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Background: This study classifies lung adenocarcinoma (ADC) and squamous cell carcinoma (SCC) using 
subregion-based radiomics features extracted from positron emission tomography/computed tomography 
(PET/CT) images.
Methods: In this study, the standard 18F-fluorodeoxyglucose (FDG) PET/CT images of 150 patients 
with lung ADC and 100 patients with SCC were retrospectively collected from the PET Center of the 
First Affiliated Hospital, College of Medicine, Zhejiang University. First, the 3D feature vector of each 
tumor voxel (whose basis is PET value, CT value, and CT local dominant orientation) was extracted. Using 
K-means individual clustering and population clustering, each tumor was divided into 4 subregions that 
reflect intratumoral regional heterogeneity. Next, based on each subregion, 385 radiomics features were 
extracted. Clinical features including age, gender, and smoking history were included. Thus, there were a 
total of 1,543 features extracted from PET/CT images and clinical reports. Statistical tests were then used to 
eliminate irrelevant and redundant features, and the recursive feature elimination (RFE) algorithm was used 
to select the best feature subset to classify SCC and ADC. Finally, 7 types of classifiers were tested to achieve 
the optimized model for the classification: support vector machine (SVM) with linear kernel, SVM with 
radial basis function kernel (SVM-RBF), random forest, logistic regression, Gaussian process classifier, linear 
discriminant analysis, and the AdaBoost classifier. Furthermore, 5-fold cross-validation was applied to obtain 
the sensitivity, specificity, accuracy, and area under the curve (AUC) for performance evaluation. 
Results: Our model exhibited the best performance with the subregion radiomics features and SVM-RBF 
classifier, with a 5-fold cross-validation sensitivity, specificity, accuracy, and AUC of 0.8538, 0.8758, 0.8623, 
and 0.9155, respectively. The interquartile range feature from subregion 2 of CT and the gender feature 
from the clinical reports are the 2 optimized features that achieved the highest comprehensive score. 
Conclusions: Our proposed model showed that SCC and ADC could be classified successfully using PET/
CT images, which could be a promising tool to assist radiologists or medical physicists during diagnosis. The 
subregion-based method illustrated that non-small cell lung cancer (NSCLC) depicts intratumoral regional 
heterogeneity on both CT and PET images. By defining these heterogeneities through a subregion-based 
method, the diagnostic performance was improved. The 3D feature vector (whose basis is PET value, CT 
value, and CT local dominant orientation) showed superiority in reflecting NSCLC intratumoral regional 
heterogeneity.
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Introduction

Lung cancer is a fatal disease with a high incidence rate in 
Asia (up to 520,000 cases per year in China), and has the 
highest mortality among all the cancers with a poor 5-year 
survival rate (1). According to histological and cytological 
tumor types, lung cancer can be divided into small cell 
lung cancer (SCLC, ~15%) and non-small cell lung cancer 
(NSCLC, ~85%). Adenocarcinoma (ADC) and squamous 
cell carcinoma (SCC) are the 2 main histopathological 
subtypes of NSCLC, accounting for approximately 80% of 
cases (2). Classifying SCC and ADC is clinically important 
and heavily influences clinical decision-making (3,4). ADC 
easily metastasizes in the early stage. The most common 
sites of metastasis are the liver, bone, brain, and adrenal 
glands. ADC is sensitive to radiotherapy and chemotherapy, 
but can easily develop resistance to chemotherapy drugs (5).  
On the other hand, the development of SCC is relatively 
slow, and metastasis is late. Thus, resection surgery 
is normally applied rather than chemotherapy and 
radiotherapy (6). Classifying SCC and ADC helps to 
determine the optimal clinical treatment and improve the 
5-year survival rate and postoperative quality of life of 
patients.

Biopsy or surgical resection is often used to determine 
the histopathological subtypes of lung cancer, and is 
considered to be the gold standard. However, this method 
is invasive and requires random sampling of tumor  
fragments (7). In contrast, radiomics analysis (8,9) is 
considered to be a noninvasive tool for the classification 
of lung cancer histopathological subtypes through 
medical image analysis, which offers quantitative tumor 
heterogeneity information (10,11) by quantitatively 
describing shapes, gray level histograms, or textures (12,13). 
Radiomics features often include Haralick features (14), 
Gabor features (15), histograms of oriented gradients 
(HOG) (16), and the co-occurrence of local anisotropic 
gradient orientations (CoLIAGe) (17). Gabor features are 
extracted from the image transformed by Gabor filters, 
which are a set of linear filters for edge detection. Thus, 
these features can capture the textural information in terms 
of different frequencies and orientations. HOG features, 
which are initially used for pedestrian detection, acquire 

information based on the histograms of local gradient cells. 
CoLIAGe features are the improved version of HOG, 
capturing anisotropic tensor gradient differences across 
similar appearing pathologies in medical images. 

Furthermore, researchers have shown that radiomics 
is a noninvasive method for helping to distinguish 
ADC from SCC. For example, Haga et al. (7) evaluated 
and demonstrated the potential of radiomics analysis 
of computed tomography (CT) images to predict the 
histological subtypes of NSCLC (SCC and ADC), with an 
area under the curve (AUC) value of 0.7250±0.070. Ferreira 
Junior et al. (18) obtained an AUC value of 0.81 from their 
radiomics models for the classification of SCC and ADC 
in CT images. Wu et al. (19) performed a multicohort 
radiomics study for differentiating between NSCLC 
histological subtypes (ADC vs. SCC), with an AUC value of 
0.72. 

