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Background: To assist doctors to diagnose mild cognitive impairment (MCI) and Alzheimer’s disease (AD) 
early and accurately, convolutional neural networks based on structural magnetic resonance imaging (sMRI) 
images have been developed and shown excellent performance. However, they are still limited in their 
capacity in extracting discriminative features because of large sMRI image volumes yet small lesion regions 
and the small number of sMRI images.
Methods: We proposed a task-driven hierarchical attention network (THAN) taking advantage of the 
merits of patch-based and attention-based convolutional neural networks for MCI and AD diagnosis. THAN 
consists of an information sub-network and a hierarchical attention sub-network. In the information sub-
network, an information map extractor, a patch-assistant module, and a mutual-boosting loss function are 
designed to generate a task-driven information map, which automatically highlights disease-related regions 
and their importance for final classification. In the hierarchical attention sub-network, a visual attention 
module and a semantic attention module are devised based on the information map to extract discriminative 
features for disease diagnosis.
Results: Extensive experiments were conducted for four classification tasks: MCI versus (vs.) normal 
controls (NC), AD vs. NC, AD vs. MCI, and AD vs. MCI vs. NC. Results demonstrated that THAN attained 
the accuracy of 81.6% for MCI vs. NC, 93.5% for AD vs. NC, 80.8% for AD vs. MCI, and 62.9% for AD vs. 
MCI vs. NC. It outperformed advanced attention-based and patch-based methods. Moreover, information 
maps generated by the information sub-network could highlight the potential biomarkers of MCI and AD, 
such as the hippocampus and ventricles. Furthermore, when the visual and semantic attention modules were 
combined, the performance of the four tasks was highly improved.  
Conclusions: The information sub-network can automatically highlight the disease-related regions. 
The hierarchical attention sub-network can extract discriminative visual and semantic features. Through 
the two sub-networks, THAN fully exploits the visual and semantic features of disease-related regions and 
meanwhile considers global features of sMRI images, which finally facilitate the diagnosis of MCI and AD. 
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Introduction

Alzheimer’s disease (AD) is an irreversible and chronic 
neurodegenerative disease. It has been a leading cause of 
disability for the elderly over 65 years old (1). It has been 
reported that more than 33 million people worldwide were 
suffering from AD in 2018. The number is predicted to 
increase to 100 million by 2050. The cost of the disease was 
about 666 billion US dollars in 2018 and it is forecasted 
to double by 2030 (2). Mild cognitive impairment (MCI) 
is a prodromal stage of AD. Studies have shown that 20% 
of patients with MCI could deteriorate into AD within  
4 years (3). Although there is no effective way to block the 
progression of MCI and AD (denoted as MCI/AD), some 
treatments have been developed to delay their progression. 
Therefore, it is becoming increasingly essential for the 
scientific community to develop effective methods to 
diagnose MCI/AD as early and accurately as possible.

Structural  magnetic resonance imaging (sMRI) 
images are more useful for the early diagnosis of MCI/
AD compared with the clinical assessment of cognitive 
impairment. This is because brain changes induced 
by AD have been proven to occur 10–15 years before 
symptom onset (4), and these brain changes can be non-
invasively captured by sMRI images (5). Currently, sMRI 
images are extensively employed for computer-aided 
MCI/AD diagnosis based on machine learning methods  
(6-23). Among these methods, the convolutional neural 
network (CNN)-based methods (9-23) have demonstrated 
outstanding performance due to their excellent ability to 
extract task-driven features.

Existing CNN-based MCI/AD classification methods 
can be divided into four categories. They are regions-of-
interest (ROI)-based methods, whole image-based methods, 
patch-based methods, and attention-based methods. The 
ROI-based methods first pre-segment disease-related 
regions according to the domain knowledge of AD experts. 
After that, different CNNs are designed to extract features 
from these regions and make final classification (9-11). 
However, the pre-segmented disease-related regions vary 
based on different experts and generally cannot cover all the 
lesion regions. Moreover, these methods require complex 
pre-processing steps. The whole image-based methods 
extract features from entire sMRI images directly (12). 
They require no expert knowledge and fully exploit the 
global features of an image. However, this type of method 
cannot accurately extract disease-related features, because 
the volume of each sMRI image is large while the lesion 

regions are small, leading to inaccurate classification. 
Overall, the ROI-based and whole image-based methods 
cannot automatically extract features from disease-related 
regions. The patch-based and attention-based methods 
relieve such a limitation to some extent. 

