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Introduction

Magnetic resonance image (MRI) is a widely accepted 
modality for cancer diagnosis and radiotherapy target 
delineation due to its superior soft tissue contrast. Bone and 
air segmentations are important tasks for MRI, and facilitate 
several clinical applications, such as MRI-based treatment 

planning in radiation oncology (1), MRI-based attenuation 
correction for positron emission tomography (PET) (2), 
and MR-guided focused ultrasound surgery (FUS) (3). 

MRI-only based treatment planning process is desired 
since it can bypass CT acquisition, which eliminates the 
MRI-CT registration errors and ionizing radiation, as well 
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as reduces medical cost and clinical workflow. However, 
it is not feasible for current clinical practice since MRI 
images do not provide electron density information for dose 
calculation and reference images for patient setup (4-9).  
While ignoring inhomogeneity gives rise to 4–5% of dose 
errors, simply assigning three bulk densities, such as, bone, 
tissue and air, could reduce deviations to less than 2%, which 
is clinically acceptable (10). Even with the use of synthetic 
CTs that provides continuous electron density estimation 
for improved dose calculation accuracy, bone and air 
identification is considered key to heterogeneity correction 
and thus accurate dose estimation (11). The hybrid PET/
MRI system has emerged as a promising imaging modality 
due to the unparalleled soft tissue information provided 
by the non-ionizing imaging modality. Though different 
types of MR-based attenuation correction methods have 
been investigated, virtually all current commercial PET/
MRI systems employ segmentation-based methods due 
to its efficiency, robustness and simplicity (12). Accurate 
segmentation of different tissue types, especially of bone and 
air, directly impacts the estimation accuracy of attenuation 
map. Bone segmentation in MRI also facilitates the 
quickly-developing technology of image-guided FUS (3).  
FUS requires a refocusing of the ultrasound beams to 
compensate for distortion and translation caused by the 
attenuation and scattering of the beams through bone (13).  
Since many procedures utilize, and are based on MR 
capabilities, it would be desirable to delineate bone from 
MRI, potentially avoiding the additional steps of CT 
acquisition and subsequent CT-MRI co-registration.

In contrast to CT which provides excellent tissue-bone 
and tissue-air contrast, conventional MR images have 
weak signals at bone and air regions, which makes bone 
and air segmentation particularly difficult. To accurately 
delineate structures, a straightforward approach is to warp 
atlas templates to the MRI, allowing one to exploit the 
excellent bone and air contrast on CT images to identify 
the corresponding structures in MRI (14,15). Besides 
computational cost, atlas-based methods are prone to 
registration errors as well as inter-patient variability. 
A larger and more varied atlas dataset could help to 
improve registration accuracy. However, because of organ 
morphology and substantial variability across patients, it is 
difficult to satisfy all possible scenarios. Moreover, larger 
atlas templates are usually associated with significantly 
increased computational cost. To solve this issue, recently, 
Bourouis et al. integrated an expectation-maximization (EM) 
algorithm and a deformable level-set model into atlas-based 

framework to perform brain MRI segmentation (16). In this 
method, atlas dataset is used to initialize the segmentation. 
EM algorithm is applied to generate a global shape of 
the specific object. Finally, a level-set method is used to 
refine the segmentation. Specialized MR sequences, such 
as ultrashort echo time (UTE) pulse sequences, have been 
investigated for bone visualization and segmentation. Its 
performance is limited by of noise and image artefacts (17). 
Moreover, due to considerably long acquisition time, the 
application of UTE MR sequence is usually limited to brain 
imaging or small field-of-view images. Segmentation of the 
cranial bone from MRI is challenging, because compact bone 
is characterized by very short transverse relaxation times 
and typically produces no signal when using conventional 
MRI sequences. Recently, Krämer et al. proposed a fully 
automated segmentation algorithm using dual-echo, UTE 
MRI data (18). Machine learning-based and deep learning-
based segmentation and synthetic CT (also known as pseudo 
CT) generation methods have been intensively studied for 
the last decades (19-22), among which random forest-based 
method is one popular machine learning approach. The 
popularity of random forest arises from its appealing features, 
such as its capability of handling a large variety of features 
and enabling feature sharing of a multi-class classifier, 
robustness to noise and efficient parallel processing (23).  
Random forest has been employed to generate synthetic 
MRIs of different sequences for improved contrast (24), 
synthetic CTs for MRI-only radiotherapy treatment 
planning (25,26), as well as PET AC (27).