In  addi t ion  to  CT images ,  pos i t ron  emiss ion 
tomography/CT (PET/CT), which is considered to be 
a powerful and widely used system for malignant tumor 
imaging, not only offers information on both biological 
metabolism and accurate anatomical location, but also plays 
an important role in staging and therapy monitoring in 
numerous tumors (20). Tsubakimoto et al. (21) developed 
a binary logistic regression model based on skewness and 
kurtosis features from CT, as well as the standardized uptake 
value (SUV)max feature from PET. Their results showed 
that the PET/CT-based model outperformed the other 
models that were based on features from a single modality. 
In addition to NSCLC subtype classification, Dissaux  
et al. (22) demonstrated that PET/CT-based radiomics has 
the potential to prognostically predict local recurrence for 
patients who received radiotherapy. 

On top of the aforementioned radiomics studies, which 
are based on the features extracted from the whole tumor, 
a novel approach (called subregion-based radiomics) takes 
intratumoral regional heterogeneity into account (23). 
This approach is based on the premise that the tumor is 
heterogeneous and does not share the same heterogeneous 
pattern across the entire tumor (24). Specifically, within a 
single tumor, intratumoral phenotypes vary (e.g., necrotic 
or highly active features), which may reflect different 
biological processes (24,25). Subregion-based radiomics (26)  
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is an effective solution to address this problem, as it first 
divides the whole tumor into several subregions and then 
develops a comprehensive radiomics model according 
to the features extracted from these subregions. By 
considering the intratumoral regional heterogeneity, 
grouping variant heterogeneities across the tumor may 
improve the performance of the conventional radiomics 
method. Thus far, researchers have applied subregion-based 
radiomics to determine the prognosis of breast cancer (27), 
nasopharyngeal carcinoma (28), and esophageal squamous 
cell carcinoma (26). However, to date, no studies have 
explored the classification of lung ADC and SCC according 
to subregion-based radiomics analysis with PET/CT scans. 
In addition, the optimized subregion generation method for 
this classification also needs to be studied.

Therefore, the aim of this study was to develop a 
subregion-based radiomics model for histopathological 
classification with PET/CT images. We also evaluated 
different feature vectors for subregion generation to achieve 
the best histopathological classification results.

Methods

Data

This study was approved by the PET Center of the 
First Affiliated Hospital, College of Medicine, Zhejiang 
University. A total of 250 patients who underwent PET/

CT scanning and had primary lung cancers were enrolled 
in this study (Table 1). All tumors were histopathologically 
determined to be 1 of the 2 subtypes of NSCLC (using 
surgical resection specimens), with 103 SCC tumors and 
160 ADC tumors. All volumes of interest (VOIs) of lung 
tumors were semiautomatically delineated by a radiologist 
with 15 years of experience using ITK-Snap ver. 3.6.0 (29)  
with the Region Competition Snakes method (30) on 
CT. 18F-fluorodeoxyglucose (FDG) PET/CT images 
were scanned using PET/CT Biograph 16 (Siemens 
Healthineers, Hoffman Estates, IL, USA). 

The PET images were reconstructed using the iterative 
algorithm with 4 iterations and 8 subsets. Normalization, 
decay, attenuation, random, and scatter corrections 
were implemented. A Gaussian filter with a full width at 
half maximum (FWHM) of 6.0 mm was applied to post 
processing. The convolutional kernel for CT reconstruction 
was B31f. The CT tube voltage was 120 kV, and the CT 
tube current was 207.5±57.6 mA. The CT exposure was 
105.1±29.2 mAs. The CT pixel size was 1.00±0.10 mm, 
while the PET pixel size was 4.06±0.00 mm. The CT 
slice thickness was 4.02±0.37 mm, while the PET slice 
thickness was 4.94±0.42 mm. To take advantage of the size 
information and for uniformity, the pixel spacing and slice 
thickness of all images were resampled to 1 mm/voxel. All 
PET images were converted into a standardized uptake 
value (SUV).

Table 1 Clinical information of the enrolled patient cohort

All patients (n=250) SCC patients (n=100) ADC patients (n=150) P value

Age (year) 62.86±9.46 64.52±8.02 61.76±10.15 <0.001a

Gender <0.001a

Female 92 3 89

Male 158 97 61

Smoking history <0.001a

Yes 127 84 43

No 123 16 107

Tumor diameter (mm) 50.48±34.78 66.37±35.03 39.90±30.28 <0.001a

TNM staging 263 103 160 <0.001a

I 49 8 41

II 116 34 82

>II 98 61 37
aStatistically significant. SCC, squamous cell carcinoma; ADC, adenocarcinoma; TNM, tumor-node-metastasis. 



2921Quantitative Imaging in Medicine and Surgery, Vol 11, No 7 July 2021

© Quantitative Imaging in Medicine and Surgery. All rights reserved.   Quant Imaging Med Surg 2021;11(7):2918-2932 | http://dx.doi.org/10.21037/qims-20-1182

Subregion generation

A subregion-based radiomics analysis considers the 
intratumoral regional heterogeneity rather than subjecting 
the entire tumor to a radiomics analysis (28). The entire 
tumor is divided into several subregions. However, most 
of the feature vectors for subregion generation include 
the information on local entropy and pixel/voxel value 
(26,28). In our method, we evaluated the optimized feature 
vector for subregion generation based on different metrics, 
including the 3D feature vector (whose basis is PET value, 
CT value, and CT local dominant orientation), 4D feature 
vector (whose basis is PET value, CT value, PET local 
entropy, and CT local entropy), and 5D feature vector 
(whose basis is PET value, CT value, PET local entropy, 
CT local entropy, and CT local dominant orientation). 
Taking the subregion generation based on the 3D feature 
vector as an example, there are 3 steps needed to obtain the 
subregions in our method, which are illustrated in Figure 1:

(I) For every voxel, the CT local dominant orientation 
within a small neighborhood window of 3×3×3 
is computed with the help of the singular value 
decomposition (SVD) algorithm.

