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Three-dimensional quantitative assessment of myocardial 
infarction via multimodality fusion imaging: methodology, 
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Background: The precise assessment of myocardial infarction (MI) is crucial both for therapeutic 
interventions in old MI and the development of new and effective techniques to repair injured myocardium. 
A novel method was developed to assess left ventricular (LV) quantitatively infarction through three-
dimensional (3D) multimodality fusion based on computed tomography angiography (CTA) and technetium-
99m methoxyisobutylisonitrile (99mTc-MIBI) single-photon emission computed tomography (SPECT) 
images. This study sought to develop a 3D quantitative method for MI for pre-clinical study and clinical 
application.
Methods: Three months after the MI models were established in 20 minipigs, CTA and SPECT images 
were acquired separately, which were then aligned automatically with the constraints of the shape and the 
whole heart and LV myocardium position. Infarct ratios were quantified based on the 3D fusion images. The 
quantitative assessment was then experimentally validated via an ex vivo histology analysis using triphenyl-
tetrazolium-chloride staining and subsequently applied to post-MI patients (n=8).
Results: The location of an infarct identified by the SPECT was consistent with that identified by an  
ex vivo heart in a 3D space. Infarct size determined by CTA-SPECT was correlated with infarct size assessed 
by triphenyl-tetrazolium-chloride pathology {27.6% [interquartile range (IQR) 17.1–34.7%] vs. 24.1% 
(IQR 14.7–32.5%), r2=0.99, P<0.01}. In clinical cases, the CTA-SPECT 3D fusion quantitative results were 
significantly correlated with the quantitative perfusion SPECT results (r=0.976, P<0.01). 
Conclusions: The proposed 3D fusion quantitative assessment method provides reliable and intuitive 
evaluations of infarction. This novel quantification technique enables whole heart quantification for the 
pre-operation evaluation and post-diagnosis management of old MI patients. It could also be applied to the 
design of 3D-printed cardiac patches.
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Introduction

Despite advances in myocardial infarction (MI) treatment, 
the damage of myocardial tissue caused by prolonged 
ischemia and hypoxia is generally considered irreversible (1).  
For patients with end-stage heart failure, the only viable 
option is whole heart transplantation (2). However, due to 
the shortage of donors’ hearts, this approach is unavailable 
to most patients. Thus, new techniques and therapies to 
repair injured myocardium are urgently needed. According 
to previous studies (3-5), cardiac tissue engineering is a 
promising alternative treatment for end-stage ischemic 
heart diseases (6). Three-dimensional (3D) bioprinting 
is an actively studied cardiac tissue engineering method, 
which has been shown to have good prospects and has been 
successfully applied in pre-clinical studies (7,8).

Today, 3D bio-printed cardiac tissue is evolving toward 
a custom-designed, thick patch with a blood vessel (7). 
The printed cardiac patch can be perfused and can 
maintain large-scale tissue construction functionality (9).  
However, this technique still has some limitations. 
Delimiting cardiac tissues from cardiac images currently 
requires a manual and subjective intervention by a 
clinician experienced in image analysis to ensure printing 
accuracy. This operator-dependent process inevitably 
translates into variability. More importantly, the current 
accuracy of infarct assessment does not yet meet the 
printing requirements of 3D cardiac patches. The typical 
approach to assessing infarction is to map the 3D volume 
data onto a two-dimensional (2D) plane and then generate 
a bull’s-eye map (10-12). However, such 3D-2D mapping 
leads to unavoidable distortions that affect the accuracy of 
quantification (13). Further, as myocardial segments are 
not defined regarding the ventricular septum and papillary 
muscles, bull’s-eye mapping does not accurately reflect 
patient-specific anatomical changes (14).

T h e  3 D  a s s e s s m e n t  o f  i n f a r c t i o n  c a n n o t  b e 
accomplished using single-modality cardiac imaging. Given 
that the thickness of the coronary vessel wall is small, high-
resolution gated axial computed tomography (CT) slices 
of 0.5 mm with adaptive statistical iteration reconstruction 
provide the best data source for 3D printing. Single-
photon emission computed tomography (SPECT) 
enables high-quality examinations of cardiac perfusion 
and metabolism to be undertaken (10). The combined 
computed tomography angiography (CTA) and SPECT 
would facilitate the comprehensive assessment of MI 
post-MI based on the incremental information provided 

by multimodality fusion images (11,15). However, the 
existing CTA-SPECT registration methods use only the 
geometric features of the left ventricular (LV) myocardium 
(16-18). Registration based only on LV myocardium is 
not sufficiently structurally constrained and may lead to 
undesirable distortions. Thus, manual correction is often 
required in a post-process.