In this work, we propose to integrate an auto-context 
model and patch-based anatomical signature into a random 
forest framework to iteratively segment air, soft tissue 
and bone on routine anatomical MRIs. This semantic 
classification random forest (SCRF)-based approach has 
three distinctive strengths: (I) in order to enhance feature 
sensitivities to detect structures, three types of features are 
chosen to characterize information of an image patch at 
different levels from voxel level, sub-region level, to whole-
patch level; (II) to improve the classification efficiency, a 
feature selection strategy is introduced into random forest-
based model to first identify the most discriminative features 
from the MRI features; (III) to enhance the reasonability 
of segmentation, semantic features are extracted under an 
auto-context manner to consider surrounding information 
to guide more reasonable result iteratively. 

To demonstrate the effectiveness of the auto-context 
model (28), we compared the performance of the proposed 
method with a conventional random forest framework 

http://dict.cn/efficiency
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without the auto-context model. Deep learning-based 
methods show state-of-the-art performances in various 
medical imaging applications. Therefore, we trained a well-
established deep learning-based model, U-Net (29), and 
compared its segmentation accuracy with the proposed 
method.

Methods

Method overview

The study was conducted in accordance with the 
Declaration of Helsinki (as revised in 2013). The study 
was approved by institutional review board and informed 

consent was not required for this Health Insurance 
Portability and Accountability Act (HIPAA)-compliant 
retrospective analysis.

Figure 1 shows the workflow of proposed SCRF. The 
proposed method was trained with registered MR and 
CT images. During training, for a set of registered brain 
MR and CT images, the tissue labels, which are obtained 
from CT images were used as classification target for 
its corresponding MRI. These tissue labels include air, 
soft-tissue and bone. These tissue labels were derived 
via segmenting on CT images. Fuzz C-means was used 
for this segmentation. CT images were first segmented 
by a previously described thresholding method (30). 

Figure 1 The workflow of the proposed brain MRI SCRF method. The training stage is shown on the left, and the segmentation stage is 
shown on the right. MRI, magnetic resonance image; SCRF, semantic classification random forest.
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Segmentation holes were filled by morphological erosion 
with a 5 voxel spherical kernel to eliminate any objects that 
were not physically part of the patient.

Since image quality would affect the training and 
inference of the learning-based model, a noise reduction 
method was used to improve the feeding MRI’s image 
quality. The noise reduction was implemented via non-local 
means method (31). In addition, since MRI’s quality is often 
affected by inhomogeneity, nonparametric nonuniform 
intensity normalization (N3) algorithm was applied for MR 
image inhomogeneity bias correction. 

For each patient, the MR and CT images were registered 
along with the corresponding labels. MRI data were 
first resampled to match the resolution of CT data. For 
each patient, all training MR and CT images were first 
rigidly registered by an intra-subject registration. Then 
the MR-CT pair for all the patients were fused into a 
same coordinate. Inter-patient registration of MR images 
consisted of a rigid registration followed by a B-spline 
deformable image registration. The transformation matrix 
obtained during this registration process was applied to 
the CT images to generate the deformable template CT. 
All registrations were rigidly performed on commercial 
software, Velocity AI 3.2.1 (Varian Medical Systems, Palo 
Alto, CA). 