(II) Next, for each voxel, a feature vector (whose basis 
is PET value, CT value, and CT local dominant 
orientation) is obtained and prepared for the 
subsequent clustering.

(III) With the help of individual and population clustering, 
each tumor is divided into several subregions.

Note that step (I) can be replaced by different metric 
computations to acquire a new feature vector for the 
clustering in step (III).

Construction of the feature vector
Computation of the local dominant gradient orientations
For every voxel c in the tumor (denoted as c∈C), the 
gradients along the X, Y and Z directions are computed, 
and are illustrated as ∂fX(c), ∂fY(c) and ∂fZ(c). For every 

Figure 1 A specific workflow for subregion generation based on the 3D feature vector (whose basis is CT value, PET value, and CT local 
dominant orientation). PET, positron emission tomography; CT, computed tomography.
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voxel c∈C, a 3×3×3 neighborhood window W centered 
around c is selected to compute the local dominant gradient 
orientations. Thus, for the voxels ck∈W, k=1,2,3,…,27, 

the local gradient matrix  ( ) ( ) ( ), ,c X k Y k Z kM f c f c f c = ∂ ∂ ∂ 


,  
1,2,3, , 27k =   i s  achieved.  By taking out  the SVD 

algorithm, the most dominant components in the three 
directions can be derived as   X

cr ,  Y
cr ,  Z

cr . The most 
dominant orientations in the neighborhood window W are 

then calculated as 
 
( ) 1θ c tan

Y
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X

c

r
r

−  
=  
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Computation of the local entropy
For every voxel c denoted as c∈C in the tumor, a 3×3×3 
neighborhood window W centered c is chosen to calculate 
the local entropy H(c) according to Eq. [1]. When 
calculating the PET local entropy, f(ck) is the PET value of 
voxel ck, while in the CT local entropy calculation, f(ck)turns 
to the CT value of voxel ck.

 ( ) ( )2 2, 1,2, ,27
H c log / log 27

kk
cc W k

p
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Clustering subregions
Therefore, for each voxel in tumors, a feature vector (whose 
basis is PET value, CT value, and CT local dominant 
orientation) is obtained and prepared for the subsequent 
clustering. Individual clustering is carried out to generate 
subregions. Each tumor is independently divided into 40 
supervoxels based on the K-means clustering algorithm. The 
squared Euclidean distances between voxel-wise 3D feature 
vectors (PET value, CT value, and CT local dominant 
orientation) are considered as the K-means similarity metric. 
Subsequently, the average feature vector is calculated for 
each supervoxel. Population-level clustering is performed 
based on the obtained 40*N supervoxels (where N is the 
total number of tumors). The similarity metric is the squared 
Euclidean distances between supervoxel-wise average 3D 
feature vectors. The consistently labelled supervoxels in 
each tumor are merged as a subregion. To determine the 
optimized cluster number (from 2 to 10) and obtain the final 
subregion results, the Calinski-Harabasz index (31) is used as 
the criterion, which minimizes intrasubregion variance and 
maximizes the intersubregion differences in feature vectors.

Feature extraction

In our experiment, 1,543 radiomics-based features (385 

features in each subregion and 3 clinical features) were 
extracted. The bin width of CT and PET were 25 and 
0.25, respectively. Among the 385 radiomics features, 191 
radiomics features were from CT images and 194 were 
from PET ones. Among the 191 radiomics features, 107 
were extracted using the open source Python toolkit, 
PyRadiomics 3.0 (32), and included the first-order, shape, 
gray-level co-occurrence matrix (GLCM) (33), gray-
level run-length matrix (GLRLM) (34), gray-level size 
zone matrix (GLSZM) (35), gray-level dependence matrix 
(GLDM) (36), and neighboring gray-tone difference matrix 
(NGTDM) (37). Based on the CoLIAGe, 84 features 
were extracted (17), capturing anisotropic tensor gradient 
differences across similar-appearing pathologies in an 
image. All of the above-mentioned radiomics followed 
the definition in The Image Biomarker Standardization 
Initiative (38). 

For the PET images, in addition to the 191 quantitative 
radiomics features extracted, which were the same as 
those of CT, 3 common PET semiquantitative parameters 
[SUVmean, SUVmax, and SUVpeak (39)] were also extracted. 
Finally, 3 clinical features (age, gender, and smoking history) 
were also taken into consideration. All of the features were 
normalized to [0, 1].

Feature and classifier selection

Feature selection was applied to select features that were 
beneficial to the classification of ADC and SCC. First, 
features whose variance was 0 were abandoned, and 
redundant features (with a Spearman’s rank coefficient 
greater than 0.99) were removed. Second, the chi-square test 
was carried out to eliminate the irrelevant features whose 
P value was greater than 0.05. The false discovery rate 
(FDR) of the Benjamini-Hochberg procedure method was 
utilized to perform multiple testing correction. Next, SVM-
recursive feature elimination (SVM-RFE) was performed 
to select the optimized feature subset to distinguish ADC 
from SCC. The scoring metric for feature selection was 
the AUC, and the estimator for the RFE feature selection 
method was SVM-linear (kernel=‘linear’, gammar=‘scale’, 
min_features_to_select=3). Scikit-learn 0.23.2 (40) was used 
for feature selection and model development. The above 3 
processes formed our feature selection pipeline.

