of the fuzzy clustering algorithm 
and its constraints are formulated as follows: 
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where N is the number of samples and C is the number 
of clustering centers. uki is the degree of membership 
indicating the degree to which the i-th sample belongs to 
the k-th class. kiU  is the membership matrix consisting of 
uki. The Euclidean distance dki is calculated by k iv x−  . vk 
is the k-th clustering center and m0 is the fuzzy parameter. 
FCM starts with an initial guess for the cluster centers, 
which are intended to mark the mean location of each 
cluster. By Lagrange multiplier method, vk and uki are 
determined as shown below.
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The initial guess for these cluster centers is most likely 
random. FCM assigns every data point a membership grade 
for each cluster. By iteratively updating the cluster centers 
and the membership grades for each data point, FCM 
iteratively moves the cluster centers to the right location 
within a data set. This iteration is based on minimizing an 
objective function that represents the distance from any 
given data point to a cluster center weighted by that data 
point’s membership grade. As a result, FCM outputs a list of 
cluster centers’ locations and membership grades for each 
data point.

Neural network modeling

The prediction model was based on fuzzy clustering and 
feed-forward neural network. The algorithm is briefly 
described as follows: 

(I)	 The dataset is divided into two groups for training 
and testing purposes. 

(II)	 During the training phase, FCM is used to classify 
the training samples and divide them into c 
categories with certain similarity measures;

(III)	 For each cluster, a feed-forward neural network is 
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established based on the specified training samples 
within the cluster;

(IV)	 During the testing phase, the Euclidean distance 
between the test sample and the center of each 
cluster is calculated, and the cluster of testing 
sample belonging to is selected by the minimum 
distance;

(V)	 The neural network of the cluster is selected to 
predict the occurrence of RP using the test samples 
of the cluster.

The feed-forward neural network with 8 hidden layers 
of neurons was selected (37). The tan-sigmoid function 
was used as the output layer function to limit the network 
output range [−1, 1]. The network training and testing 
were conducted by using the leave-one-out (LOO) cross 
validation method. In the LOO method, one patient’s data 
from the total data set is excluded from predicting the 
network performance. The network is trained using the 
remaining data and tested with that excluded patient's data. 
This method maximizes the data available for training and 
can test a predictive model for a limited dataset.

Statistical analysis

A five-fold cross-validation procedure was applied to the 
244 cases. Each fold contains approximately 20% RP cases 
and 80% non-RP cases. Each fold was selected as the testing 
data, and the remaining four folds were used as training 
data. Averaging prediction accuracy on five folds leaded to 
the overall accuracy estimate of the proposed method. In 
each fold of cross-validation, three neural networks were 
created and trained. They are NN-61 (neural network with 
input of the original feature vector with the length of 61),  
NN-5 (neural network with input of the compressed 
feature vector with the length of 5 after PCA analysis) and 
FCNN (fuzzy clustering neural network with input of the 
compressed feature vector with the length of 5 after PCA 
analysis). 

The performance of model was quantified in terms of 
sensitivity [TP/(TP+FN)], specificity [TN/(TN+FP)], 
where TP is true positive, TN is true negative, FP is false 
positive, and FN is false negative. In addition, to test the 
ability of the new ventilation-based dosimetric features, 
area under the curve (AUC) was determined from the 
receiver operating characteristic (ROC) analysis. Radiation 
pneumonitis of ≥ Grade 3 was represented by positive 
values, while Radiation pneumonitis of ≤ Grade 2 was 
represented by negative values. This analysis was performed 

using R language (www.r-project.org) version 4.0. Student’s 
t-test was used to compare the performance between 
predictive models built on structure-based and ventilation-
based dosimetric features. The performance among NN-
61, NN-5, and FCNN were evaluated for the effect of PCA 
and FCM. Statistical significance was defined as P<0.05.