This paper developed a novel automatic MI assessment 
using customized 3D CTA-SPECT image fusion and a 
machine learning tool. This visual quantification method 
accurately assesses the size, location, and thickness of 
infarction and represents the infarction combined with 
the coronary tree in a 3D space. The method proposed in 
this paper could be used not only to manage patients post-
MI but also to provide technical support for the design of 
patient-specific cardiac patches.

This study sought to: (I) describe the methodology of 
the 3D fusion quantitative method; (II) describe the visual 
quantification method of LV infarct size and validate it in 
animal studies; and (III) test the feasibility of the proposed 
method in clinical settings.

Methods

Study design

Figure 1 provides a summary of the study design. A total of 
30 minipigs were used to develop porcine MI models. Of 
these 30 minipigs, 20 survived 3 months after operation. 
Rest electrocardiogram (ECG)-gated SPECT myocardial 
perfusion imaging and CTA were then performed 3 months 
post-MI in the 20 surviving minipigs. Infarct size was 
quantitatively assessed using a novel 3D visual quantification 
method. The results assessed from the CTA-SPECT were 
compared with those assessed from histological staining. 
For the clinical application, 6 patients with MI in the 
anterior wall and 2 patients with mild coronary stenosis 
were examined by coronary CTA and SPECT/CT. The LV 
infarct sizes were evaluated using the proposed 3D CTA-
SPECT method and were then compared with results 
that the widely used commercial software package had 
calculated, Quantitative Perfusion SPECT (QPS) (Cedars-
Sinai Medical Center, Los Angeles, CA). 

The authors are accountable for all aspects of the work, 
including ensuring that questions related to the accuracy 
or integrity of any part of the work were appropriately 
investigated and resolved. The experiments were approved 
by the Air Force Medical University Committee and 
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Figure 1 Study design. 3D, three dimensional; MI, myocardial infarction; BO, balloon occlusion; BBS, ballon-balloon-sponge; TTC 
staining, 2-, 3-, 5-triphenyltetrazolium chloride; 99mTc-MIBI SPECT/CT, 99mTc-methoxyisobutylisonitrile single photon emission 
computerized tomography/computed tomography; CTA, computed tomography angiography.

conducted in compliance with the National Institutes of 

Health Guide for the Care and Use of Laboratory Animals 

and national or institutional guidelines on the care and use 

of animals (project license 2015-D01-07).

Anesthesia before and during operation

The minipigs were anesthetized with ketamine hydrochloride 
(20 mg/kg, Intramuscular), after which intravenous catheters 
were inserted through the marginal ear veins. Propofol  
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(0.003 mL/kg/min) was continuously infused to maintain 
anesthesia. ECG monitoring was performed during the 
image scanning and construction of the MI model. During 
the MI model construction, animals were intubated and 
ventilated with a 1:1 mixture of air and oxygen.

Construction of MI animal model

To construct animal models of different infarct sizes, two 
methods were used for the left anterior descending (LAD) 
occlusion, that is, the balloon occlusion (BO) method or 
the ballon-balloon-sponge (BBS) method. The difference 
between the two models was the infarct size. The BO 
method was performed by occluding the middle LAD 
coronary artery with a temporary balloon for 60 minutes, 
followed by reperfusion. Conversely, in the BBS embolism 
group, animal models were constructed using the sequential 
embolism method as previously reported (19). A sequential 
embolus gradually and permanently occluded the blood 
flow distal to the middle segment of LAD. Figure 2 shows a 
comparison of the two MI models.

Coronary CTA imaging

The animals were placed in a right lateral recumbent 
position and underwent a full-body CTA scan on a 
dual-source 128-slice CT system (Somatom Definition 
Flash, Siemens Medical Systems, Forchheim, Germany). 
Nitroglycerin aerosol was sublingually administered to 
dilate the coronary artery, while heart rate was controlled 
within 60–80 beats per minute by esmolol hydrochloride 
injection (0.05–0.15 mg/kg min) to acquire high-quality 
images. Coronary enhancement was achieved by an 
intravenous injection of a contrast agent (Iohexol, Italy, 
2 mL/kg) followed by a saline bolus flush. The scan was 
performed with the following parameters: a detector 
configuration of 128×0.6 mm, beam collimation of  
38.4 mm, a rotation time of 300 ms, a tube voltage of 120 kV,  
an effective tube current 2 of 40–350 mAs, and a pitch of 
0.23. A conventional retrospective ECG-gated scan was 
performed in the spiral mode with a phase window of 20–
90% of the R–R interval. The raw CTA were reconstructed 
with a slice thickness of 0.75 mm (a 0.4-mm increment) and 
a pixel matrix of 512×512.