SVM (37) has been successfully applied in numerous 
scenarios and offers the following advantages: (I) 
computational efficiency, (II) good generalization capability; 
and (III) satisfactory performance for a small training set. 
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When SVM is used for RFE, SVM-RFE can be considered 
a sequential backward selection algorithm, and it is one of 
the most widely used feature selection approaches based on 
the wrapper method (17). SVM-RFE uses model training 
samples and then sorts the scores of each feature to remove 
the features of minimum feature score, without which, it has 
the maximum AUC score. It then retrains the model with 
the remaining features for the next iteration, and finally, 
selects the number of features needed. Five-fold cross-
validation and stratified sampling were used to improve the 
generalization ability. The algorithm diagram details are 
shown in Figure 2. All of the samples were divided into 5 
folds. Each fold was used once as the testing set, while the 
remaining 4 folds were the training set, which were used 
for feature selection and hyperparameter tuning. At each 
fold, the radiomics model was developed after the feature 
selection and hyperparameter tuning using the training 
set, and then the testing set used the selected features to 
evaluate the performance of the developed radiomics model. 
Notably, the testing set did not participate in any process 
of radiomics model development and was only used for 
performance evaluation. 

Experimental design

The goal of this study was to develop a subregion-based 
radiomics model for histopathological classification. The 
subregion-based radiomics developments followed the same 
pipeline as in Figure 3: (I) subregion generation based on 
feature vector clustering; (II) subregion-based radiomics 
feature extraction; (III) feature normalization and selection; 
and (IV) subregion-based radiomics model development. 
To achieve better performance, we set up an experiment for 
optimizing the feature vector for subregion generations. 
This study compared 3 kinds of feature vectors: (I) 3D 
vector (whose basis is PET value, CT value, and CT 
local dominant orientation), (II) 4D vector (whose basis is 
PET value, CT value, PET local entropy, and CT local 
entropy), and (III) 5D vector (whose basis is PET value, CT 
value, PET local entropy, CT local entropy, and CT local 
dominant orientation). By comparing their performance, 
we could obtain the optimized feature vector for subregion 
generation. 

Additionally, the conventional models using the same 
radiomics pipeline without subregion generation were 
compared with the subregion-based radiomics models. In 

Figure 2 Schematic diagram of 5-fold cross-validation and evaluation metric calculation. AUC, area under the curve.
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order to select the optimized model, we also compared 
the performance of different classifiers in this task. A total 
of seven classifiers were compared in terms of sensitivity, 
specificity, accuracy, and AUC score, including the SVM 
linear, SVM-RBF, random forest, logistic regression, 
Gaussian process classifier, linear discriminant analysis, 
and the AdaBoost classifier. The hyperparameter-tuning 
ranges of the 7 classifiers are shown in Table S1 of the 

Supplementary Material. 
For further analysis, we used a comprehensive score 

to rank the features at 5 folds (as shown in Figure 4). The 
comprehensive score was equal to the occurrence of the 
feature among the 5 selected feature subsets. Through 
comprehensive scoring, the ranking of the selected 
features among the 5 folds was achieved, with the highest 
comprehensive score denoting the top rank. 

Figure 3 Flowchart of the subregion-based radiomics pipeline used in this study, which includes segmentation, feature vector construction, 
subregion generation, feature extraction, feature selection, model development, and performance evaluation. CT, computed tomography; 
PET, positron emission tomography; GLCM, gray-level co-occurrence matrix; GLRLM, gray-level run-length matrix; GLSZM, gray-level 
size zone matrix; CoLIAGe, co-occurrence of local anisotropic gradient orientations; SUV, standardized uptake value; SVM, support vector 
machine; RBF, radial basis function kernel; adaboost, adaptive boosting.
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Results

Subregion generation

According to the algorithm for the subregion generation 
mentioned above, the Calinski-Harabasz index was 
calculated as a metric to select the optimized clustering 
number from 2 to 10, as shown in Figure 5. We used 4 as 

our optimized clustering number because it corresponds 
to the highest Calinski-Harabasz index for the 3D feature 
vector. Thus, a total of 4 subregions were divided for 
each tumor in this study. Subregions 1 to 4 were marked 
by white, red, green, and blue colors, respectively. The 
subregions generated by 3D, 4D, and 5D feature vectors 
of 2 discrete slices are shown in Figure 6. The subregion 
numbers for the 3D, 4D, and 5D feature vectors were 4, 2, 
and 4, respectively. 

Feature selection

In the case of the subregion-based models based on the 3D 
or 5D feature vectors, 4 subregions were obtained, while 2 
subregions were obtained based on the 4D feature vectors. 
Radiomics features were extracted and then passed through 
the feature selection process (as shown in Figure 3). As the 
selected features at each fold were slightly different, we 
employed the comprehensive score to evaluate all selected 
features. The result of comprehensive scoring is shown in 
Table 2. A total of 6 features were ranked. It should be noted 
that the interquartile range feature from subregion 2 in CT 
and the gender feature from clinical reports were selected 

Figure 4 Schematic for ranking the selected features among 5 folds by comprehensive scoring.

Figure 5 The Calinski-Harabasz index under different clustering 
numbers (result of 3D feature vector). D, dimension.
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Figure 6 Sample PET/CT images and their corresponding subregions generated by the 3D, 4D, and 5D feature vectors. D, dimension; 
PET/CT, positron emission tomography/computed tomography.

Table 2 The selected features among 5 folds ranked by comprehensive score for the classification of ADC and SCC

Rank Feature description  Source Subregion Score

1 Interquartile range (32) CT Subregion 2 5

1 Gender Clinical report None 5

2 Interquartile range (32) PET Subregion 1 4

3 Robust mean absolute deviation (32) CT Subregion 1 2

4 10th percentile (32) CT Subregion 2 1

4 Robust mean absolute deviation (32) CT Subregion 2 1

ADC, adenocarcinoma; SCC, squamous cell carcinoma; CT, computed tomography; PET, positron emission tomography.

among 5 folds.