The input patch size of the MRI was [33, 33, 33]. The 
corresponding CT segmentation label on that patch’s 
central position was regarded as the learning-based 
classification target. Multiple features were extracted from 
MRI patch to represent that patch’s class. These features 
can be summarized as three folds. The first fold extracts 
feature via a voxel-wise manner, such as pairwise difference 
(PD) performed on two voxels. The second fold extracts 
feature via a sub-region manner, such as local binary pattern 
(LBP) and discrete cosine transformation (DCT) feature 
extractions which are performed on sub-region of a patch, 
and PD feature extraction performed on mean values of 
two sub-regions of a patch. The third fold extracts feature 
on whole patch, such as LBP and DCT feature extractions 
which are performed on whole patch. To further enlarge 
the feature variation, multiscale strategy was utilized. We 
performed feature extraction on both original scale MRI 
and on three rescaled MRIs (with scaling factor of 0.75, 0.5 
and 0.25).

Since the extracted features may include some noisy and 
uninformative elements, which may affect the performance of 
classification model, feature selection was used to reduce these 
elements. The feature selection is implemented by logistic 

LASSO, which is introduced in our previous work (32).  
Auto-context strategy was used to iteratively improve the 
segmentation results, which means the first classification 
model is trained on extracted features only, and the rest 
models are trained on extracted features from both MRI 
and segmentation results (33). The features extracted from 
segmentation results are called as semantic features or auto-
context features in this work.

The classification model is implemented by random 
forest model. The implementation details for random forest 
used in this work are as follows. The number of trees was 
set to 100. Minimum Gini impurity optimization was used 
to create each tree in the forest. A node in a tree will be 
split if this induces a decrease of the Gini impurity greater 
than or equal to this value. Gini impurity is a measure 
of how often a randomly chosen element from the set 
would be incorrectly labeled if it were randomly labeled 
according to the distribution of labels in the subset. The 
Gini impurity can be computed by summing the probability 
pi of an item with label i being chosen times the probability 

1k i k ip p≠ = −∑  of a mistake in categorizing that item. 
It reaches its minimum (zero) when all cases in the node 
fall into a single target category. The weighted impurity 
decrease equation is calculated as follow:
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where N is the total number of samples, Nt is the number of 
samples at the current node, L

tN  is the number of samples in 
the left child node, and R

tN  is the number of samples in the 
right child node. IGini denotes the Gini impurity of that set.

Once the sequence of random forests was trained, the 
segmentation of an arrival MRI can be obtained by feeding 
the MRI patches into the sequence of trained models to 
derive patch-based classification. Finally, by perform patch 
fusion, the segmentation result was derived. 

Semantic feature

Traditional random forest feeds feature vector of a patch 
into the model and predict the class of central voxel or 
central sub-region of that patch. The challenge of this 
work is that MRI patches would share similar structures but 
would be corresponding to different central CT intensities 
and sub-regions, namely, different classes. The extracted 
feature vectors of similar structured MRI patches would 
be similar, whereas their learning targets are different. 
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This would cause a potential ambiguity for the training 
of the random forest model, since the training of the 
random forest model is performed via building a serious of 
binary decision trees that are optimized based on extracted 
feature vectors (27). Thus, the features extracted from 
MRI-only may not be accurate to derive reasonable tissue 
segmentation. 

In order to solve this problem, we aim to use the 
semantic information from the segmenting result to further 
improve the reasonability and accuracy of segmentation 
under an auto-context manner. First we trained a random 
forest model based on arrival MRI’s features. Rather 
than applying this model to derive segmentation, we fed 
MRI’s features to derive the posterior probability of tissue 
class via maximizing a posterior (MAP). These posterior 
probabilities are fused together via patch fusion to obtain an 
end-to-end (equal sized) probability map corresponding to 
MRI’s segmentation.

The auto-context procedure iteratively update the 
random forest model and probability map of MRI by 
feeding features from MRI and from probability map 
into the model (34). This procedure would improve the 
reasonability of probability map, since it leverages the 
information surrounding the object of interest (34). The 
features extracted from probability map are called semantic 
features. These semantic features are extracted by searching 
surrounding mean sub-regions’ probabilities corresponding 
to each MRI patch’s central voxel. The surrounding 

locations are shown in Figure 2. These locations represent 
each central position and its superior/inferior positions, 
left/right positions, and anterior/posterior positions, which 
are called as context locations in this work.