99mTc-MIBI SPECT/CT scanning

The SPECT/CT scans were performed using SymbiaT2 

(Siemens, Germany). The animals were kept in right lateral 
recumbency during the entire scanning process. A non-
enhanced low-dose CT scan was first performed (110 kV, 
40–60 mA); the reconstructed volume had approximately 
50 sections of 512×512 pixels with a detective element size 
of 0.98×0.98 mm2, and a section thickness of 5.00 mm. 
The myocardial perfusion projections were then acquired  
60 minutes after a technetium-99m methoxyisobutylisonitrile 
(99mTc-MIBI) (0.3 mCi/kg) injection by a dual-headed 
camera (for which each head required 180 degrees of 
rotation). The camera’s analyzer was set at 140-kilo 
electron volts with a 20% window. The reconstructed 
SPECT volume comprised 64 sect ions  of  64×64 
pixels with a detective element size of 6.59×6.59 mm2,  
and a section thickness of 6.59 mm. The SPECT and CT 
images were co-registered using the integrated software 
Syngo MI VA30A (SIEMENS, Germany).

Histological analysis

Ex vivo histological staining with 2-, 3-, 5-triphenyl 
tetrazolium chloride (TTC) was performed on the last day 
of the study to quantify the infarct size. Upon completing 
the final imaging study, the animals were euthanized with 
intravenous potassium chloride (20 mL, 10%), and their 
hearts were excised and frozen. Each dissociated heart was 
sliced perpendicular to the heart’s long axis at a thickness 
of 0.4–0.5 cm. The slices were placed in 1% fresh TTC 
solution for 20 minutes at 37±0.2 ℃. The histological slices 
were then placed on a coordinate paper and photographed 
with a digital camera. The digital images of the TTC 
stained heart slices were analyzed with ImageJ (US National 
Institutes of Health, Bethesda, MD, USA). The midline 
(i.e., the line at the center between the epicardial and 
endocardial surfaces) was drawn manually on each slice 
by an expert cardiologist physician. The infarct ratio (IR) 
was then calculated using the midline length measurement 
method following the guidelines for experimental models 
of myocardial ischemia and infarction (20,21). As the LV 
was dilated after MI, the infarct area wall became thinner, 
and the viable area became hypertrophic. The area-based 
method was likely to underestimate the size of the infarct, 
as there were opposing changes in wall thickness between 
dead and surviving myocardium. Conversely, the length-
based method measured the extent to which the infarct scar 
radially covered the LV wall independent of any structural 
changes in the wall and thus provided a more accurate 
assessment.
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Figure 2 Construction of myocardial infarction (MI) minipig models using the conventional balloon occlusion (BO) method, and the 
sequential balloon-balloon-sponge (BBS) embolism method. (A) Coronary angiography tests before BO operation and (B) during BO 
operation. An occlusion balloon (as indicated by the red arrow) was placed distal to the second diagonal branch (as indicated by the blue 
arrows) for approximately 60 minutes. The blood flow distal to the occlusive balloon disappeared and was then restored after the balloon was 
withdrawn. (C) Coronary angiography tests before the BBS operation, and (D) after the BBS operation. Two emboli (as indicated by the red 
arrow) were placed distal to the 2nd diagonal branch (as indicated by the blue arrows), permanently interrupting the blood flow.

Preliminary clinical application

With their agreement, 6 patients with anterior wall MI and 
2 patients with mild coronary artery stenosis were recruited 
from the General Hospital of the Chinese People’s 
Liberation Army (Beijing). Six patients with anterior MI 
were studied within 1 year after first MI. Treatments 
were implemented following the Chinese guidelines for 
managing acute myocardial infarction (AMI) (22).