Performance evaluation of the subregion-based model

We compared the performances of the SVM with linear 
kernel, SVM with RBF kernel, random forest, logistic 
regression, Gaussian process, linear discriminant analysis, 
and AdaBoost methods based on the different feature 
vectors, which are summarized in Table 3. The subregion-
based SVM-RBF with the 3D feature vector showed the 
best classification performance with a 5-fold cross-validation 
accuracy of 0.8623 and an AUC of 0.9155 among all of the 
results. The optimized hyperparameters are listed in Table 
S2 of the supplemental material. The receiver operating 
characteristic (ROC) curves of the conventional SVM-RBF 
model and those of the subregion-based SVM-RBF with 

the 3D feature vector are shown in Figure 7. 
To evaluate the performance improvement, the statistical 

paired t-test was applied to calculate the significant 
difference between 7 AUCs of the conventional method 
and those of the subregion-based method based on the 3D 
feature vector. The paired t-test result showed that our 
proposed subregion-based radiomics model with the 3D 
feature vector was significantly better than the conventional 
radiomics model in terms of specificity, accuracy, and 
AUC (P=4.56e-6, P=5.12e-5, and P=4.82e-2, respectively). 
However, the sensitivity was significantly worse than the 
conventional model (P=1.71e-3).

Furthermore, the optimized basis of the feature vector 
was evaluated. The subregion-based models were obtained 
by clustering based on the feature vector. Although the most 
commonly used vector was the 4D feature vector (whose basis 

Sample CT PET
Subregions

3D 4D 5D

No. 0

slice 43

No. 0

slice 55
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is PET value, CT value, PET local entropy, and CT local 
entropy), we proposed 2 novel feature vectors. They were the 
3D feature vector (whose basis is PET value, CT value, and 
CT local dominant orientation) and the 5D feature vector 
(whose basis is PET value, CT value, PET local entropy, 
CT local entropy, and CT local dominant orientation). The 
method based on the 3D feature vector was also significantly 
better than those based on the 4D feature vector (P=3.71e-5, 
P=1.41e-5, and P=1.62e-3) or 5D feature vector (P=2.23e-3, 
P=7.17e-4, and P=1.82e-4) in terms of specificity, accuracy 
and AUC, respectively (Figure 7).

Discussion

In this study, we developed and evaluated subregion-
based PET/CT radiomics models to classify NSCLC 
histopathological subtypes. We compared the performances 

of subregion-based radiomics based on different feature 
vectors for subregion generation. The results revealed that 
the subregion-based radiomics models generated from our 
proposed 3D feature vector had the best performance in the 
classification of ADC and SCC as compared to the models 
based on 4D or 5D feature vectors. The paired t-tests 
indicated that the 3D feature vector had a better capability 
to depict intratumoral regional heterogeneity of NSCLCs 
in PET/CT images. 

Furthermore, we also compared the subregion-based 
models based on the 3D feature vector with conventional 
models. The result showed that our subregion-based 
radiomics models had advantages and great potential 
to distinguish SCC from ADC compared with the 
conventional radiomics models. This will improve the 
early diagnosis of NSCLC using intratumoral regional 
heterogeneity. The subregion-based models generated from 

Table 3 Classification performances of different classifiers, radiomics methods, and feature vectors

Models SVM-RBF SVM linear Random forest Logistic regression Gaussian process Linear discriminant Adaboost

AUC Sub-region

3D 0.9155 0.9148 0.9022 0.9143 0.9144 0.9144 0.9006

4D 0.8985 0.8849 0.8737 0.9048 0.9013 0.8774 0.8722

5D 0.8872 0.8826 0.8549 0.8926 0.8892 0.8823 0.8604

Conventional 0.9038 0.9120 0.8944 0.8951 0.9005 0.9071 0.8637

Accuracy Sub-region

3D 0.8623 0.8576 0.8532 0.8577 0.8577 0.8531 0.8390

4D 0.8052 0.8007 0.7913 0.8338 0.8241 0.8052 0.7911

5D 0.8195 0.8007 0.7497 0.8241 0.8332 0.8144 0.7823

Conventional 0.8391 0.8300 0.8208 0.8071 0.8254 0.8255 0.8070

Sensitivity Sub-region

3D 0.8538 0.8538 0.8231 0.8462 0.8462 0.8615 0.8462

4D 0.8569 0.8486 0.8172 0.8486 0.8566 0.8089 0.8006

5D 0.8449 0.8526 0.8286 0.8526 0.8372 0.8055 0.8286

Conventional 0.8692 0.8846 0.8769 0.8538 0.8615 0.8846 0.8846

Specificity Sub-region

3D 0.8758 0.8634 0.8987 0.8758 0.8758 0.8412 0.8261

4D 0.7294 0.7294 0.7529 0.8118 0.7765 0.8000 0.7765

5D 0.7837 0.7281 0.6366 0.7837 0.8288 0.8288 0.7170

Conventional 0.7948 0.7497 0.7379 0.7386 0.7719 0.7386 0.6928

SVM, support vector machine; RBF, radial basis function kernel; adaboost, adaptive boosting; AUC, area under the curve; D, dimension.
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Figure 7 ROC curves of the subregion-based and conventional models with different basis of the feature vector. (A,B,C,D) are the ROC 
curves of the 3D, 4D, and 5D subregion-based models and conventional model (all are based on SVM-RBF classifier), respectively. ROC, 
receiver operating characteristic; AUC, area under the curve; D, dimension; SVM, support vector machine; RBF, radial basis function kernel.
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the 3D feature vector surpassed the conventional models 
in terms of specificity, accuracy, and AUC. This implies 
that for lung tumors that grow with variant radiomics 
textural heterogeneities and that can be divided into several 
subregions in terms of heterogeneity, subregion-based 
radiomics can be applied to better improve the performance 
of the predictive model. This result supports the statement 
of Gatenby et al. (24), who argued that the whole tumor can 
be considered as multiple regional coalitions of ecological 
communities. 

