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Introduction

Reliable discomfort detection plays a crucial role in 
appropriate and timely treatment in pediatric clinics. 
Controlling pain in the newborn period of infants is beneficial 
in terms of improving physiological, behavioral, and hormonal 
outcomes (1). Recent findings show that cumulative pain/
stress experienced in early life significantly contributes to 
neurobehavioral development (2). For infants born preterm, 
neonatal pain-related stress is associated with alterations 
in both early and later developmental outcomes (3).  
Significant and long-lasting consequences following pain/
stress in the newborn periods can change the central nervous 

system and responsiveness of the neuroendocrine and 
immune systems, which can lead to stress at maturity (4,5).

In common practice, there is no universal or standard 
method to monitor and assess pain. Currently, the stress/
comfort levels of hospitalized infants are regularly checked. 
For pediatric units, multiple validated scoring systems 
are used. For term neonates, the well-known discomfort/
comfort scales are, e.g., the Comfort Scale (6), which 
considers both observational and physiological factors, 
and the Neonatal Infant Pain Scale (NIPS) (7), based on 
interpreting facial expression, crying, breathing patterns, 
and upper and lower limb movement, etc. For preterm 
neonates, the Premature Infant Pain Profile (PIPP) score (8)  
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is a behavioral measure of pain. The scale-based assessment 
is typically performed by caregivers/clinicians by observing 
infant behavior for 2–3 minutes. However, the visual 
assessments are only scheduled a few times a day, which 
leaves many possibilities of delayed or even missed 
detections of discomfort status. Another important aspect 
of detection is that the current procedure is based on the 
subjective assessment of personnel. 

Since a continuous discomfort/pain assessment tool 
is not available, an automatic monitoring system that 
can continuously detect discomfort is highly desired to 
replace the current intermittent manual observation, such 
as by a camera-based health monitoring system. Emotion 
recognition is a classic and challenging topic in computer 
vision. The advanced methods for recognizing emotion 
or behavior are mostly developed for adults, but a similar 
principle can be leveraged to measure the comfort/
discomfort of infants.

In this paper, we propose a 3D-CNN for capturing 
temporal and spatial changes in infant facial appearance 
and body position. The motivation for developing a 
3D-CNN method is to exploit both the spatial contextual 
information (e .g . ,  appearance)  and the temporal 
information (e.g., motion) in a single optimization 
framework for discomfort/comfort classification. This 
means that the learned CNN-features incorporate the 
spatial and temporal features simultaneously. Based on the 
3D-CNN architecture, we further investigate different 
inputs to the network to understand the importance of 
temporal motion information to discomfort classification, 
such as  3-channel  RGB,  2-channel  mot ion,  and 
5-channel combination of both. A thorough benchmark 
is performed between 2D-CNN and 3D-CNN, also 
between different channel inputs. Eventually, we arrive 
at an overall best solution that uses five input channels 
for 3D-CNN with a short time length, namely “multi-
channel attention 3D-CNN”. The CNN training and 
validation are performed on a real clinical dataset that is 
intended for the study of infant discomfort/comfort. The 
contributions of this paper are summarized as follows. To 
the best of our knowledge, we are the first to contribute a 
5-channel spatial-temporal CNN to learn infant behavior 
for discomfort detection. Second, we provide a method 
to integrate motion information with RGB information 
in order to derive a method for detecting discomfort 
at higher performance. Third, the proposed 3D-CNN 
approach has been validated on a clinical dataset. The 
design of the novel 3D-CNN network for clinical practice 

is of importance to achieve continuous reliable operation 
for clinicians.

The remainder of this paper is organized as follows. 
The following part of Section Introduction provides an 
overview of related work. Section Methods elaborates the 
proposed network, and describes the experimental setup. 
The experimental results are presented in Section Results, 
and discussed in Section Discussion. Finally, Section 
Conclusions concludes the paper. 