Figure 3 demonstrates the advantage of semantic feature 
extraction under auto-context procedure. (B1) shows the 
MRI (denoted by x) in axial view. (A1) shows the ground 
truth probability map of air, which is a binary map of air 
segmentation. (A2) shows the probability map derived via first 
random forest. (B2) shows the context locations (black dashed 
rectangles) for semantic feature extraction. (A3) shows the 
updated probability map derived under auto-context manner, 
i.e., feeding MRI features and previous probability map’s 
semantic features into a second random forest. We repeated 
semantic feature extraction and random forest training steps 
iteratively and alternatively until convergence. By using 
thresholding, the final air segmentation can be obtained by 
last air probability map. The threshold was set to 0.6, i.e., 
a voxel belongs to air if its air probability is larger than 0.6. 
This threshold was set by its best segmentation performance. 
(C1,C2,C3) and (D1,D2,D3) show the updating of 
probability map of bone and soft tissue, respectively. As 
compared between (A3,C3,D3) and (A2,C2,D2), it is shown 
that in first iteration, the central position’s probability within 
selected air region was ambiguous by a mixture of three 
tissue probabilities. In second iteration, the central position’s 
air probability is raised, and the rest two classes probabilities 
decreased, which can provide a clearer differentiation 

Figure 2 An example illustrating the blocks within a window for semantic feature extraction. The axial view of probability map of air, soft 
tissue and bone classes are shown by (A), (B) and (C), respectively. The semantic features are extracted within an extracting window, which 
is shown as yellow dashed rectangles. For each semantic feature, it is calculated by the mean value of a white rectangle located within 
extracting window. The yellow arrow indicates a window position.

CBA
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Figure 3 An example of probability maps generation during auto-context procedure. (B1) shows the MRI in axial view. (A1), (C1) and 
(D1) show the ground truth probability map of tissue classes, which is a binary mask of ground truth contour. (A2), (C2) and (D2) show the 
estimated probability maps via first random forest. (A3), (C3) and (D3) show the estimated probability maps via second random forest. (B2,B3) 
show the zoomed-in regions close to the nasopharynx. The context locations are shown in black dashed rectangles. By calculating mean 
value, each context location generates a semantic feature. MRI, magnetic resonance image.
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between these three classes. Figure 4 illustrates the utility of 
feature selection. We scatter plot feature significant elements 
that are belong to two kind of samples as shown in (A). The 

sample patches for feature extraction belong to air and bone 
tissues, and their central position are highlighted by green 
circles and red asterisks, respectively. The significant feature 
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elements are derived by collect the top three element after 
principle component analysis. As can be seen from the visual 
comparison between before and after feature selection, the 
feature selection can improve the feature’s discriminative 
ability to be easier to differentiate the air and bone region, 
which is challenging in MRI brain classification.

For implementation, in our work we trained 4 random 
forests in total, i.e., one initial random forest trained by 
MRI features, and the rest three random forests trained by 
both MRI features and semantic features. The more details 
of random forest can be found in our previous work (35).

Evaluation

A total of 14 patients who had MRI and CT data acquired 
and underwent cranial irradiation treatment were 
retrospectively investigated in this study. The MRIs were 
acquired on a Siemens Avanto 1.5T MRI scanner with 
T1 magnetization-prepared rapid gradient echo (MP-
RAGE) sequence and 1.0×1.0×1.4 mm3 voxel size (TR/
TE: 950/13 ms, flip angle: 90°). The MP-RAGE sequence 
can capture whole brain in a short scan time with good 
tissue contrast and high spatial resolution. The main patient 
selection criterion was that their MRIs were acquired with 
the same 3D sequences, had fine spatial resolution, and the 
entire head was imaged. The number of slices ranges from 
176–224 for different patients. The CTs were acquired by a 
Siemens SOMATOM Definition AS CT scanner at 120 kVp  
and 220 mAs with the patient in treatment position; each 
0.6-mm-thick slice had a resolution of 512×512 pixels, with 
pixel spacing of 0.586 mm. Bone, air and soft tissue were 

segmented on CT images and registered to MR images, 
which were used as ground truth. Leave-one-out cross-
validation was used for evaluation. Dice similarity coefficient 
(DSC) of each class was used for numerical quantification (36). 
The formula of DSC measurement is as follows:

2
DSC

X Y
X Y
×

=
+


 [2]

where X and Y denotes the binary mask of ground truth 
contour and the segmentation derived via proposed method, 
respectively. We also calculated sensitivity and specificity 
using the overlapping ratio inside and outside the ground 
truth volume,

Sensitivity
X Y

X
=



 [3]

Specificity
X Y

X
=



 [4]

where X  and  Y  denotes the volumes outside binary mask 
of ground truth contour and segmentation derived via 
proposed method, respectively.

To study the effectiveness of the proposed SCRF model, 
we ran the random forest (RF) method without an auto-
context model and patch-based anatomical signatures and 
compared the resulting segmentation accuracy with the 
proposed method. Deep learning-based methods have been 
intensively studied in the last decade for various medical 
imaging applications. To compare the performance of 
SCRF method with deep learning-based methods, we also 
trained a well-established deep learning-based model, 

Figure 4 An example illustrating the significance of feature selection. (A) and (B) show axial viewed MRI and CT image, where the sample 
voxels corresponding to air tissue are represented by green circles, and the sample voxels of bone tissue are highlighted by red asterisks. (C) 
Shows the scatter plots of first three principle components of MRI features of these samples. The principle components are obtained via 
principle component analysis. (D) Shows the scatter plots of first three principle components of MRI features that are derived after feature 
selection. MRI, magnetic resonance image.
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U-Net, for air, bone and soft tissue classification. To fairly 
compare the performance of the proposed method and 
competing methods, all methods were evaluated based on 
same experiment settings (same input image and leave-one-
out cross-validation scheme).

Results

Comparison with random forest method

Figure 5 shows the qualitative comparison between RF and 
SCRF methods. Both RF and SCRF generate air, soft tissue 
and bone classification similar to the classification obtained 
with CT images. However, the left lens was mislabeled as 
bone with RF method, as indicated by the red arrows in 
Figure 5 (B3), and correctly classified as soft tissue with 
SCRF method. As shown by the red arrows in (B5) and (C5), 
the fine structure delineating maxillary sinus was better 

identified with SCRF. 
Figure 6 shows the quantitative comparisons of DSC, 

sensitivity and specificity between the two methods. 
With the integration of auto-context model and patch-
based anatomical signature, the proposed SCRF method 
outperformed the RF method on all calculated metrics. 
The DSC results of air, bone and soft tissue classes were 
0.976±0.007, 0.819±0.050 and 0.932±0.031, compared 
to 0.916±0.099, 0.673±0.151 and 0.830±0.083 with 
RF. Sensitivities were 0.947, 0.775, 0.892 for the three 
tissue types with SCRF, and 0.928, 0.725, 0.854 with RF. 
Specificity for the three tissue types was also improved with 
proposed method, which were 0.896, 0.823 and 0.830 with 
RF, compared to 0.938, 0.948, 0.878 with proposed SCRF. 