However, the sensitivity of the subregion-based radiomics 
model was significantly worse than the conventional model. 
Notably, the sensitivity in our study can be considered as the 
true ADC rate, since we assigned ADC a positive label in 
classification. On the other hand, the specificity in our study 
can be considered as the true SCC rate. It is also noteworthy 
that in the imbalance data set, the proportion of ADC was 
around 50% more than that of SCC. This indicates that the 
model would have better accuracy if it tended to classify the 

sample as ADC. In contrast, the subregion-based models 
based on the 3D feature vector showed better accuracy, as 
more SCC samples were classified correctly. This is because 
the size of the tumor in SCC is significantly larger than 
that in ADC (as shown in Table 1). Dercle et al. showed that 
the radiomics feature extracted from a smaller region of 
interest (ROI) area is more unstable (41). Moreover, a larger 
volume of interest (VOI) can provide more comprehensive 
information to cluster subregions. Thus, the subregion-
based radiomics method can significantly improve the 
classification performance of histopathological subtypes of 
NSCLC as compared to the conventional method. 

The results of subregion generation for 3 tumors (no. 0 
and no. 23 were the SCC cases, while no. 41 was the ADC 
case) based on the 3D feature vector are shown in Figure 8, 
and for each sample, 2 discrete slices are listed. A total of 6 
optimized features were ranked by comprehensive score and 
are shown in Table 2. There were 4 CT radiomics features, 
a PET radiomics feature, and a clinical feature. These 
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Figure 8 Results of tumor subregion generation based on the 3D feature vector whose basis is (CT value, PET value, CT local dominant 
orientation) for 3 tumors (no. 0 and no. 23 were the SCC cases, while no. 41 was the ADC case). CT, computed tomography; PET, positron 
emission tomography; D, dimension; SCC, squamous cell carcinoma; ADC, adenocarcinoma.
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provide information for the classification from anatomical, 
metabolic, and clinical perspectives. The two first-rank 
features were the interquartile range feature from subregion 
2 of CT and the gender feature from clinical reports. The 
inclusion of the gender feature was expected since some 
studies have reported that gender is strongly correlated with 
the histopathological subtypes of NSCLC (42,43). The 
interquartile range feature from subregion 2 of CT measures 
the range from the 25th to the 75th percentile of the gray 
level in subregion 2 of the CT image. From Figure 8, we can 
see that subregion 2 of CT is mostly the inner peritumorual 
region, but does not include the rim region. This first-
rank feature implies that the gray level distributions in this 
subregion are quite different between ADC and SCC, as the 
phenotypes of NSCLC subtypes vary. 

The second-rank feature is the interquartile range feature 
from subregion 1 of PET. Subregion 1 spreads widely and 
fractionally all over the tumor. This feature tells us that the 
PET SUV uptake in this subregion has a differential ability 
for classifying ADC vs. SCC, and this phenomenon may 
also due to the different phenotypes of NSCLC subtypes. 
The robust mean absolute deviation feature appears on 
the third and fourth rank simultaneously, but the third-
rank feature is from subregion 2 of CT and the fourth-rank 
feature is from subregion 1 of CT. This fact demonstrates 
the effectiveness of subregion-based radiomics. Although 
the extracted features are the same, the regions to extract 
are different, which leads to the same feature embodying 
different textural/metabolic information. The other fourth-
rank feature is the 10th percentile feature from subregion 
2 of CT. This feature also implies that the distribution of 
gray level between ADC and SCC in CT is significantly 
different, especially the left tail part of the distribution.

F o r  c l i n i c a l  a p p l i c a t i o n ,  w e  a n t i c i p a t e  t h a t 
the classif ication performance wil l  be as good as 
histopathological examination, and should be available 
for other NSCLC subtypes, such as adenosquamous cell 
carcinoma (44) and large cell carcinoma. To achieve this, 
our future work will include more data with comprehensive 
histopathological subtypes. Methods to better depict 
intratumoral regional heterogeneity by using radiologic 
descriptors and building a map between the radiomics 
heterogeneity and the variance of clinical outcomes and 
molecular properties remain challenging and need to be 
further studied. The data used in this study were from 
only 1 hospital, and thus, the performance might be 
undermined in other hospitals due to multicenter effects, 
such as the differences in the scanner, scan time, dose, and 

reconstruction algorithm. Future work will also include data 
from other centers for external validation of our results.

Conclusions

Our proposed subregion-based radiomics model can 
successfully classify ADC and SCC using PET/CT images, 
which could be a promising tool to assist radiologists or 
medical physicists in NSCLC diagnosis. The subregion-
based method demonstrates that NSCLC depicts 
intratumoral regional heterogeneity in both CT and PET 
images. Defining the intratumoral regional heterogeneity 
by PET/CT images results in improved diagnostic 
performance. The subregion-based models developed 
by our proposed 3D feature vector (whose basis is PET 
value, CT value, and CT local dominant orientation) were 
significantly better than those developed by 4D and 5D 
vectors, and thus, the 3D vector can better characterize 
NSCLC intratumoral regional heterogeneity.
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Supplementary