Related work

Studies in emotion recognition have focused on image-
based and video-based approaches (9). Video-based 
approaches have shown improved recognition performance, 
since they can exploit temporal features and associate 
those with emotion changes (10). For the applications 
of 2D-image processing in infant discomfort detection, 
extensive research has been focused on facial expression 
recognition. Sun et al. (11) proposed a sequential fine-
tuning strategy to classify 2D-images from infant videos 
and achieved an Area Under the Curve (AUC) value of 
0.96. By fusing individual frame results, the AUC was 
further improved from 0.96 to 0.98. Meng et al. (12) 
proposed Identity-Aware Convolutional Neural Network 
(IACNN) for facial expression recognition. The results 
showed an accuracy of 71.29% when testing on the CK+ 
dataset (13). Liu et al. (14) upgraded a single CNN to an 
ensemble of CNNs and the best single subnet achieved 
62.44% accuracy while the whole model scored 65.03% 
accuracy. However, this ensemble approach may be limited 
in real-time applications. Mollahosseini et al. (15) presented 
a deep neural network architecture for automated facial 
expression recognition, which consists of two convolutional 
layers, followed by max-pooling and four Inception layers. 
The Inception layers increase the depth and width of the 
network while keeping the computational budget constant. 
The work was evaluated on the CMU Multi-PIE face 
database (16) and achieved an accuracy of 94.7%. Uddin 
et al. (17) leveraged a depth-camera-based solution for 
efficient facial expression recognition, in which for each 
pixel in a depth image, eight local directional strengths are 
obtained and ranked. Incremental to different 2D-CNN 
approaches, Li et al. (18) showed the benefits with data 
augmentation including face cropping and rotation. Zhao  
et al. (19) proposed a novel set-to-set (S2S) distance measure 
to calculate the similarity between two sets, in order to 
improve the recognition accuracy for faces with real-
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world challenges. For the S2S distance, the kNN-average 
pooling is adopted for computing the similarity scores. 
Luan et al. (20) proposed Gabor convolutional networks 
(GCNs), which utilize Gabor filters as the convolutional 
filters, such that the robustness of learned features against 
the orientation and scale changes can be reinforced. Zhang  
et al. (21) developed a new representation learning 
method, named Structure Transfer Machine (STM), which 
enables the feature learning process to converge at the 
representation expectation in a probabilistic way.

In terms of further exploiting temporal information in 
a video, less attention has been given to facial expression 
recognition. One recent relevant work is presented by 
Sun et al. (22), where the motion acceleration rate and 
18 time- and frequency-domain features were used to 
characterize motion patterns, leading to an AUC of 0.94 
on an infant dataset. Later, the same authors employed 
optical flow to estimate body motion across video frames 
to generate feature images, such as Log Mel-spectrogram, 
Mel Frequency Cepstral Coefficients, and Spectral Subband 
Centroid Frequency, which were combined by deep CNNs 
achieving an AUC value of 0.985. On an adult dataset, 
Zhao et al. (23) investigated learning deep facial expression 
features from the image and optical flow sequences using 
3D-CNN, and obtained an average emotion recognition 
accuracy ranging from 0.56 to 0.76. Jung et al. (24) 
developed a joint network for facial expression recognition, 
which includes two networks of (I) the deep temporal 
appearance network (DTAN) and (II) the deep temporal 
geometry network (DTGN). The CNN-based DTAN is 
used to extract the temporal appearance feature, while the 
DTGN is employed for capturing geometric information 
of facial landmark movements. These two models are 
further combined to increase recognition performance. 
The previously discussed work on facial expression and 
behavioral analysis is still exploratory from nature, and need 
to be further strengthened.

Methods

In this study, we propose a pipeline (shown in Figure 1), 
which compromises four steps: (I) preprocessing of the input 
infant videos; (II) optical flow-based motion estimation 
for estimating body movement between video frames; (III) 
combination of the images from three RGB channels with 
two motion channels derived from Step (II). Thus, in total 
five channels are used as input to the classification network; 
(IV) application of a 3D-CNN for the binary classification 
of comfort and discomfort, which embeds a motion-
attention module (two motion channels). The 3D-CNN 
extracts discriminative spatio-temporal representations for 
different infant status, and finally, a decision of comfort/
discomfort is assigned to each video segment. The details of 
each step are elaborated in the following subsections.

Preprocessing

All video frames are first cropped to remove superfluous 
information in the image margins. The original image 
size of the recorded frame is 720×1,280 pixels. The size is 
decreased to 501×751 pixels after removing pixels along 
each margin. The image is further down-sampled to 
100×150 by nearest-neighbor interpolation (25) to fit the 
required dimension for the input of the network.

For each down-sampled video frame, we apply Gaussian 
weighting to suppress the background content that is 
irrelevant for analysis, for example, background pixel 
changes caused by caregivers or parents moving around 
infants for care-handling. In our recording scenario, 
infants were always located at the central area of the 
video frames. The Gaussian mask is thereby applied as 
a weighting function to highlight the central area and 
suppress boundaries (background area). More specifically, 
the 2D Gaussian mean locations are directed to the center 
of the image, while the Gaussian standard deviations on the 

Figure 1 Workflow of our video-based discomfort detection system. 3D-CNN, 3D convolutional neural network.
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horizontal and vertical directions are empirically set to 40 
and 80 based on the frame dimension.