Results

The patient cohort was composed of a heterogeneous 
population with a median age of 60.6 years (range,  
35–79 years). The prescription dose ranged from 50 to 
66 Gy, and the median follow-up duration was 18 months 
(range, 6–48 months). RP of Grade 2 or above was observed 
in 49 patients: 18 patients with Grade 2 pneumonitis,  
29 patients with Grade 3, 0 patient with Grade 4, and 
2 patients with Grade 5. The remaining 195 patients 
had Grade 1 RP. In this study, there was no significant 
correlation between RP (Grade ≥2) and pre-therapeutic 
lung disease, infectious lung disease after therapy or 
systemic therapy during and after radiation therapy.

A visual comparison between different VI is illustrated 
in Figure 1 for a specific patient in transverse (first row) 
and coronal (second row) views. The correctness of the 
segmentation algorithm used in this study can be confirmed 
by comparing the original VI-SPECT (first column) and 
the segmented VI-SPECT (second column). The resulting 
4DCT VI by the density-based algorithm (27), the Jacobian-
based algorithm (28), the regional-based algorithm (29),  
and the simplified regional-based algorithm (36) are 
represented by CTVI-HU, CTVI-JAC, CTVI-PRO, and 
CTVI-AVG, respectively. In general, CTVI-PRO and 
CTVI-AVG were more similar to VI-SPECT. CTVI-HU 
and CTVI-JAC were less similar to VI-SPECT, especially 
in the regions as indicated by the yellow arrows.

The contribution rates of the top 5 principal components 
of the structure-based dosimetric features were 69.5, 19.9, 
6.4, 1.8, and 0.8, while their values of the ventilation-
based dosimetric features were 67.5, 21.2, 6.3, 2.1, and 1.0. 
The cumulative contribution rate of the top 2 principle 
components for both structure-based and ventilation-
based dosimetric features were 89.4 and 88.7, respectively. 
Similarly, the cumulative contribution rate of the top 
3 principle components for both structure-based and 
ventilation-based dosimetric features were 95.9 and 95.1, 
respectively. The cumulative contribution rate increased 
quickly when a few top-ranked principle components were 
added, and this increase slowed when more than 5 top-

http://www.r-project.org
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ranked principle components were added. For balancing the 
efficiency and accuracy of the predictive model, the 5 top-
ranked principle components were selected as dosimetric 
features. The cumulative contribution rate of the 5 top-
ranked principle components for both structure-based 
and ventilation-based dosimetric features were 98.5 and 
98.2, respectively, which is sufficient to represent the main 
feature information of the input data.  

The determination of clustering number is another 
problem, which should be solved by validity evaluation 
criteria. In this study, several clustering validity indexes 
were tested, including SIL, DB, CH, BIC, and DUNN (43). 
The optimal number of clusters is 4 based on the tested 
indexes. Figure 2 shows the result of FCM while the feature 
vectors of the samples were projected onto two-dimensional 

principal component space. The clusters of structure-based 
and ventilation-based feature vectors are comparatively 
shown in Figure 2A,2B. In each figure, the red circle 
represents the cluster center and the contour lines represent 
the membership relationship between the data point and 
the cluster. The x-axis is the first principal component score 
after normalization, and the y-axis is the second principal 
component score. It is noted that the cluster centers in 
both figures are similar, which implies that both types of 
dosimetric features may be highly correlated. 

Figure 3 shows the ROC curves of the NN-61 tested 
on the structure-based and ventilation-based datasets. 
The AUC of the NN-61 using the structure-based dataset 
was 0.63, with sensitivity and specificity of 0.43 and 0.68, 
respectively. The AUC of the NN-61 using the ventilation-