The patch-based methods automatically select disease-
related image patches first. After that, they extract features 
from these image patches and fuse these features to classify 
patients from normal controls (NCs). For example, image 
patches were first selected based on distinct anatomical 
landmarks in a data-driven manner (13-17). After that, 
the labels of image patches were assigned to the labels of 
their corresponding sMRI images. Further, in (13), multi-
CNNs were trained for feature extraction and classification 
of these patches, and the majority voting strategy was used 
for whole image classification. In (14), an improved deep 
multi-instance learning network was designed to integrate 
patch-level features for final sMRI image classification. 
This network avoids the usage of patch-level labels. In 
(15,16), Liu et al. extended the deep multi-instance learning 
network on multi-modality data to improve the diagnosis of 
AD/MCI. Additionally, Lian et al. (17) further strengthened 
the correlation information of image patches by designing 
a hierarchical fully convolutional network (FCN) for MCI/
AD diagnosis. Moreover, Qiu et al. (18) trained an FCN 
model to generate a participant-specific disease probability 
map based on randomly selected 3,000 image patches. They 
then selected high-risk voxels from the disease probability 
map, an implicit patch-selection strategy. Further, they 
trained a multilayer perceptron for AD diagnosis. These 
patch-based methods do not require expert knowledge. 
Moreover, they can better extract the visual features [i.e., 
low-level features such as luminance and edge (19), which 
are extracted from the shallow layers of CNNs] and 
semantic features [i.e., high-level features like objects (19), 
which are extracted from the deep layers of CNNs] of the 
disease-related image patches for classification. However, 
most of the methods completely neglect the remaining 
image patches, leading to dismissing of the global features 
of sMRI images. 

The attention-based methods generate attention maps 
with different weights. By combining an attention map 
with the feature map from a certain layer, some features 
can be emphasized and meanwhile the other features are 
not neglected, either. Jin et al. (20) designed a weighted 
attention block inserted in 3D ResNet (24) to improve 
the ability in extracting features of disease-related regions. 
The weighted attention block was employed on a middle 
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Figure 1 Structure of the task-driven hierarchical attention network (THAN). sMRI, structural magnetic resonance imaging; IS, 
information sub-network; HAS, hierarchical attention sub-network.

layer of 3D ResNet and the generation of the attention 
map has no direct constraint. Li et al. (21) proposed an 
iterative attention focusing strategy for the localization 
of pathological regions and for the classification between 
progressive and stable MCI. The iterative attention focusing 
strategy was utilized on a deep layer of each iterative sub-
network. In addition, Lian et al. (22) constructed a dementia 
attention block to automatically identify subject-specific 
discriminative locations from whole sMRI images. This 
attention block was used on a deep layer of the network. 
Furthermore, Zhang et al. (23) developed a deep cross-
modal attention network, which focused on learning 
the “deep relations” among different brain regions from 
diffusion tensor imaging and resting-state functional MRI. 
Overall, the attention-based methods require no expert 
knowledge, either. However, most attention maps are solely 
employed on the deep layers of networks for semantic 
feature extraction. This results in the visual features of 
disease-related regions not being well extracted and further 
affects the semantic feature extraction and final disease 
diagnosis. Even though a few attention-based methods 
utilize attention maps for visual feature extraction, these 
attention maps are generated without direct constraints. 
Thereby, they may be not closely related to disease regions. 

To better extract features of disease-related regions and 
global features, we developed a task-driven hierarchical 
attention network (THAN) for MCI/AD diagnosis. 
THAN consists of an information sub-network (IS) and 
a hierarchical attention sub-network (HAS), as shown in 
Figure 1. IS can generate a task-driven information map 
that automatically highlights disease-related regions and 
their importance for final classification. It contains an 
information map extractor, a patch classifier, and a mutual-
boosting loss function. The information extractor is assisted 
by the patch classifier to generate an effective information 
map. The mutual-boosting loss function aims to promote 

the performance of the information map extractor and 
the patch classifier. In HAS, a visual attention module and 
a semantic attention module are devised to successively 
enhance the extraction of discriminative features.

Methods

The proposed THAN consists of IS and HAS. IS aims to 
generate an effective information map. HAS makes use of 
the information map to produce hierarchical attention maps 
that guide the sub-network to extract discriminative visual 
and semantic features for final image classification. In this 
section, we first present IS and then discuss HAS. After 
that, the dataset and preprocessing steps are introduced. 
Moreover, evaluation metrics and implementation details 
are listed. 

Information sub-network

IS, inspired by NTS-Net (25), is a mutual-boosting 
network, as shown in Figure 2. It is composed of two 
modules and a loss function. One module is an information 
map extractor and the other is a patch classifier. The 
goal of the information map extractor is to generate an 
effective information map with the assistance of the patch 
classifier. To be specific, the patch classifier first produces 
informative image patches based on the information map. 
It then tries to better classify these image patches and to 
assist the information map extractor to generate an effective 
information map. Moreover, the effective information 
map in turn improves the generation of informative image 
patches and the profound classification of these patches. 
The two modules boost each other in the above manner. 
Further, a mutual-boosting loss function is designed to 
combine the two modules and to promote IS to generate 
the final effective information map. The details of the 
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two modules and the mutual-boosting loss function are 
discussed below.

Information map extractor
Given an sMRI image I, an information map M is generated 

according to the information map extractor F, denoted as 

( )=M F I  [1]

where M∈RL*W*H, L, W, and H represent the length, 
width, and height of M, respectively.