Comparison with U-Net model

We compared the performance of the proposed method 

Figure 5 Qualitative comparison between RF and SCRF methods. (A1) and (A4) shows MRI in axial view and sagittal view, respectively. 
(A2), (A5) and (A3), (A6) are corresponding CT images and CT labels (black for air, gray for soft-tissue, and white for bone) respectively. 
Row (B) and (C) are results generated with RF and SCRF respectively. The yellow arrows indicate bone region that is challenging during 
classification. The red arrows indicate soft tissue and air regions that are challenging during classification. MRI, magnetic resonance image; 
SCRF, semantic classification random forest.
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against a well-established deep learning-based model, 
U-Net. As indicated by the red arrows in Figure 7 (B2) 
and (C2), SCRF generated more accurate classification 
in challenging areas, such as the paranasal sinuses. U-Net 
failed to delineate the soft tissue around maxillary sinus 

[Figure 7 (B5)], while the soft tissue structure was accurately 
identified with SCRF [Figure 7 (C5)]. SCRF also corrected 
the mislabeling produced by the U-Net method in Figure 7 
(B3). The performance improvement was further illustrated 
in the quantitative comparison. As shown in Figure 8, U-Net 

Figure 6 Quantitative comparison of RF and SCRF methods for DSC (left), sensitivity (middle), and specificity (right). Error bars show 
standard deviation. SCRF, semantic classification random forest; DSC, Dice similarity coefficient.
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Figure 7 Qualitative comparison between U-Net and SCRF methods. (A1) and (A4) shows MRI in axial view and sagittal view, respectively. 
(A2), (A5) and (A3), (A6) are corresponding CT images and CT labels (black for air, gray for soft-tissue, white for bone) respectively. Row 
(B) and (C) are results generated with RF and SCRF respectively. The red arrows indicate soft tissue and bone regions that are challenging 
during classification. MRI, magnetic resonance image; SCRF, semantic classification random forest.
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obtained DSCs of 0.942, 0.791 and 0.917 for air, bone and 
soft tissue classes, and SCRF improved DSCs by 0.034, 0.028 
and 0.016 respectively. Similarly, sensitivity calculated U-Net 
classification results were 0.927, 0.735 and 0.883 for air, bone 
and soft tissue, and increased by 0.020, 0.040 and 0.009 with 
SCRF. Specificity was improved by 0.019, 0.025 and 0.025 on 
the three tissue types with the proposed SCRF method.

Discussion

In this paper, we have investigated a learning-based 
approach to classify tissue labels for arrival MRI. The 
novelty of our approach is the integration of semantic 
feature extraction under an auto-context manner, which 
would be helpful to iteratively improve segmentation’s 
reasonability via considering each voxel’s surrounding 
in format ion .  To reduce  the  e f fec t  o f  no i sy  and 
uninformative elements during MRI’s feature extraction, 
a LASSO-based feature selection is used. As can be seen 
from Figure 4, after feature selection, it would be easier to 
group MRI’ features into air and bone classes as compared 
to before feature selection [shown in scatter plot in (D) vs. 
(C)], which means the features after feature selection would 
be more discriminative for classification.

In this study, we demonstrated the clinical feasibility of 
the proposed method on 14 patients. The proposed method 
can be a promising tool in recently proposed advanced MR 
applications in diagnosis and therapy, such as MRI-based 
radiation therapy, attenuation correction for a hybrid PET/
MRI scanner or MR-guided FUS.

Special MR sequences, such as UTE (17,37) and zero 
time echo (ZTE) (38,39), have been investigated for bone 
detection and visualization, which were also employed 

on commercial PET/MRI systems for segmentation-
based attenuation correction. However, the segmentation 
accuracy with conventional methods on those special 
sequences are usually limited due to the high level of noise 
and the presence of image artifacts. Juttukonda et al. derived 
intermediate images from UTE and Dixon images for bone 
and air segmentation, which obtained Dice coefficients of 
0.75 and 0.60 for the two tissue types, respectively (40). 
An et al. improved the UTE MR segmentation accuracy 
with a multiphase level-set algorithm (41). The bone and 
air DSC obtained on 18F-FDG datasets were 0.83 and 
0.62. Baran et al. built a UTE MR template that contained 
manual-delineated air/bone/soft tissue contours, and 
used Gaussian mixture models to fit UTE images, which 
obtained average Dice coefficients of 0.985 and 0.737 
for air and bone (42). The proposed SCRF method was 
implemented on MR images generated with routinely-
acquired T1 sequences. Despite the limited bone-air 
contrast, our method demonstrated superior segmentation 
performance. Considering the valuable patient-specific 
bone extraction information provided by UTE and ZTE 
sequences, combining the superior detection capability of 
machine learning techniques with special bone-visualization 
sequences has the potential to generate promising results. 
In the future, we will explore the possibility of integrating 
the proposed method with UTE or ZTE MR sequences for 
better bone and air differentiation.