Figure 1 A comparison of the ventilation images generated by different algorithms. VI-SPECT, ventilation image generated by single 
photon emission computed tomography; CTVIHU, ventilation image generated by the density-based algorithm; CTVIJAC, ventilation 
image generated by the Jacobian-based algorithm; CTVI-PRO, ventilation image generated by the regional-based algorithm; CTVIAVG, 
ventilation image generated by the simplified regional-based algorithm.
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Figure 2 The projections of feature vectors on four clusters in two-dimensional principal component space. (A) The distribution of 
structure-based dosimetric feature vectors in 2D space; (B) the distribution of ventilation-based dosimetric feature vectors in 2D space. 
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based dataset was 0.70, with sensitivity and specificity of 
0.53 and 0.69, respectively. The prediction accuracy of 
neural network using the ventilation-based is higher than 
that of the neural network using structure-based dosimetric 
features. The prediction capability of the network is 
significantly improved by using ventilation-based dosimetric 
features (P=0.016).

Figure 4 shows the ROC curves of the NN-5 tested 
on the structure-based and ventilation-based datasets. 
The AUC of the NN-5 on the structure-based dataset 
was 0.65, with sensitivity and specificity of 0.52 and 0.74, 
respectively. The AUC of the NN-5 on the ventilation-
based dataset was 0.73, with sensitivity and specificity of 0.61 

and 0.73, respectively. The prediction accuracy of neural 
network using the ventilation-based is higher than that of 
neural network using structure-based dosimetric features. 
The prediction capability of the network was significantly 
improved by using ventilation-based dosimetric features 
(P=0.015).

Figure 5 shows the ROC curves of the FCNN on the 
structure-based and ventilation-based datasets. The AUC 
of the FCNN on the structure-based dataset was 0.67, with 
sensitivity and specificity of 0.58 and 0.70, respectively. 
The AUC of the FCNN on the ventilation-based dataset 
was 0.77, with sensitivity and specificity of 0.71 and 0.76, 
respectively. The prediction accuracy of neural network 
using the ventilation-based is higher than that of neural 
network using structure-based dosimetric features. The 
prediction capability of the network was significantly 
improved by using ventilation-based dosimetric features 
(P=0.018).

Table 1 summarizes the AUC, sensitivity, and specificity 
of the networks NN-61, NN-5, and FCNN tested on the 
structure-based and ventilation-based datasets. Sensitivity 
and specificity were defined as the correctly predicted 
fraction of cases with and without RP, respectively. The 
average AUCs for both types of dosimetric features for 
NN-61 and NN-5 were 0.66 and 0.69, respectively. The 
prediction capability of the neural network was significantly 
improved by using PCA (P=0.022). The average AUCs for 
both types of dosimetric features for NN-5 and FCNN 
were 0.69 and 0.72, respectively. The prediction capability 
of the neural network was significantly improved by using 

Figure 3 Receiver operating characteristic (ROC) curves of NN-
61 using structure-based dosimetric features and ventilation-based 
dosimetric features.

Figure 4 Receiver operating characteristic (ROC) curves of NN-5 
using structure-based dosimetric features and ventilation-based 
dosimetric features.

Figure 5 Receiver operating characteristic (ROC) curves of 
FCNN using structure-based dosimetric features and ventilation-
based dosimetric features.
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FCM (P=0.025). The average AUCs of both types of 
dosimetric features for NN-61 and FCNN were 0.66 and 
0.72, respectively. The prediction capability of the neural 
network was significantly improved by using both PCA and 
FCM (P=0.017). 