CTA was performed using a 128-detector CT system 
(Somatom Definition Flash, Siemens Medical Systems, 
Forchheim, Germany). Before the examination, all of the 
patients were instructed on breath holding to minimize 

artifacts during the examinations. Coronary enhancement 
was achieved by the intravenous injection of a contrast 
agent (Iohexol, Italy, 1 mL/kg) followed by a 25-mL 
saline bolus flush. The scanning range extended from the 
mid-level of the left main pulmonary artery to below the 
diaphragm with a trigger threshold of 100 Hounsfield unit 
(HU). Prospective CTA was performed with the following 
parameters: 128×0.6 collimation, 0.3 s gantry rotation 
time, 80 kV tube voltage, 205 mAs tube current, and the 
triggering window was set at 0–100% of the R-R interval. 
Pitch varied between 0.2 and 0.5 depending on heart rate 
and patient size.

The patients were then subjected to SPECT scanning 
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following the scanning above procedure. The SPECT 
images were transformed into the polar bull’s-eye plots 
using QPS software (Cedars-Sinai Medical Center, Los 
Angeles, CA). Total perfusion deficit (TPD) scores were 
computed using QPS to reflect the overall perfusion defect’s 
extent and severity. Two experienced nuclear physicians 
independently analyzed the images.

Quantification

The quantitative assessment based on 3D CTA-SPECT 
imaging was conducted automatically with customized 
Matlab scripts. CTA images reconstructed from the 75% 
R-R interval were manually selected for analysis, which 
identified the best cardiac phase for coronary artery image 
reconstruction in most cases. The choice of the image 
reconstruction window was based on the recommendation 
of published experts (23). The complete image-processing 
framework is depicted in Figure 3. The processes of 
myocardial segmentation, multimodality image registration, 
myocardial classification, and quantification were 
automated.

The whole heart and LV myocardium segmentation
The whole heart and LV myocardium were segmented 
using different strategies. Segmentations of the whole 
heart in CTA and CT were achieved using the multi-atlas 
label fusion (MALF) method, which has demonstrated 
superior performance in the field of automatic image  
segmentation (24). For the segmentation of LV myocardium 
in CTA, as the degree of LV dilatation varied with the 
location and extent of MI (25), the global, regional, and 
segmental myocardial deformation differed significantly 
between the participants. As the MALF method can 
only produce initial masks covering about 50% of the 
LV myocardium, the region growing method (26) was 
then employed to expand the masks with 3D active-shape  
models (27) as the shape constraint. For the SPECT 
images, the LV myocardium was marked out based on 
the regional tracer uptake. In this study, 50% of the peak 
activity was adopted for myocardium segmentation in the 
SPECT images (28). The whole heart and LV segmentation 
methods are applied to both the minipig and patient data. 
Concerning the patient data, the coronary trees in CTA 
were extracted using the region growing method.

Multimodality image registration
The registration of CTA-SPECT was performed by 

maximizing the similarity between the floating image and 
the reference image using the following transformation (T) 
formula:

( )( )max ,
T

S R T F  [1]

where S denotes similarity, R denotes the reference 
image, and F denotes the floating image. In this paper, 
the mutual information metric was used for the similarity 
measurement. A coarse-to-fine alignment was performed to 
match the SPECT and CTA images. Affine transforms were 
first adopted to match the whole heart masks from CTs to 
the whole heart mask in the CTA images. The deformation 
fields generated in this process were propagated to the 
SPECT/CT gray-scale images. Next, with the additional 
constraint of the whole heart, the myocardium masks from 
the CTA images were aligned with the myocardium masks 
from deformed SPECT images using B-spline deformation. 
The deformation fields generated in this process were 
propagated to the CTA gray-scale images. The registration 
process was implemented using the Elastix toolbox (29).

The accuracy of the CTA-SPECT registration was 
evaluated for both of the registration methods with and 
without the whole heart constraint using the Dice similarity 
coefficient (30,31) to assess the overlap of the tracer and 
LV myocardium, and the Hausdorff distance (30,31) to 
assess the distance of the boundaries after performing the 
registration. The CTA-SPECT registration method was 
applied to both the minipig and patient data.