The original frame rate of the recorded videos is 30 
frames per second (fps). To reduce the computation load 
and memory cost, each video is sub-sampled to half of the 
original frame rate (i.e., 15 fps) by keeping the odd-indexed 
frames and skipping the even-indexed frames. The lower 
sampling rate also increases the pixel movement between 
re-sampled adjacent frames and enables better motion 
analysis.

For each video sequence, we use a temporal sliding 
window with a fixed length of M-frames (i.e., containing 
frames for M/15 seconds) and a sliding stride of N frames. 
Thus, for each window, M frames are used as input clip for 
the classification network.

3D-CNN model

CNNs enable the automatic and deep learning of feature 
expressions directly from the input data (e.g., images 
and videos). However, a number of existing CNNs are 
only capable of handling 2D inputs due to the inherent 
network structure. The 2D-CNNs are limited to the 
spatial information, while the temporal information across 
the video frames is not exploited. The recently proposed 
3D-CNNs extract features from both the spatial and 
temporal domains by performing the 3D convolution and 
3D pooling. This approach is able to capture both the 
object appearance/contextual information and motion 
information in a single optimization such that the generated 
features resemble the spatial and temporal semantics (26).

3D-CNNs are extension of 2D-CNNs. As compared 

to 2D-CNNs, challenges for 3D-CNNs are the larger 
memory footprint and higher dimensionality. These 
exacerbate the intensive computation cost for the network 
inference. To this end, we propose to use a 3D-CNN model 
that not only considers the spatio-temporal information 
but also computational efficiency. We use the backbone 
of the 3D-CNN model described in (27). The input of 
our network is an image sequence, followed by several 
convolution and pooling layers as shown in Figure 2. In 
the figure, we use the RGB image as the input to illustrate 
the 3D-CNN architecture, but this is later extended to a 
5-channel approach for feature extraction.

The first convolutional layer contains a number of 
kernels with the size of 1×5×5, which only convolves 
the input data for the spatial information in a single 
frame. The following six convolutional layers with the 
kernel size of 3×3×3 convolve both temporal and spatial 
dimensions. It has been shown that a deep net with small 
filters like 3×3 outperforms a shallow net with larger 
filters (28), i.e., small receptive fields of 3×3 convolution 
kernels with deeper architectures yield better results. The 
previous consideration motivates our choice for the small 
convolutional filter 3×3×3.

The last convolutional layer is used for channel 
compression, and then the space is compressed by max-
pooling. Max-pooling is generally favored for classification 
tasks, since it leads to faster convergence and better 
generalization, while it also retains the most significant and 
translational invariant information from the convolutional 
layers. Finally, average-pooling is used for compressing 
temporal information because the weight of each image in 
the time series is the same. It finally leads to one confidence 

Figure 2 Architecture of the proposed 3D-CNN, which is developed as one deep processing chain. 3D-CNN, 3D convolutional neural 
network.
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value that determines the label of comfort or discomfort.
After the second convolution layer, the size of each frame 

is halved, and the number of channels is increased from 
3 (RGB) to 64 (number of kernels). For each input video 
segment, the total number of frames is M and each frame 
includes three channels (RGB). For each frame, the pixel 
value in feature maps is the sum of squares from all the 
channels at the corresponding pixel location. Therefore, 
each video segment generates a group of feature maps.

The obtained outputs of the feature maps from the 
second convolution layer reveal the motion information, 
which is from multiple adjacent frames in the original input. 
Figure 3 exemplifies the feature maps, which demonstrate 
that the network can highlight the meaningful motion area 
of the infants, especially the eye/mouth/nasolabial furrow 
regions for characterizing their facial expression.

Finally, we specifically disclose the configurations of 
network functions and optimization. The Adam optimizer 
is employed for learning. Binary Cross-Entropy (BCE) with 
Logits Loss (BCEWLL) is used as the loss function. BCE 
is a cross-entropy suitable for binary classification, which 
is a special case of multi-class classification softmax cross 

entropy. For CNN training, we empirically set the number 
of epochs (m) to 800.