Discussion

Current clinical methods used to predict the occurrence 
probability of RP are usually based on empirical thresholds. 
It is generally assumed that the lung is a homogenous 
tissue with the same radiotherapy response and RP can be 
predicted by clinically associated volume dose (V5, V10, 
V20, etc.) and the mean lung dose. However, there are 
two problems with this assumption. First, the lung volume 
is determined based on the instantaneous image. Since 
the lung volume of CT images obtained from different 
respiratory phases varies considerably, the accuracy of the 
dose volume of the lung could be affected considerably. 
Second, the ventilatory functions of different parts of the 
lung vary, especially in the lung affected by radiotherapy. 
The retrospective study showed that compared with the 
low ventilation function area before radiotherapy, the high 
ventilation function area had a more significant decline in 
carbon monoxide diffusion ability after irradiation. This 
finding suggests during treatment planning for thoracic 
patients, protecting the hyperventilation area can reduce 
lung injury and side effects after radiotherapy. It also 
showed that the dose in high ventilation lung areas could 
better predict RP. This study demonstrated that the average 
prediction accuracy and AUC value of classifiers using 
ventilation-based dosimetric features were higher than those 
of classifiers using structure-based dosimetric features. This 
further suggested that ventilation-based dosimetric features 
are more effective than those of structure-based dosimetric 
features for RP prediction.

The FCM algorithm was evolved from the K-means 
clustering algorithm. The algorithm's objective function is 
constructed based on the least mean square error function 
in the class. The essence of FCM is to get the membership 
degree of each sample point to the class centers by 
optimizing the objective function, so as to determine the 
class of the sample and achieve the automatic classification 
of the sample data set. However, the FCM algorithm has 
certain drawbacks. First, before clustering, the number of 
categories must be known in advance. In the case of prior 
knowledge (i.e., the number of categories is known), the 
objective function of the FCM algorithm can be calculated 
directly. However, in the case of unsupervised clustering, 
the number of clusters have to be determined in advance. 
Second, as a local search algorithm FCM is sensitive to 
the initial value. Randomly initializing the centroids or 
membership matrix will cause the algorithm to fall into 
the local optimum. There are several approaches to solve 
this problem. The Particle Swarm Optimization (PSO) 
algorithm can effectively avoid local minima. However, 
more time will be required for global random searching (44).

There are some limitations to this study. As shown in 
Figure 2, the clusters of samples are mapped onto two-
dimensional space and the distance between the clusters is 
smaller. This implies that the samples in the new feature 
space might not be perfectly separated. Numerous reasons 
could cause this. First, the two principal components in 
the figure are 2 top-ranked principal components. Their 
cumulative contribution rate is about 88%, which does 
not fully represent the original feature space. Therefore, 
the distance of clusters in the two-dimensional feature 
space may differ from their actual distance in the five-
dimensional feature space. Second, the definition of the 
objective function in the FCM algorithm depends on the 
choice of the distance measure. Different values of the 
objective functions could be obtained with different distance 

Table 1 A comparison of the NN-61, NN-5, and FCNN using structure-based dosimetric features and ventilation-based dosimetric features 

Statistics
Structure-based dosimetric parameters Ventilation-based dosimetric parameters

NN-61 NN-5 FCNN NN-61 NN-5 FCNN

AUC 0.63 0.65 0.67 0.70 0.73 0.77 

Sensitivity 0.43 0.52 0.58 0.53 0.61 0.71 

Specificity 0.68 0.74 0.70 0.69 0.73 0.76 

AUC, area under the curve.
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measures. In this study, the Euclidean distance was used in 
the FCM algorithm. When the feature dimension is larger, 
the Euclidean distance might not be proper. Third, the 
size of the data set was limited. This current study required 
patients to conduct 4DCT imaging and therefore patients 
had to demonstrate high ventilation lung function before 
radiotherapy. These restrictions limited the enrolment of 
patients for this study. In the future, these restrictions should 
be relaxed by adopting 4D cone-beam CT (4DCBCT) 
instead of 4DCT and including patients with moderate 
ventilation lung function to expand our data set.

Conclusions

4DCT-VI provided by the simplified regional-based 
algorithm was more accurate and computationally more 
efficient at quantifying lung function compared to the 
original algorithm. The prediction accuracy of the neural 
network using ventilation-based dose-function metrics 
was higher than that of the traditional feed-forward neural 
network using structure-based dose-volume metrics. 
Together with the hybrid neural network, the ventilation-
based dose-function metrics provided a promising and 
effective predictive model for RP. 
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