Myocardium classification and quantification
The myocardial voxels in the CTA-SPECT images were 
categorized into the following three groups: (I) infarct; 
(II) adjacent non-infarcted; and (III) normal perfusion 
(32-34). In previous SPECT studies, the myocardium has 
usually been graded using the threshold criteria (35-37).  
For example, normal perfusion was defined as a myocardial 
uptake greater than 70% of the maximum myocardial 
uptake, infarct as less than 40%, and adjacent non-
infarction between 40% and 70% (38). Due to the 
individual variations, no fixed thresholds exist to classify 
myocardial voxels in all cases optimally. Thus, in the animal 
study, TTC was first used as the gold standard to select 
the optimal infarct threshold (the threshold of normal 
perfusion was kept as 70%) for each respective subject 
[threshold =40.5%±2.2%, mean ± standard deviation 
(SD)]. The thresholding results were further corrected 
manually and used as the ground-truth segmentation. A 
machine learning model was then built to automatically 
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classify myocardial voxels based on the images’ local texture 
features (39-42) instead of any predefined thresholds. 
Each voxel’s local texture features were extracted from the 
3×3×3 neighborhood block, including the gray-level co-
occurrence matrix, neighborhood gray-tone difference 
matrix, and gray-level zone size matrix. The block size was 
an empirical parameter determined by the experiments in 

which the block sizes of 3, 5, and 7 were compared. The 
optimal classification result was achieved with a block 
size of 3. The random forest classifier (39) was adopted 
as the classification model. The random forest classifier 
parameters were specified as follows: the number of trees 
was 100, the maximum depth of a tree was 10, and the 
feature dimension of each tree was the square-root of the 
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Figure 3 Image-processing framework for both the animal and patient studies. (A) Method only using the LV myocardium. (B) Proposed 
method. The assessment of old myocardial infarction (OMI) based on multimodality image fusion. Left ventricular (LV) myocardium in 
computed tomography angiography (CTA) was aligned to that in single-photon emission computed tomography/computed tomography 
(SPECT/CT) with the constraint of shape and position of the whole heart. The resulting three-dimensional (3D) fusion image reflects 
graded myocardium with cardiac contour (the blue area indicates the infarct region, the yellow area indicates the adjacent non-infarct region, 
and the red area indicates normal myocardium).
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total feature dimension.
To verify the automatic classification model’s accuracy 

and validity, a leave-one-out cross-validation was conducted 
to compare the overlap of the automatic segmentation 
results with the ground truth. One instance was selected 
for evaluation of the experimental data for the 20 minipigs, 
and the remaining 19 instances were used for training. The 
average Dice similarity coefficient was up to 78.3%.

Concerning the clinical translation of the 3D quantitative 
analysis technique for myocardial perfusion evaluation, 
as the TTC staining data were not available, the machine 
learning model built from the animal data was directly 
applied to the human CTA-SPECT data to gain a better 
understanding of the MI situation and then optimize 
secondary prevention therapies and treatment.

Once the normal and infarct area was determined, the 
rest of the myocardial region was defined as the adjacent 
non-infarcted area. The IR derived from the 3D fusion 
image was then determined using the following midline 
length measurement method (20):

1

1

IR 100%
m

ii
n

jj

MI

M
=

=

= ×∑
∑

 [2]

where MI denotes the midlines of the infarct area, m the 
number of infarct sections or slices, M the midlines of the 
myocardium per section or slice, n the number of sections 
or slices, and |∙| the number of pixels that comprise 
the midlines. The midline of each slice was extracted 
automatically using a curve skeletonization algorithm (43). 
The IRs were calculated for both the animal and patient 
data.

Cardiac patch design for patients

Based on the above methods, a cardiac patch with an 
infarct-related coronary artery was designed using the 
following steps. First, the main coronary branches and LV 
myocardium in CTA images were segmented, and the LV 
myocardium in the SPECT image was also segmented. 
Next, the myocardium areas in the CTA and SPECT 
images were registered, and the infarct myocardium area 
was identified using the myocardium classification method. 
Finally, a cardiac patch was obtained by merging the infarct 
myocardium area and the corresponding coronary main 
branches. The data file was then exported to a 3D medical 
image-processing software (3D Slicer, www.slicer.org) 
program and converted to stereolithography (STL) format 
for 3D printing.

Statistical analysis

Descriptive statistics were calculated using SPSS version 
26.0.0 (SPSS, Chicago, IL). Data were reported as mean ± 
SD, median, interquartile range (IQR), and percentages. 
A univariate linear regression analysis was conducted to 
evaluate the relationship between the infarct size assessed 
using the 3D fusion learning model and TTC pathology, 
and Bland-Altman analysis was conducted to determine 
agreement. Spearman’s correlation was used to analyze the 
correlation between the infarct size assessed with the 3D 
CTA-SPECT method and TPD score derived from QPS. A 
P<0.05 was considered statistically significant.