The structure of F is shown in Figure 2. It is stacked 
by Conv1, Maxpool, Block1, Block2, Block3, Block4, and 
Block5. The layers from Conv1 to Block4 aim to extract 
discriminative features from I. They have the same structure 
as 3D ResNet18. Block5 is developed to gradually map the 
feature map with N channels to the information map M 
with only one channel. It is made up of multiple transition 
layers. The specific structure of F is displayed in the middle 
column of Table 1.

Patch classifier
An image patch in an original image can be downsampled 
to a value in a feature map through several layers and with 
certain scales. Conversely, each value in a feature map can be 
mapped to an image patch in the original image through the 
same layers yet with reversed scales. The mapping relations 
are shown in Figure 3. Since M is obtained by applying 
32:1 spatial downsampling to I through F, each value sk∈M 
(k∈{1, 2, ..., L×W×H}) corresponds to an image patch pk in I, 
where pk is with the size of 32*32*32. We describe sk as the 
importance value of pk for final classification because of the 
semantic character of M. 

Given a feature map with two channels, it becomes a 
2D vector through the global average pooling (GAP) layer. 

Figure 2 Framework of the information sub-network (IS). Ground truth (GT) is denoted in the one-hot format. sMRI, structural magnetic 
resonance imaging.

Table 1 Structures of networks. Global average pooling (GAP) is 
short for the global average pooling layer

Block names Information map 
extractor F

3D ResNet10 (or 34)

Conv1 kernel size =7*7*7, channel =64,  
stride = (2, 2, 2)

Max pooling kernel size =3*3*3, stride = (2, 2, 2)

Block1 (residual 
structure)

3*3*3, 64
2

3*3*3, 64
 

× 
 

( )
3*3*3, 64

1 3
3*3*3, 64
 

× 
 

Block2 (residual 
structure)

3*3*3,128
2

3*3*3,128
 

× 
 

( )
3*3*3,128

1 4
3*3*3,128
 

× 
 

Block3 (residual 
structure)

3*3*3, 256
2

3*3*3, 256
 

× 
 

( )
3*3*3, 256

1 6
3*3*3, 256
 

× 
 

Block4 (residual 
structure)

3*3*3, 512
2

3*3*3, 512
 

× 
 

( )
3*3*3, 512

1 3
3*3*3, 512
 

× 
 

Block5 1*1*1, 256
11*1*1,128

1*1*1,1

 
 × 
  

–

– GAP and FC

FC, fully connected layer.
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The 2D vector then produces a binary classification result 
after passed the Softmax layer. In this process, the highest 
value in the 2D vector determines the classification result. 
That is, the highest average value of the two channels in 
the feature map determines the classification result. This 
implies that the points with higher values in a feature map 
make more positive contributions to final classification. 
Based on this theory of deep convolutional neural networks 
(DCNNs), the points with higher values in a feature map 
are selected and highlighted for better classification. For M, 
the points with higher sk make more contributions to final 
classification. That means that the higher sk is, the more 
important pk is.

K largest importance values are selected from M, denoted 
as {s1, ..., sk, ..., sK}. Then the corresponding K image patches 
are obtained from I, denoted as {p1, ..., pk, ..., pK}. Therefore, 
they are the K most informative patches in I and are most 
likely related to the category of I. Their labels are hence 
assigned to the label of I. We utilize one 3D ResNet10 to 
classify these K patches. The structure of 3D ResNet10 is 
shown in the last column of Table 1. 

Mutual-boosting loss function
The mutual-boosting loss function consists of a patch-level 
classification loss function and a calibrating loss function.

The patch-level classification loss function is used to 
improve the classification performance of the K informative 
patches. It is realized by the widely used classification loss 
function, i.e., cross-entropy loss,

( ), ,
1 log− = == − ∑ ∑K N

p cls k 1 n 1 k n k n ky c p
K

L [2]

where yk,n is the one-hot format of the ground truth of 
the patch pk; ck,n represents the probability that pk belongs to 
the nth category (n∈{1, 2, …, N}). 

In the output of pk, each element (i.e., ck,n) indicates the 
probability that pk belongs to the corresponding category. 
Specifically, ck,n is the probability that pk belongs to the nth 
category. The category that has the highest probability is 
the true category of pk. Therefore, we define the highest 
probability as the confidence score of pk being truly 
classified, which is denoted as ck,

,{ }=k k nc Max c  [3]

The calibrating loss function is used to keep the 
consistency between the importance values of informative 
patches and their confidence scores. It is formalized as 
follows,

2
1

1 log( )N
cal k k ks c

K == − −∑L  [4]

where sk∈M represents the importance value of pk and 
ck denotes the confidence score of pk. The loss function 
is the sum of the distances between each pair of sk and 
ck. It encourages the short distance between sk and ck and 
penalizes the long distance between them.

The mutual-boosting loss function is the joint of the 
above two loss functions, that is,

−= +infor p cls calL L L  [5]

It encourages the better classification of informative 
patches and the consistency between the importance values 
and the confidence scores of the informative patches. 
That means that the patch classifier better classifies the 
informative patches, which are extracted based on the 
information map. It meanwhile assists in improving the 
performance of the information map extractor to produce 
a more effective information map. The information map in 
turn boosts the generation of informative patches and the 
performance of the patch classifier. Therefore, the proposed 
IS is a mutual-boosting network.