Multi-channel attention model

Motion estimation using optical flow
To estimate the motion of infants, we employ optical flow 
for calculating the motion vectors at the down-sampled 
pixel level. Pixel-based motion vectors are calculated for 
each video frame between two consecutive frames, using 
the dense optical flow of Farnebäck et al. (29). It uses 
quadratic polynomials to estimate the motion between two 
consecutive frames. Polynomial expansion is employed 
to approximate pixel intensities in the neighborhoods of 
the frames. A pyramid decomposition is used to handle 
large pixel motions, including distances larger than the 
neighborhood size. The tracking of motion begins at the 
lowest resolution level and continues until convergence. 

Between two consecutive video frames, the optical flow 
provides motion derivatives. In our study, we compute two 
motion matrices, which are the velocity magnitude along 
the horizontal and vertical directions, as illustrated in the 

Figure 3 Visualization of our 3D-CNN model. Examples of feature maps for (A) discomfortable and (B) comfortable cases. The first row is 
the original sequence diagram, and the second shows the feature maps when training only on RGB. The third row is for only using optical 
flow as input for learning, and the bottom row shows the case when combining the five channels (RGB and optical flow). 3D-CNN, 3D 
convolutional neural network.

Input 

RGB 

Motion 

RGB+Motion

Input 

RGB 

Motion 

RGB+Motion



3064 Sun et al. Camera-based discomfort detection using multi-channel attention 3D-CNN

© Quantitative Imaging in Medicine and Surgery. All rights reserved.   Quant Imaging Med Surg 2021;11(7):3059-3069 | http://dx.doi.org/10.21037/qims-20-1302

second and third rows of Figure 4A,B, respectively.

5-channel attention model
We propose an attention-based model to guide the 
3D-CNN networks to focus on the image areas where 
motion may occur. The dense optical flow highlights the 
motion areas of infant bodies. After calculating the optical 
flow, we add the two motion matrices containing the 
motion magnitudes of horizontal and vertical directions as 
additional channels to the network input.

Figure 3 shows the feature maps generated by different 
training inputs, which are 3-channel RGB, 2-channel 
optical flow, and 5-channel combined input. It is clear that 
the optical flow channels highlight the movement from the 
videos. By leveraging the information from the optical flow 
channels, the attention from the neural networks focuses 
on the facial area in the images. We now further investigate 
the performance of the fused 5-channel mechanism in the 
benchmark.

Experimental setup

Clinical dataset
The study was conducted with videos recorded at the 
Màxima Medical Center (MMC) in Veldhoven, The 
Netherlands, by a handheld high-definition camera (Xacti 
VPC-FH1BK). The study was approved by the ethics 
board of MMC. For each infant in the database, written 
consent was obtained from the parents. Videos of 24 

infants were recorded. The infants’ faces were recorded 
when experiencing various stress/pain moments, including 
clinical treatments of heel prick, placing an intravenous 
(IV) line, venipuncture, vaccination, post-operative pain, 
and the discomfort moments caused by a diaper change, 
feeling hungry or crying for attention. For 10 out of 24 
infants, the relaxed comfort moments of resting or sleeping 
were also recorded. In conclusion, for these 10 infants 
both comfort and discomfort status were presented. Four 
infants only have the comfort moments recorded. For 
the remaining 10 infants, only discomfort moments were 
recorded. Therefore, the video segments contain 1 to 2 
types of emotion status per subject. The duration of each 
video varies from less than 1 minute to several minutes. 
The age of the 24 recorded infants ranges between 2 days 
and 13 months old. Three infants born prematurely, under  
37 weeks at the time of recording.

The resolution of the recorded video frames is 
1,920×1,080 pixels, and the original frame rate is 30 fps. 
The videos were recorded under uncontrolled lighting 
conditions, i.e., the general office lighting conditions. The 
label of comfort/discomfort for each frame is manually 
annotated, based on the consensus of two clinical experts. 
A total of 55 video segments from 24 infants were selected, 
where 19 segments present comfort, and the remaining 36 
are discomfort cases. There are more discomfort samples 
in our dataset than comfort samples. The reason is that the 
data collection performed by the clinicians in the hospital 
has been focused on discomfort moments of the infants.

Figure 4 Examples of optical flow images obtained by Farnebäck’s method for two infants with a sampling interval of 0.2 s shown in (A) and 
(B). For each baby, the top row shows the original RGB frames, and the second and third rows are optical flow matrices for horizontal and 
vertical directions.