Descriptions of the extracted features 

(I) 107 radiomics features are extracted with the help of Pyradiomics toolbox 3.0 which follows the Image Biomarker 
Standardisaion Initiative (IBSI) guidelines. The definitions of the features are detailed at https://pyradiomics.readthedocs.
io/. The name list is as follows. 
[1]original_shape_VoxelVolume
[2]original_shape_Sphericity
[3]original_shape_Maximum2DDiameterSlice
[4]original_shape_Maximum2DDiameterColumn
[5]original_shape_Maximum3DDiameter
[6]original_shape_Flatness
[7]original_shape_MeshVolume
[8]original_shape_SurfaceArea
[9]original_shape_MinorAxisLength
[10]original_shape_SurfaceVolumeRatio
[11]original_shape_Maximum2DDiameterRow
[12]original_shape_MajorAxisLength
[13]original_shape_LeastAxisLength
[14]original_shape_Elongation
[15]original_glcm_ClusterProminence
[16]original_glcm_SumSquares
[17]original_glcm_DifferenceVariance
[18]original_glcm_JointAverage
[19]original_glcm_Contrast
[20]original_glcm_ClusterShade
[21]original_glcm_Idm
[22]original_glcm_Idmn
[23]original_glcm_Id
[24]original_glcm_MCC
[25]original_glcm_Autocorrelation
[26]original_glcm_JointEnergy
[27]original_glcm_JointEntropy
[28]original_glcm_SumAverage
[29]original_glcm_InverseVariance
[30]original_glcm_Imc2
[31]original_glcm_ClusterTendency
[32]original_glcm_DifferenceAverage
[33]original_glcm_DifferenceEntropy
[34]original_glcm_SumEntropy
[35]original_glcm_Idn
[36]original_glcm_MaximumProbability
[37]original_glcm_Imc1
[38]original_glcm_Correlation
[39]original_ngtdm_Contras
[40]original_ngtdm_Strength
[41]original_ngtdm_Coarseness
[42]original_ngtdm_Busyness
[43]original_ngtdm_Complexity
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[44]original_glszm_SmallAreaEmphasis
[45]original_glszm_LargeAreaEmphasis
[46]original_glszm_ZonePercentage
[47]original_glszm_GrayLevelVariance
[48]original_glszm_ZoneEntropy
[49]original_glszm_LargeAreaLowGrayLevelEmphasis
[50]original_glszm_GrayLevelNonUniformityNormalized
[51]original_glszm_SizeZoneNonUniformityNormalized
[52]original_glszm_GrayLevelNonUniformity
[53]original_glszm_SmallAreaHighGrayLevelEmphasis
[54]original_glszm_SizeZoneNonUniformity
[55]original_glszm_SmallAreaLowGrayLevelEmphasis
[56]original_glszm_ZoneVariance
[57]original_glszm_LowGrayLevelZoneEmphasis
[58]original_glszm_HighGrayLevelZoneEmphasis
[59]original_glszm_LargeAreaHighGrayLevelEmphasis
[60]original_glrlm_RunVariance
[61]original_glrlm_RunLengthNonUniformity
[62]original_glrlm_LongRunLowGrayLevelEmphasis
[63]original_glrlm_HighGrayLevelRunEmphasis
[64]original_glrlm_ShortRunEmphasis
[65]original_glrlm_GrayLevelNonUniformityNormalized
[66]original_glrlm_ShortRunLowGrayLevelEmphasis
[67]original_glrlm_ShortRunHighGrayLevelEmphasis
[68]original_glrlm_GrayLevelVariance
[69]original_glrlm_GrayLevelNonUniformity
[70]original_glrlm_RunPercentage
[71]original_glrlm_LowGrayLevelRunEmphasis
[72]original_glrlm_LongRunHighGrayLevelEmphasis
[73]original_glrlm_RunEntropy
[74]original_glrlm_LongRunEmphasis
[75]original_glrlm_RunLengthNonUniformityNormalized
[76]original_gldm_SmallDependenceEmphasis
[77]original_gldm_SmallDependenceHighGrayLevelEmphasis
[78]original_gldm_LargeDependenceHighGrayLevelEmphasis
[79]original_gldm_GrayLevelVariance
[80]original_gldm_SmallDependenceLowGrayLevelEmphasis
[81]original_gldm_LargeDependenceLowGrayLevelEmphasis
[82]original_gldm_GrayLevelNonUniformity
[83]original_gldm_LowGrayLevelEmphasis
[84]original_gldm_DependenceEntropy
[85]original_gldm_DependenceNonUniformity
[86]original_gldm_HighGrayLevelEmphasis
[87]original_gldm_LargeDependenceEmphasis
[88]original_gldm_DependenceNonUniformityNormalized
[89]original_gldm_DependenceVariance
[90]original_firstorder_InterquartileRange
[91]original_firstorder_10Percentile
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[92]original_firstorder_RootMeanSquared
[93]Original_firstorder_MeanAbsoluteDeviation
[94]original_firstorder_TotalEnergy
[95]original_firstorder_Range
[96]original_firstorder_Entropy
[97]original_firstorder_Variance
[98]original_firstorder_Minimum
[99]original_firstorder_Skewness
[100]original_firstorder_Energy
[101]original_firstorder_RobustMeanAbsoluteDeviation
[102]original_firstorder_Median
[103]original_firstorder_Maximum
[104]original_firstorder_Kurtosis
[105]original_firstorder_Uniformity
[106]original_firstorder_Mean
[107]original_firstorder_90Percentile

(II) 84 CoLIAGe (Co-occurrence of Local Anisotropic Gradient Orientations) features 
The detailed descriptions of the 84 GoLIAGe features are in the paper “Co-occurrence of Local Anisotropic Gradient 