Hierarchical attention sub-network

The task-driven information map M has the semantic 
information for MCI/AD diagnosis. It implies not only 
disease-related regions but also their importance for 
image classification. Therefore, we employ M to generate 
hierarchical attention maps to construct HAS. HAS is 
thereby guided to pay more attention to the visual and 
semantic features of disease-related regions, and also to 

Original image

Feature map output

Mapping
Inverse mapping

Figure 3 Mapping relations.
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consider the features of the other regions. Therefore, HAS 
can well exploit the discriminative features of sMRI images 
for disease diagnosis. 

The framework of HAS is depicted in Figure 4. Two 
attention modules are devised to focus on the discriminative 
feature extraction. They are the visual attention module 
and the semantic attention module. The visual attention 
module aims to extract discriminative low-level features, 
i.e., features from the shallow layers of HAS. It is comprised 
of two attention blocks, i.e., Attention1 and Attention2 in 
Figure 4. The semantic attention module is used to extract 
discriminative high-level features, i.e., features from the 
deep layers of HAS. It consists of another two attention 
blocks, i.e., Attention3 and Attention4 in Figure 4. Since the 
size of M is different from that of the feature maps in HAS, 
M cannot be directly used as an attention map. To solve this, 
each attention block produces an attention map Mi' based 
on M and a feature map Fi first. Then Mi' is combined with 
Fi to enhance the features of the disease-related regions in 
Fi. Each attention block can be formalized as

( )='
i iM TI M,F  [6]

' '
i i iF M F=   [7]

where M and Fi are the input of each attention block; 
Fi' is the output; TI is the trilinear interpolation function, 
making Mi' the same size as Fi;  is the element-wise 
multiplication to highlight important features in Fi. The 
backbone of HAS is 3D ResNet34. Its structure is shown in 
the last column in Table 1.

It is worth noting that the proposed HAS is superior 

to the general spatial attention network. This is because 
all the attention maps in HAS are generated based on the 
effective information map and they can correctly highlight 
the features of disease-related regions, no matter the visual 
features from the shallow layers or the semantic features 
from the deep layers. However, the general spatial attention 
network usually generates attention maps from the network 
itself. This causes the attention maps generated at shallow 
layers not closely coinciding with disease-related regions 
due to gradient vanishing. This further leads to the visual 
features not being well extracted. The non-discriminative 
visual features impact the extraction of semantic features, 
which blocks the good performance of the general spatial 
attention network.

The cross-entropy loss function is employed in HAS for 
the final classification of I,

( )1 log ,− == ∑ N
a cls n n ny c I ML  [8]

 
where yn is the one-hot format of the true label of I and 

cn represents the probability that I, together with M, belongs 
to the nth category.

It is noted that since the generation of hierarchical 
attention maps is directly dependent on M and M is a 
task-driven information map, we regard the generation 
of hierarchical attention maps as a task-driven operation. 
Therefore, we name the proposed network as a THAN. 
Moreover, even though there are studies about hierarchical 
attention networks, the specific frameworks of these 
hierarchical attention networks are different and they are 
designed based on their own tasks, which are not efficient 
for other tasks.

Figure 4 Framework of the hierarchical attention sub-network (HAS). sMRI, structural magnetic resonance imaging; GAP, global average 
pooling; FC, fully connected layer. 
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Dataset and preprocessing

We utilized the public dataset of Alzheimer’s Disease 
Neuroimaging Initiative (ADNI, http://adni.loni.usc.
edu/) as our experimental data. ADNI was launched in 
2003 as a public-private partnership. Its primary goal is to 
test whether serial magnetic resonance imaging, positron 
emission tomography (PET), other biological markers, and 
clinical and neuropsychological assessment can be combined 
to measure the progression of MCI and early AD. In this 
work, we downloaded the 1.5T T1-weighted sMRI images 
of 1,139 subjects at the baseline time point from ADNI, 
including 396 MCI, 327 AD, and 416 NC. Table 2 shows the 
demographic and clinical information of the 1,139 subjects, 
where MMSE represents mini-mental state examination 
and std represents standard deviation. 