Results

Completion of the experiment

As stated above, in total, 20 minipigs with MI underwent 
the imaging procedure. SPECT and CTA imaging were 
completed for both animals and patients. Restenosis and 
new coronary atherosclerosis were not found in the CTA 
images of the MI patients. Two people whose coronary 
angiography showed mild coronary stenosis 2 years ago 
underwent CTA and SPECT scans, and the results still 
showed mild stenosis and normal perfusion. The previous 
invasive coronary angiographie (ICA) images of all patients 
were successfully retrieved; thus, 3 sets of image data were 
available for each enrolled patient.

Multimodality image registration

The automatic registration of the CTA and the SPECT/CT 
was successfully performed for all experimental subjects. 
The Dice similarity coefficients were 0.95±0.01 and 
0.91±0.01, while the Hausdorff distances were 4.26±1.21 
and 9.48±1.61 mm for registration with and without the 
constraint of the whole heart, respectively. A higher Dice 
similarity was obtained by registration with the whole heart’s 
constraint, indicating a better overlap of the radiotracer 
signal with the myocardium region by using the whole heart 
constraint method instead of the LV myocardium-alone 
method. Similarly, the whole-heart constrained approach 
yielded lower Hausdorff distances. Compared to the LV 
myocardium-alone method, the deviation between the LV 
myocardial contours in SPECT/CT and CTA was reduced 
using the whole-heart constraint registration method. The 
evaluations of the two registration methods have also been 
represented in a bar graph (see Figure 4A). Registration 

http://www.slicer.org
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Figure 4 Registration results in animal study. (A) Example of automatic volume registration of computed tomography angiography (CTA) 
and single-photon emission computed tomography (SPECT) in the same subject. Rows from top to bottom are shown in multiplanar 
orientations. The red arrows point at the misalignment between the functional signal and left ventricular (LV) myocardium. The registration 
with or without the constraint of the whole heart used the same registration parameters. (B) Comparison between rigid and deform 
registration for the Dice similarity coefficient and Hausdorff distance values.

with the whole heart’s constraint was superior to the LV 
myocardium-alone method (see Figure 4B). 

Infarct size analysis of 3D LV myocardium

The function of the LV myocardium was successfully 
analyzed in all animal experimental subjects. Figure 5A 
shows four examples of CTA-SPECT fusion images. 
Concerning the minipigs in the BBS group (Subject 1), the 
defect appeared in the apical or anterior wall (IR =30.85%). 
Concerning the minipigs in the BO group (Subject 2), the 
defect only appeared in the anterior wall segments of the 
LV (IR =13.12%). The minipigs with larger infarctions 
tended to have larger dilated cardiac chambers.

For all of the 20 minipigs, the IR with CTA-SPECT 
images was 27.6% (IQR, 17.1–34.7%), and the IR with 
TTC images was 24.1% (IQR, 14.7–32.5%). The linear 
regression analysis yielded an R-squared value of 0.99 
(P<0.01). The regression curve slope was 0.995 (95% 
confidence interval) (see Figure 5B). Bland-Altman analyses 

demonstrated good consistency in assessing infarct size 
between CTA-SPECT and TTC (see Figure 5C). In 
addition, the infarct positions shown in the CTA-SPECT 
images were also consistent with those shown in the TTC 
(see Figure 5D). 

In the animal experiments, we also analyzed CTA images 
reconstructed in systole using the proposed method. There 
was a significant difference between the IRs as assessed by 
the proposed method and the TTC. The average absolute 
error was 8.42%, and the absolute minimum error was up to 
6.41%. The large error was attributed to the hearts of the 
minipigs being kept in the diastolic phase when they were 
euthanized. Thus, it should be noted that the cardiac phases 
of the pathological sections and non-invasive images should 
be consistent when building the machine learning model.