RGB

Horizontal 
motion

Vertical 
motion

RGB

Horizontal 
motion

Vertical 
motion



3065Quantitative Imaging in Medicine and Surgery, Vol 11, No 7 July 2021

© Quantitative Imaging in Medicine and Surgery. All rights reserved.   Quant Imaging Med Surg 2021;11(7):3059-3069 | http://dx.doi.org/10.21037/qims-20-1302

Figure 5 Normalized confusion matrix when directly training on 
3-channel RGB images.

Figure 6 ROC of the proposed method when directly training on 
3-channel RGB images. ROC, receiver operating characteristic.

Evaluation metrics
The classification was evaluated by measuring the 
classification accuracy and confusion matrices. The receiver 
operating characteristic (ROC) curves are also used for 
visualizing the performance with the corresponding area 
under the ROC curve (AUC) values.

Learning protocol
Learning schemes
We exploited different training schemes to investigate the 
networks, which are:
	 3-channel RGB: training is directly performed on 

the 3- channel RGB images of our infant dataset, as 
described in Section Methods.

	 2-channel motion: training is based on the 
2-channel motion-derivative images estimated by 
dense optical flow.

	 5-channel RGB and motion: the hybrid 5-channel 
input including RGB and motion planes as 
described in Section Methods.

Window-size tuning
We also investigated the influence of the temporal sliding-
window length on the 3D-CNN model, in terms of 
classification AUC, accuracy, and execution time. The 
window length was tuned from 1 frame (i.e., the 2D case)  
to 15 frames (2 s), 30 frames (3 s), …, 90 frames (6 s). The 
experiments were carried out on a GeForce RTX-2080 
GPU and a Xeon E5-2680 V2 CPU.

Results

Evaluation metrics

Learning scheme 3-channel RGB
Figure 5 shows the normalized confusion matrix when 
the training is directly performed on 3-channel RGB 
images. The obtained overall labeling accuracy is 0.96. The 
detection accuracy of comfort and discomfort is 0.94 and 
0.98, respectively. Figure 6 represents the corresponding 
ROC with the AUC value of 0.98.

Learning scheme 2-channel motion
The measured AUC is 0.73 when training the model only 
on the 2-channel optical flow images.

Learning scheme 5-channel RGB and motion
The normalized confusion matrix of fine-tuning using 5 
channels is shown in Figure 7. The model achieved the 
highest AUC of 0.99 when training on the input of five 
channels (see Figure 8). The overall accuracy delivers robust 
and consistent information on reaching the best value of 
0.98.

Table 1 shows the comparison of the results achieved 
by the proposed method with existing infant discomfort 
detection methods of (I) conventional handcrafted features 
combined with a support vector machine (SVM) (30), and 
(II) image-level deep learning-based comfort/discomfort 
classification using fine-tuning strategies (11).
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Window-size tuning

The results mentioned above are all based on the window 
length of 15 frames (2 s) and a step size (stride) of 5 frames 
(around 167 ms). We further explore the effects by changing 
the window size. Figure 9 presents the AUCs for three 
learning schemes with different window lengths. Figure 10 
shows the accuracy values during the window-size tuning 
procedure. 

Execution time

Based on different lengths of the video clips, the 
corresponding execution times for testing each video clip 
are summarized in Table 2.

Discussion

We provided a neat end-to-end video processing solution 
without requiring the conventional front-end steps of face 
detection and tracking. In general practice, the partial/

full face occlusion is likely to happen, especially during the 
infant physical care. Our method is more suitable to handle 
these challenging moments as compared to traditional face 
detection/tracking-based methods.

In real clinical practice, healthcare professionals desire 
to have a discomfort detection system that is sensitive to 
discomfort moments, while suppressing false alarms as much 
as possible. From existing literature, it can be derived that 
the required AUC is not well defined for this task. There is 
no contact sensor to measure and quantify the discomfort 
of infants. It is mainly based on the observation, experience, 
and judgement of clinicians, which unfortunately lacks a 
medical gold standard. In the future, we can conduct an 
observer study to compare the performance of our system 
with that of experienced medical staff.

The best performance is achieved when the sliding 
window length is set to 2 seconds and the step size is set 
to one-third of a second. This means that (I) the latency 
between the start of the system and the first measurement 
can be as short as 2 seconds, and (II) the monitored infant 
status can be refreshed every one-third of a second plus the 

Table 1 Comparison with existing infant monitoring methods

Method Overall accuracy AUC

Handcrafted features + SVM (30) 0.85 0.87

Image-level deep learning with fine-tunings (11) 0.91 0.96

Proposed multi-channel 3D-CNN method 0.98 0.99

AUC, area under the ROC curve; SVM, support vector machine; 3D-CNN, 3D convolutional neural network.