All the sMRI images were pre-processed with a 
“Minimal” pipeline (26), i.e., skull stripping and affine 
registration (the other is an “Extensive” pipeline, including 
skull stripping and non-linear registration). The two pre-
processing steps were realized with the tool of FMRIB 
Software Library 5.0 (https://fsl.fmrib.ox.ac.uk/). Affine 
registration was used to linearly align the sMRI images 
with the template of MNI152 (27,28) to remove global 
linear differences and also to resample the sMRI images 
into the spatial resolution of 1×1×1 mm3. After this, each 
sMRI image contains the unnecessary background portion, 
which has no impact on image classification but increases 
computation time. Therefore, we removed the background 
portion of each sMRI image along the minimum vertical 
external matrix of the brain portion. After this operation, 
image sizes become different. They are 148±2, 182±2, and 
153±3 (in the format of mean ± standard deviation). To 

keep the same size of these sMRI images, we scaled each 
sMRI image until the maximum side of each sMRI image is 
up to 128 by utilizing trilinear interpolation. Additionally, 
we padded the other two sides of each sMRI image to 128. 
Thereby, all the sMRI images have the size of 128*128*128. 
It is noted that we scale images into the size of 128*128*128 
because 128 is the multiple of 32 (the size of image patches). 
Two hundred and fifty-six is not used because images 
with the size of 256*256*256 are far bigger than that of 
128*128*128 and they require more graphics processing 
unit (GPU) memory and time to train and validate.

Evaluation metrics and implementation details

The proposed THAN is evaluated on four classification 
tasks: MCI against (vs.) NC, AD vs. NC, AD vs. MCI, and 
AD vs. MCI vs. NC. In the first two tasks, NC subjects are 
regarded as negative cases and AD or MCI subjects are 
regarded as positive ones. For AD vs. MCI, AD subjects are 
denoted as the positive cases and MCI subjects represent 
the negative ones. For AD vs. MCI vs. NC, one type of 
subject is regarded as positive cases and the remaining 
two types are as negative cases, which is referred to (29). 
According to (30), this task was conducted three times and 
the positive cases varied each time. The average of the three 
times was computed as the final performance of AD vs. MCI 
vs. NC. Six metrics are assessed. They are accuracy (ACC), 
specificity (SPE), sensitivity (SEN, also called Recall), 
precision (PRE), F1-score (F1), and area under the curve 
(AUC) of receiver operating characteristic.

For every task, we divide all the corresponding sMRI 
images into the training, validation, and test sets with the 
ratio of 7:2:1. It is noted that each type of sMRI image in 
every task also has the same ratio (i.e., 7:2:1) among the 
training, validation, and test sets, which can avoid data 
imbalance to some extent. For instance, for the task of MCI 
vs. NC, the number of sMRI images of MCI subjects and 
that of NC subjects have the ratio of 7:2:1 in the training, 
validation and test sets. The training and validation sets 
are used to train THAN. Specifically, for every task, we 
first trained IS with 80 epochs. The best trained IS were 
preserved when the training loss converged to 0 and the 
validation loss converged to less than 1. After that, an 
information map was generated for every sMRI image in 
the training and validation sets using the preserved best-
trained IS. Every sMRI image and its information map 
formed a pair. Furthermore, pairs of sMRI images and 
information maps were used to train HAS with 80 epochs. 

Table 2 Demographic and clinic information of the subjects from 
ADNI 

Variable MCI AD NC

Number 396 327 416

Sex (F/M) 144/252 156/171 213/203

Age 74.7±7.5 75.0±7.9 74.6±5.8

Education 15.7±3.0 15.1±3.0 16.3±2.7

MMSE 27.0±1.8 23.2±2.1 29.1±1.1

Age, education and MMSE are defined as mean ± standard 
deviation. MMSE, mini-mental state examination; ADNI, 
Alzheimer’s Disease Neuroimaging Initiative; MCI, mild cognitive 
impairment; NC, normal control; AD, Alzheimer’s disease.
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The best trained HAS was saved when the ACC of the 
validation set reached the largest value. The independent 
test set aims to evaluate the trained THAN, i.e., the saved 
best-trained IS and HAS. To demonstrate the robustness 
of THAN, we utilized 3-fold cross-validation for all the 
table-related experiments. Results are the mean of the 3 
experiments. For figure-related experiments, we display the 
results of the certain one among the 3 times, since we do 
not find a proper way to fuse the experimental results of the 
3 times. Moreover, all the methods, including THAN and 
the comparison methods, were implemented on PyTorch 
and they were trained and evaluated on an NVIDIA RTX 
2080Ti GPU. During the training process, these methods 
utilized the optimizer of stochastic gradient descent with the 
momentum (31) of 0.9 and with the weight decay of 0.0001. 
The learning rates of these methods were increased to 0.001 
using the warmup strategy (32) and then were lowered by 
a tenth every 30 epochs. Further, the batch sizes of these 
methods were set to 4. In addition, no data augmentation 
was used in these methods.

Results

Comparison results with two advanced attention modules

The proposed THAN was compared with two advanced 
attention modules. One is the squeeze-and-excitation (SE) 
module (33). It aims to pay attention to the relationships 
among channels of a feature map. The other is the 
convolutional block attention module (CBAM) (34). It is an 
extension of SE and utilizes both channel-wise and spatial-
wise attention on a feature map. We kept the backbone of 
HAS unchanged and rewrote the SE and CBAM modules 
from 2D to 3D, respectively. We then replaced the visual 
and semantic attention modules (four attention blocks 
totally) in HAS with four 3D SE and CBAM modules, 
respectively. The two new networks are denoted as ResNet 
+ SE and ResNet + CBAM. The comparison results of 
ResNet, ResNet + SE, ResNet + CBAM, and THAN are 
summarized in Table 3.