Orientations (CoLlAGe): A new radiomics descriptor” (17). First of all, gradient orientations for every voxel in X, Y, 
Z dimensions are computed. Then, the 2-Dimension local dominant orientations (theta) and the 3-Dimension local 
dominant orientations (fai) for every voxel within a 3*3*3 neighborhood using singular value decomposition (SVD) are 
calculated. Then based on the “thetas” and “fais”, with the help of Pyradiomics toolbox 3.0 which follows the Image 
Biomarker Standardisaion Initiative (IBSI) guidelines, 84 radiomics features are extracted. The name list is as follows.
[1]theta_SumSquares
[2]theta_DifferenceAverage
[3]theta_DifferenceEntropy
[4]theta_MCC
[5]theta_ClusterTendency
[6]theta_ClusterProminence
[7]theta_Idmn
[8]theta_Imc1
[9]theta_Autocorrelation
[10]theta_Correlation
[11]theta_Idn
[12]theta_JointEntropy
[13]theta_ClusterShade
[14]theta_Contrast
[15]theta_MaximumProbability
[16]theta_Id
[17]theta_SumAverage
[18]theta_Imc2
[19]theta_InverseVariance
[20]theta_JointAverage
[21]theta_JointEnergy
[22]theta_Idm
[23]theta_DifferenceVariance
[24]theta_SumEntropy
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[25]fai_SumSquares
[26]fai_DifferenceAverage
[27]fai_DifferenceEntropy
[28]fai_MCC
[29]fai_ClusterTendency
[30]fai_ClusterProminence
[31]fai_Idmn
[32]fai_Imc1
[33]fai_Autocorrelation
[34]fai_Correlation
[35]fai_Idn
[36]fai_JointEntropy
[37]fai_ClusterShade
[38]fai_Contrast
[39]fai_MaximumProbability
[40]fai_Id
[41]fai_SumAverage
[42]fai_Imc2
[43]fai_InverseVariance
[44]fai_JointAverage
[45]fai_JointEnergy
[46]fai_Idm
[47]fai_DifferenceVariance
[48]fai_SumEntropy
[49]theta_first_Maximum
[50]theta_first_Entropy
[51]theta_first_RootMeanSquared
[52]theta_first_Median
[53]theta_first_Minimum
[54]theta_first_MeanAbsoluteDeviation
[55]theta_first_Energy
[56]theta_first_90Percentile
[57]theta_first_RobustMeanAbsoluteDeviation
[58]theta_first_InterquartileRange
[59]theta_first_Variance
[60]theta_first_TotalEnergy
[61]theta_first_Range
[62]theta_first_Skewness
[63]theta_first_10Percentile
[64]theta_first_Kurtosis
[65]theta_first_Uniformity
[66]theta_first_Mean
[67]fai_first_Maximum
[68]fai_first_Entropy
[69]fai_first_RootMeanSquared
[70]fai_first_Median
[71]fai_first_Minimum
[72]fai_first_MeanAbsoluteDeviation
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[73]fai_first_Energy
[74]fai_first_90Percentile
[75]fai_first_RobustMeanAbsoluteDeviation
[76]fai_first_InterquartileRange
[77]fai_first_Variance
[78]fai_first_TotalEnergy
[79]fai_first_Range
[80]fai_first_Skewness
[81]fai_first_10Percentile
[82]fai_first_Kurtosis
[83]fai_first_Uniformity
[84]fai_first_Mean 

(III) 3 SUV features
a) SUV peak: the maximum uptake in 1 cm3 area.
b) SUV mean: the mean uptake in the VOI.
c) SUV max: the max uptake in the VOI.

Table S1 Hyperparameters-tuning range of classifiers

Classifiers hyperparameters-tuning range

SVM-RBF ‘C’ : [0.001, 0.01, 0.1, 1, 2, 3, 4, 5, 10, 50, 60, 70, 80, 90, 100, 200, 300, 400, 500, 1000, 2000, 2500, 3000, 3500, 
4000, 5000, 10000]

‘gamma’ : [‘scale’, 0.0001, 0.001, 0.004, 0.005, 0.01, 0.05 , 0.04, 0.03, 0.02, 0.08, 0.1, 0.15, 0.2, 0.25, 0.5, 1]

SVM linear ‘C’ : [0.001, 0.01, 0.1, 1, 2, 3, 4, 5, 10, 50, 60, 70, 80, 90, 100, 200, 300, 400, 500, 1000, 2000, 2500, 3000, 3500, 
4000, 5000, 10000]

‘gamma’ : [‘scale’, 0.001, 0.004, 0.005, 0.01, 0.05 , 0.04, 0.03, 0.02, 0.08, 0.1, 0.15, 0.2, 0.25, 0.5, 1]

Random forest ‘n_estimators’ : [5, 50],

‘max_depth’ : np.arange (1, 3), 

‘min_samples_split’: np.arange (2,3), 

‘min_samples_leaf’: np.arange (1,3), 

‘max_features’ : [‘auto’]

Logistic regression ‘penalty’: [‘l1’, ‘none’],

‘C’:[0.1, 0.5, 1, 5, 10]

Gaussian process ‘max_iter_predict’: [100,150,200]

Linear discriminant ‘solver’: [‘svd’, ‘lsqr’, ‘eigen’]

Adaboost ‘n_estimators’: [2, 5, 10]

SVM, support vector machine; RBF, radial basis function kernel; Adaboost, adaptive boosting; l1, lasso or L1 regression; svd, singular  
value decomposition; lsqr, least square QR dissolution; QR, orthogonal matrix; eigen, eigenvalue decomposition. 
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Table S2 The corresponding hyperparameters of SVM-RBF 

Folds 3D subregion-based 4D subregion-based 5D subregion-based Conventional

1 C=10, gamma=scale C=0.1, gamma=0.25 C=100, gamma=0.01 C=5000, gamma=0.03

2 C=70, gamma=0.004 C=1, gamma=1 C=60, gamma=0.004 C=3000, gamma=0.5

3 C=1, gamma=scale C=3, gamma=scale C=60, gamma=0.001 C=10, gamma=0.5

4 C=50, gamma=0.005 C=60, gamma=0.004 C=5, gamma=0.004 C=60, gamma=0.01

5 C=2, gamma = 0.08 C=10000, gamma=0.004 C=2500, gamma=0.02 C=100, gamma=0.5

SVM, support vector machine; RBF, radial basis function kernel; D, dimension.
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