Preliminary clinical application

Table 1 shows the patient characteristics. The automatic 
registration of the CTA and the SPECT/CT images were 
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Figure 5 Comparison of infarct size assessed by in vivo three-dimensional (3D) quantification via computed tomography angiography-
single-photon emission computed tomography (3D CTA-SPECT) image and ex vivo postmortem image in the animal study. Fusion images 
were shown at different viewing angles. (A) Fusion image of minipigs in the balloon-balloon-sponge (BBS) embolism group [infarct ratio 
(IR) =30.85%] and in the balloon occlusion (BO) group (IR =13.12%). The blue area indicates the region of the infarct, the yellow area, the 
adjacent area, and the red area, the normal left ventricular (LV) myocardium. (B) The relationship between infarct size assessed with CTA-
SPECT and 2-, 3-, 5-triphenyltetrazolium chloride (TTC) pathology. (C) Bland-Altman analyses show the excellent consistency between 
infarct size assessed by CTA-SPECT and TTC pathology. (D) Representative gross heart tissue and the TTC stained sections of myocardial 
infarction (MI). The yellow lines mark the midline of the infarct area, and the white lines mark the midline of the LV myocardium.

successfully performed in all clinical cases. The IRs of all 8 
clinical cases were quantified using the proposed 3D fusion 
method. The correlations between the IRs with the TPD 
scores were analyzed using Spearman’s rank test. The results 
revealed a rank correlation of 0.976 with a P value <0.01 
[IR: 11.0% (IQR, 0.4–17.8%) vs. TPD score: 21.0% (IQR, 
2.3–36.0%)], suggesting a significant correlation between 
the IR and TPD score. Notably, the median of the TPD 
score (21.0%) was greater than that of the IR (11.0%). This 
is because the TPD score reflects not the size of the infarct 
but the TPD. However, the perfusion deficient myocardium 
is the infarcted myocardium and includes the hypoperfused 
but viable myocardium (44).

Patient-specific cardiac patches can now be designed 

based on analysis results. Figure 6 shows two representative 
examples of clinical cases, including ICA, SPECT, and 
the 3D volume rendering of CTA-SPECT fusion images. 
Concerning the patient with mild coronary stenosis (IR =0), 
ICA showed no obvious stenosis, and the SPECT showed 
no defect. We also found that the coronary arterial tree was 
comparatively intact, and the 3D fusion images showed 
that the LV myocardium was similar to a truncated prolate 
spheroid. The patient with AMI, who underwent emergency 
percutaneous coronary intervention, did not report any 
discomfort at his 1-year follow-up. However, MI can still 
be seen from the images intuitively and accurately. The 
3D fusion images demonstrate a large infarction (the blue 
area) involving the interventricular septum, anterior, lateral, 
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and apical wall of the LV. It is also easy to discern that 
both the LV and the whole heart were noticeably dilated 
and spherized. For the 3D analysis results of all patients 
included in the study, please refer to the Supplementary 
file (Appendix 1). Based on the CTA-SPECT quantitative 
analysis, a personalized 3D model of a cardiac patch with 
LAD was generated (see Figure 6).

Discussion

In this study, a preliminary method was developed to assess 
the size of MI using clinically available imaging modalities. 
To the best of our knowledge, this is the first study to 
provide a visual quantitative analysis for the assessment of 
MI using a custom multimodal image fusion and machine 
learning approach.

The CTA-SPECT imaging and 3D fusion quantitative 
analysis method has been established in pre-clinical large 
animal imaging studies. The imaging techniques used 
in large animal studies are currently clinically available. 
As animal experiments’ imaging equipment and imaging 
procedures are identical to those used in clinical practice, it 
will be easy to transfer all the modality imaging approaches 
to human studies. To ensure the accurate assessment of 
infarcts, we used a machine learning approach to optimize 
the perfusion analysis. Based on the animal experiment 
data, a methodological assessment was conducted. The 
registration technique and quantification method used in 
the methodological assessment was related to how the data 
is generated but not to the object. Based on current data, 
we found that applying the methodological assessment 
of human data is reproducible. The quantitative analysis 

method proposed in this paper can also be applied to CTA-
PET imaging. For more details on CTA-PET fusion please 
refer to the Supplementary file (Appendix 1).

The IR assessed by the proposed method correlated 
well with the histological analysis; however, it had a 
systematic overestimation (y-intercept 2.984; see Figure 5B).  
We attributed the systematic error to the low spatial 
resolution of SPECT/CT. The ground truth for training 
the machine learning model was obtained by adjusting the 
individual thresholds to make the IRs derived from the CTA-
SPECT images as close to that in the corresponding TTC 
data as possible. Our experiment observed that the optimal 
thresholds mostly produced larger IRs, which led to the 
systematic overestimation of the trained classification model.