We can observe that (I) for MCI vs. NC, THAN gains 
the best values in terms of the five metrics among the four 
networks, and its SEN is just 0.7% lower than the SEN of 
ResNet + CBAM. Further, compared with ResNet (i.e., the 
baseline network), THAN and ResNet + CBAM achieve 
better values on the six metrics, and ResNet + SE obtains 
larger values on five metrics except the SEN value, which is 
the same with ResNet’s SEN. (II) For AD vs. NC, THAN 

achieves the best values among the four networks in terms 
of the six metrics. However, both ResNet + SE and ResNet 
+ CBAM are all behind ResNet for the six metrics. (III) For 
AD vs. MCI, THAN achieves the best performance for the 
five metrics except SEN among the four networks, with 
SEN being 0.1% behind ResNet + SE’s. ResNet + CBAM 
is superior to ResNet except SPE and PRE, yet ResNet + 
SE does not have obvious advantages than ResNet. (IV) For 
AD vs. MCI vs. NC, THAN attains the best performance 
among the four networks in terms of the six metrics. The 
performance of ResNet + SE and ResNet + CBAM is 
similar and is better than that of ResNet. These results 
indicate that, overall, THAN is better than the two state-of-
the-art attention modules and the baseline network for the 
four tasks; However, SE and CBAM cannot always promote 
the performance of the four tasks. This can be explained 
by the following reasons: since the SE and CBAM modules 
used in shallow layers do not have direct constraints, they 
are not well trained due to gradient vanishing. This causes 
the result that the visual features extracted using the SE 
and CBAM modules are not well extracted, which further 
degrades the extraction of semantic features and the 
performance of image classification. However, for THAN, 
the visual and semantic attention modules generate attention 
maps based on an effective information map, highlighting 
disease-related regions. Therefore, the attention maps in 
both shallow and deep layers can emphasize disease-related 
features. This benefits discriminative visual and semantic 
feature extraction and further facilitates image classification. 

Comparison results with state-of-the-art methods

Regarding the four kinds of methods mentioned in 
Introduction, since their codes are not public, we realized 
one method in each kind and compared them with THAN. 
Specifically, for the attention-based methods, the approach 
in (20) was realized because the other attention-based 
methods are for different tasks (21,22) or use multi-modality 
data (23). The only whole image-based method (12) was 
realized and compared. For the patch-based methods, 
since the approach in (18) is the most recent study, it was 
compared. For the ROI-based method, we just realized 
the method in (9). The four comparison methods were 
conducted on our dataset and using the same 3-fold cross-
validation. Their mean comparison results are summarized 
in Table 4.  

It can be seen that (I) for MCI vs.  NC, THAN 
outperforms these comparison methods in terms of ACC, 



3346 Zhang et al. THAN for MCI and AD diagnosis

© Quantitative Imaging in Medicine and Surgery. All rights reserved.   Quant Imaging Med Surg 2021;11(7):3338-3354 | http://dx.doi.org/10.21037/qims-21-91

T
ab

le
 3

 C
om

pa
ri

so
n 

re
su

lts
 w

ith
 tw

o 
ad

va
nc

ed
 a

tt
en

tio
n-

ba
se

d 
m

od
ul

es
 (%

)

M
et

ho
ds

M
C

I v
s.

 N
C

A
D

 v
s.

 N
C

A
D

 v
s.

 M
C

I
A

D
 v
s.

 M
C

I v
s.

 N
C

A
C

C
S

P
E

S
E

N
P

R
E

F1
A

U
C

A
C

C
S

P
E

S
E

N
P

R
E

F1
A

U
C

A
C

C
S

P
E

S
E

N
P

R
E

F1
A

U
C

A
C

C
S

P
E

S
E

N
P

R
E

F1
A

U
C

R
es

N
et

78
.0

80
.2

75
.4

76
.7

76
.1

84
.3

90
.5

90
.9

89
.9

88
.7

89
.3

95
.8

78
.6

80
.4

76
.3

76
.2

76
.2

85
.1

58
.5

79
.6

59
.6

58
.4

58
.5

64
.0

R
es

N
et

 +
 

S
E

79
.0

80
.2

77
.3

77
.3

77
.3

84
.9

89
.2

90
.1

87
.7

87
.7

87
.7

95
.1

78
.6

78
.0

80
.0

75
.2

77
.4

84
.9

61
.2

80
.6

61
.0

60
.8

60
.9

64
.3

R
es

N
et

 +
 

C
B

A
M

79
.3

81
.0

77
.1

78
.0

77
.6

84
.7

89
.1

89
.7

88
.2

87
.3

87
.6

95
.0

79
.0

79
.7

78
.0

76
.1

77
.0

85
.2

61
.3

80
.7

61
.0

60
.8

60
.9

64
.1

TH
A

N
80

.1
80

.3
78

.2
79

.2
78

.6
85

.0
92

.0
93

.1
90

.3
91

.6
90

.9
96

.2
80

.7
81

.0
79

.9
77

.6
78

.7
86

.2
62

.9
81

.8
64

.5
61

.6
62

.9
64

.9

M
C

I, 
m

ild
 c

og
ni

tiv
e 

im
p

ai
rm

en
t;

 N
C

, 
no

rm
al

 c
on

tr
ol

; 
A

D
, 

A
lz

he
im

er
’s

 d
is

ea
se

; 
TH

A
N

, 
ta

sk
-d

riv
en

 h
ie

ra
rc

hi
ca

l 
at

te
nt

io
n 

ne
tw

or
k;

 C
B

A
M

, 
co

nv
ol

ut
io

na
l 

b
lo

ck
 a

tt
en

tio
n 

m
od

ul
e.