Figure 7 Normalized confusion matrix for 5-channel training. Figure 8 ROC curve of 5-channel training. ROC, receiver 
operating characteristic.
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Table 2 Execution times of the three training methods for using different lengths of video clips

Training method 2D 1 s (s) 2 s (s) 3 s (s) 4 s (s) 5 s (s) 6 s (s)

3-channel RGB 0.064 0.074 0.086 0.097 0.108 0.111 0.128

2-channel motion 0.035 0.073 0.081 0.091 0.099 0.104 0.111

5-channel RGB + motion 0.064 0.078 0.097 0.109 0.127 0.139 0.159

Figure 9 AUCs for using different clip lengths and training 
schemes. AUC, area under the ROC curve.

Figure 10 Accuracy for using different clip lengths and training 
schemes.
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execution time for making a decision on the present clip. 
The testing execution speed shown in Table 2 indicates the 
required processing time for an unseen video clip, which is 
about 0.1 seconds. This indicates that the infant discomfort 
detection can be implemented as a real-time clinical 
application. Compared to 2- or 3-channel schemes, the 
5-channel scheme sacrifices some computing time, but the 
added extra time is negligible.

When comparing the performance of different training 
schemes, the AUC and overall accuracy are the highest 
when applying the learning scheme of 5-channel RGB and 
motion, which confirms the effectiveness of the 5-channel 
attention-based network. The two channels of optical 
flow images provide the regions/boundaries with strong 
motion information, which serve as a beacon that gears the 
network to focus on the movement. The motion patterns 
of infants are clinically important for assessing comfort or 
discomfort. From the feature maps in Figure 3, we confirm 
the conclusion that by incorporating the information from 
the optical flow channels, the attention from the neural 
networks is dominantly focused on the facial area of the 
infant.

When the sliding-window length is set to one frame, 
this training/testing procedure becomes 2D processing. 
Obviously, its performance is significantly reduced, as 

compared to the 3D processing. For all three training 
schemes, the AUC and accuracy values improve along with 
the increasing window size, and appear to be saturated 
after 2 seconds. This may be caused by the limited valid 
information from the samples or constraints by the available 
training sample size, which shall be further investigated by 
collecting more infant data in the future. The reason for 
the saturated performance could also be that the discomfort 
information (facial expression or body motion) is mostly 
spontaneous/abrupt changes that typically happen in a 
very short time interval, i.e., high-frequency temporal 
information to be captured in a short time window. A long 
time window may include and highlight low-frequency 
information (or slow changes like motion drift or hand-
held camera motion) that are less relevant for comfort/
discomfort classification.

Regarding the complexity of the proposed 3D CNN, 
the total number of the parameters is 514,657, yielding 
a compact computational model. The execution time for 
making a decision on an unseen clip is 0.097 seconds using 
the sliding window of 2 seconds, which results in the best 
AUC of 0.99. As a conclusion, the complexity of the 3D 
CNN is lower than expected, while it gives a very high 
performance.

In the future, our model can be improved to identify 
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discomfort grades by changing the two-class output to 
multiple classes, or even a regression layer to predict the 
significance of discomfort. Our future work may also 
include extending the 5-channel input to higher dimensions 
by fusing information from different sensor modalities such 
as the depth information from a 3D sensor (e.g., time-of-
flight camera). In addition to the fusion of color intensity 
signals and motion signals, we also consider fusing the 
contextual information and physiological information for 
joint classification, since physiological variables (e.g., heart-
rate, heart rate variability, and respiration rate) are also 
possible to be measured from the videos.

Conclusions

This paper proposes a video monitoring system that 
provides continuous and contactless assessment of 
discomfort for infants. The system is validated by real 
clinical infant data with expert annotations. In this study, 
we have investigated the benefit of using optical flow 
measurement to draw the attention of 3D-CNNs. The 
system aims to alert caregivers/clinicians immediately when 
infants start suffering from discomfort. The proposed 
system can monitor infant status continuously by classifying 
the video frames into either comfort or discomfort, which 
fills the gaps of the current intermittent manual observation. 
Moreover, the proposed method also has the potential to 
be implemented as an infant-care tool for family use on a 
longer term. The system alarm is triggered by the detection 
of discomfort status, which will notify clinical staff for 
timely and appropriate treatment. Thus, the system serves 
to prevent fatal events and eventually improves the early 
development of infants.
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