The results of 3D fusion analysis showed both the infarct, 
the areas of functional preservation, and the coronary tree, 
thus reflecting the relationship between the damaged lesion 
and the coronary segment. Such representations may help 
in the evaluation of patients with old myocardial infarct 
(OMI). 3D fusion analyses can determine the exact location 
and extent of an infarct in advance to guide operations (45),  
or provide technical support for the design of patient-
specific cardiac patches. As the manufacturing of cardiac 
patches, which involves tissue engineering and biomaterials, 
is a complex, interdisciplinary study that requires the 
cooperation of researchers from different disciplines, the 
practical application of patching technology needs to be 
studied further.

Limitations

This study had several limitations. First, the sample size 
was not large, and only patients with anterior wall MI were 
involved in the preliminary clinical application. Clinical 
applications of the 3D fusion method require validation 
in large prospective cohort studies. We intend to increase 
the sample size and include infarction of other myocardial 
walls in our follow-up research. The perfusion SPECT 
examined in this paper was all performed using 99mTc 
rest protocols. The perfusion defects at rest represent 
scar and the hypoperfused but viable myocardium (46). 
For the assessment of myocardial ischemia, MPI should 
be performed using stress protocols (47). The ischemia 
caused by stenosis may not be reflected by our 3D fusion 
method. In this paper, the IR was calculated using the 
midline length-based method. In our future work, the 
area-based method will be considered as an option for the 
quantitative analysis of infarcts. Finally, this study quantified 

Table 1 Patient characteristics

Characteristics Value

Age, years (IQR†) 57 [52–63]

Male gender (n) 7

Body mass index (kg/m2, IQR) 27.6 (23.5–31.8)

Smoking (n) 3

Ejection fraction (IQR, n)

67.3% (65.8–68.8%) 2

44.8% (42.7–46.9%) 3

33.1% (31.4–34.8%) 3
†IQR, interquartile range.

https://cdn.amegroups.cn/static/public/QIMS-20-702-supplementary.pdf
https://cdn.amegroups.cn/static/public/QIMS-20-702-supplementary.pdf
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single-photon emission computed tomography (SPECT), and the three-dimensional (3D) volume rendering of computed tomography 
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the IR without reference to the LV chamber size and wall 
thickness. In our follow-up study, we will further develop 
and validate indexes to evaluate the LV remodeling.

Conclusions

The proposed 3D fusion visual, quantitative method 
provides a reliable and intuitive evaluation for heart 
anatomical  perfus ion and infarct ion.  This  novel 
multimodality fusion visualization technique will provide 
whole heart quantification for infarction assessment, 
especially in the pre-operation evaluation and post-
diagnosis management of patients.
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3D fusion quantitative analysis using CTA-PET images

18F-fluorodeoxyglucose positron emission tomography (18F-FDG PET) is considered the gold standard for the detection 
of myocardial viability (1-3). The method proposed in this paper is applicable to both 18F-FDG PET and SPECT images. 
However, the quality of 18F-FDG PET imaging is affected by glucose metabolism, which can result in reduced effectiveness, 
and affect the availability of data acquisition (4). The high cost and complexity of current PET scanners limit their widespread 
use. We only used 18F-FDG PET scans in the animal studies. Despite increasing myocardial 18F-FDG uptake using glucose 
clamp, high-quality PET images were only available for 8 of the 20 subjects. Infarct size was quantified according to the 
procedure presented in this paper. A linear regression analysis showed a good correlation between the IR determined by 
CTA-PET and histological staining (r2=0.99, P<0.01). The Spearman analysis revealed a significant correlation between the 
IR derived from CTA-PET and CTA-SPECT [24.1% (IQR, 14.7–32.5%) vs. 27.6% (IQR, 17.1–34.7%), P<0.01]. As SPECT 
is more economical and easier to perform in clinical settings than PET, SPECT was only adopted to assess infarction in the 
clinical study.

Patients’ images and data

In this section, we provide images and data of all the patients included in the study. Figure S1 shows the 3D fusion analysis of 
8 patients’ data. The IRs are summarized in Table S1.

Supplementary
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Figure S1 3D fusion analysis of 8 patients. The blue area indicates the region of the infarct, the yellow area, the adjacent area, and the red 
area, the normal myocardium.
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Table S1 The infarct ratio of 8 patients derived by 3D fusion 
quantitative analysis

Patient number Infarct ratio (%)

1 19.35

2 14.83

3 27.33

4 17.27

5 5.80

6 0.54

7 0

8 0
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