T
ab

le
 4

 C
om

pa
ri

so
n 

re
su

lts
 w

ith
 s

ta
te

-o
f-

th
e-

ar
t m

et
ho

ds
 (%

)

M
et

ho
ds

M
C

I v
s.

 N
C

A
D

 v
s.

 N
C

A
D

 v
s.

 M
C

I
A

D
 v
s.

 M
C

I v
s.

 N
C

A
C

C
S

P
E

S
E

N
P

R
E

F1
A

U
C

A
C

C
S

P
E

S
E

N
P

R
E

F1
A

U
C

A
C

C
S

P
E

S
E

N
P

R
E

F1
A

U
C

A
C

C
S

P
E

S
E

N
P

R
E

F1
A

U
C

R
O

I
77

.1
79

.7
74

.5
76

.3
76

.0
81

.4
83

.1
85

.6
80

.1
81

.4
80

.7
87

.4
70

.0
73

.0
66

.5
67

.0
66

.8
73

.0
58

.0
78

.9
58

.4
57

.7
58

.0
63

.1

P
at

ch
73

.5
68

.6
78

.4
70

.6
74

.3
79

.7
82

.9
88

.6
75

.1
84

.6
79

.4
90

.7
69

.1
70

.3
67

.4
65

.4
66

.1
76

.8
60

.5
80

.2
60

.5
60

.0
60

.2
63

.8

W
I

77
.7

79
.5

75
.9

77
.5

76
.6

86
.3

88
.1

90
.2

85
.2

87
.6

86
.4

94
.3

72
.4

71
.4

73
.5

68
.1

70
.6

78
.6

60
.9

80
.2

63
.6

59
.8

61
.6

63
.9

A
tt

76
.0

77
.7

74
.2

76
.3

75
.1

82
.9

86
.1

89
.6

82
.6

86
.3

83
.9

93
.5

75
.5

77
.3

72
.6

73
.9

72
.8

81
.5

59
.8

79
.7

60
.9

60
.1

60
.5

64
.1

O
ur

80
.1

80
.3

78
.2

79
.2

78
.6

85
.0

92
.0

93
.1

90
.3

91
.6

90
.9

96
.2

80
.7

81
.0

79
.9

77
.6

78
.7

86
.2

62
.9

81
.8

64
.5

61
.6

62
.9

64
.9

M
C

I, 
m

ild
 c

og
ni

tiv
e 

im
pa

irm
en

t; 
N

C
, n

or
m

al
 c

on
tr

ol
; A

D
, A

lz
he

im
er

’s
 d

is
ea

se
; R

O
I, 

re
gi

on
 o

f i
nt

er
es

t; 
W

I, 
th

e 
w

ho
le

 im
ag

e-
ba

se
d 

m
et

ho
d;

 A
tt

, t
he

 a
tt

en
tio

n-
ba

se
d 

m
et

ho
d;

 
A

C
C

, a
cc

ur
ac

y;
 S

P
E

, s
pe

ci
fic

ity
; S

E
N

, s
en

si
tiv

ity
; P

R
E

, p
re

ci
si

on
; F

1,
 F

1-
sc

or
e;

 A
U

C
, a

re
a 

un
de

r 
th

e 
cu

rv
e.



3347Quantitative Imaging in Medicine and Surgery, Vol 11, No 7 July 2021

© Quantitative Imaging in Medicine and Surgery. All rights reserved.   Quant Imaging Med Surg 2021;11(7):3338-3354 | http://dx.doi.org/10.21037/qims-21-91

SPE, PRE, F1, and AUC, and it just 0.2% falls behind 
the patch-based method of (18) and achieves excellent 
performance compared with the ROI-based methods. (II) 
For AD vs. NC, AD vs. MCI, and AD vs. MCI vs. NC, 
THAN achieves the most excellent performance when 
compared with these comparison methods. These results 
imply that THAN improves the performance of MCI/AD 
diagnosis and achieve better results when compared with 
the above methods.

Evaluation of the IS

We first show the selection of the hyper-parameter K in IS. 
After that, we visualize the information map generated by 
IS to show its effectiveness in highlighting disease-related 
regions.