Several machine learning- and deep learning-based MR 
segmentation methods have been studied in the literature. 
Yang et al. proposed a multiscale skull segmentation 
method for MR images. A multiscale bilateral filtering 
scheme is used to improve the robustness of the method 
for noise MR images (43). The average Dice coefficient 

Figure 8 Quantitative comparison of U-Net and SCRF methods on DSC (left), sensitivity (middle) and specificity (right). Error bars show 
standard deviation. SCRF, semantic classification random forest; DSC, Dice similarity coefficient.
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of skull is 0.922. Liu et al. trained a deep convolutional 
auto-encoder network for soft tissue, bone and air 
identification (44). This deep learning-based method 
generated average Dice coefficients of 0.936 for soft tissue, 
0.803 for bone, and 0.971 for air. Convolution encoder-
decoder (CED) was also implemented on MR images 
acquired with both UTE and out-of-phase echo images 
for better bone and air differentiation, which generated 
mean Dice coefficient of 0.96, 0.88 and 0.76 for soft tissue, 
bone and air, respectively (45). Comparing to those state-
of-the-art methods, the proposed method demonstrates 
competitive segmentation performance. In our experiment 
14 patients with leave-one-out cross-validation was used 
to verify the proposed method and competing methods. 
For each experiment, we used 13 patients as training data, 
and the rest 1 patient as testing data. Thus, this patient is 
separated from the training data. We then repeated this 
experiment 14 times so that each patient can be used as 
testing data only one time. If a hold-out test with several 
patients are used to verify the proposed method, we may 
need more patient data to enlarge the data variation of 
training data. The small training data variation may cause 
overfitting issue and further affect the robustness of the 
performance of the proposed method. To train and test the 
proposed model with additional more patients’ data will be 
our future work.

We evaluate the performance of the proposed method 
on brain images, and demonstrated superior performances 
for bone and air segmentation even in challenging areas, 
such as paranasal sinuses. Bone and air segmentation are 
crucial for attenuation correction of brain PET images, and 
facilitates MR-guided FUS. Bone segmentation in whole-
body MR also have important clinical implications, such as 
musculoskeletal applications (46) and traumatic diagnoses 
(47,48). Different from brain MRI where the difficulty 
lies in the bone/air segmentation, challenges of bone 
segmentation on whole-body MRI are areas where spongy 
bone exists, such as the vertebra. The application of special 
MR sequences, such as UTE, is not clinically feasible for 
routine whole-body imaging due to the prolonged scanning 
time. For future work, we will modify the proposed method 
to include both cortical and spongy bone segmentation 
in the framework and implement it on whole-body MRI. 
As compared to bone, air and soft-tissue segmentation, 
tissue structures segmentation from MRI would be more 
challenging. Recently, deep learning-based networks 
demonstrated their performance on neonatal cerebral tissue 
type identification (49). Ding et al. performed deep learning-

based models on both dual-modality MRI (T1 and T2) 
and single modality MRI, and found that the average Dice 
coefficient of dual-modality MRI can reach at 0.94/0.95/0.92 
or gray matter, white matter, and cerebrospinal fluid, 
respectively, compared with 0.90/0.90/0.88 of T2 MRI (49). 
Evaluating our method on tissue structures segmentation 
for multi-modality MRI will be our future work.

Conclusions

We have applied a machine learning-based automatic 
segmentation method that could identify soft tissue, 
bone and air on MR images. The proposed method has 
acceptable segmentation accuracy and can be promising 
in facilitating advanced MR applications in diagnosis and 
therapy.
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