The only hyper-parameter K in IS (i.e., the number 
of informative patches) was investigated based on the 
classification performance of THAN. We first varied K 
from 3 to 10 for each task and kept the other settings 
unchanged. We found that the performance of the four 
tasks increases first and then degrades. With this trend, we 
then observed the results when K is 20 and 30, and found 
that the performance of the four tasks continues falling. 
The trend that the larger number of patches does not have 
better performance is due to the following reasons: the 
selected informative patches are highly related to disease 
lesions and their corresponding regions in original sMRI 
images are assigned higher weights for image classification. 
However, not all the image patches contain lesions. With 
the increase of K, some of the selected informative patches 
do not contain disease lesions while they are assigned 
higher weights for image classification. The incorrect 
weights on these incorrect informative patches lead to the 
falling of classification performance. Therefore, there is 
the trend that the larger number of patches does not have 
better performance. All the results are shown in Table 5. We 
can see that (I) for MCI vs. NC, the four metrics of ACC, 
SPE, PRE, and F1 are the best when K =6; SEN and AUC 
achieve the highest points when K is 20 and 7, respectively. 
According to the overall performance, we set K =6 for 
MCI vs. NC. (II) For AD vs. NC, ACC, SPE, PRE, and F1 
achieve the best points when K =4. The other two metrics 
are the highest when K =5. Therefore, we set K =4 for AD 
vs. NC. (III) For AD vs. MCI, ACC, SEN, and F1 obtain 
the largest values when K =6, SPE is the best when K =5, 
and PRE and AUC are the highest when K =8. Therefore, 
we set K =6 for this task. (IV) For AD vs. MCI vs. NC, the T
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Figure 5 Information map visualization of an MCI (mild cognitive impairment) subject in MCI vs. NC (normal control) and an AD 
(Alzheimer’s disease) subject in AD vs. NC.

values of ACC, SEN, and F1 are the largest when K =6, and 
SPE and AUC values are the best when K =5. According 
to the overall performance, we set K =6 for this task. 
Even though the optimal values of K for the four tasks are 
different, they are determined after the network of each task 
is well trained. That means we do not need to consider K in 
the test process.

To display the effectiveness of IS in localizing disease-
related regions, we visualized the generated information 
maps of an MCI subject in MCI vs. NC and an AD subject 
in AD vs. NC, respectively. Specifically, we first transformed 
the generated 3D information map of a subject into the 
same size as the input sMRI image using Eq. [6]. We then 
selected the 40th, 50th, 60th, and 70th 2D maps from the 
coronal, sagittal, and transverse views of the transformed 
3D information map, respectively. After that, we combined 
12 maps with the 2D slices from the input sMRI image 
to produce the visualized 2D information maps. The 
results are displayed in Figure 5. The color indicates the 
importance of regions for classification. The redder the 
color is, the more important the whole region is for AD 
or MCI diagnosis. It can be seen that (I) for both AD and 
MCI subjects, the redder regions contain hippocampi and 
ventricles. This indicates that hippocampus and ventricle 
play important role in image classification, which is in 
accordance with the conclusion that hippocampus atrophy 
and ventricle enlargement are the biomarkers of MCI and 
AD (35). This observation implies that IS can effectively 
highlight disease-related regions. Nevertheless, even though 

hippocampi and ventricles are of importance for disease 
diagnosis, experts still observe other regions of images and 
make final diagnosis considering the features of the entire 
images in clinical trials. Moreover, since the pathogenesis of 
AD has not been discovered and there may be latent lesion 
regions related to MCI and AD, it is necessary to consider 
the features of the remaining regions except hippocampi 
and ventricles. The contributions of the features of other 
regions for image classification are decided based on the 
weights of these attention maps. (II) The redder regions 
of the MCI subject are larger than that of the AD subject. 
This may be because the MCI and NC subjects are 
harder to distinguish than the AD and NC subjects, and 
IS requires to focus on more regions to generate more 
discriminative features for MCI diagnosis. It is noted that 
some redder regions are in the background. This is caused 
by the mapping relations between image patches and the 
values of an information map. Figure 3 displays the mapping 
relations. According to the mapping relations, a value in the 
information map corresponds to a 32*32*32 image patch 
in the original image. Therefore, some image patches, 
mapped from some values in the information map, contain 
both brain tissue and background. Further, for coarsely 
visualizing the importance of image patches, a value in the 
information map can be mapped into a 32*32*32 patch with 
values and these values on the patch are realized through 
the trilinear interpolation to the value in the information 
map. It is noted that the patch with values and the image 
patch forementioned are two different concepts. Due 
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to the trilinear interpolation, when the forementioned 
image patch, containing both brain tissue and background, 
corresponds to a higher value in the information map, it will 
be combined with a patch with higher values, which indicate 
redder color. Therefore, the background portions in these 
image patches are also with redder color. This coarse 
visualization is a common phenomenon in current methods, 
such as in (36) and (37). However, this phenomenon does 
not affect the performance of THAN. Since information 
maps are used to generate attention maps in different 
layers of HAS, after multiple convolution layers, HAS can 
recognize the useless background portions.

Ablation study of the HAS

To validate the effectiveness of the combination of the 
visual and semantic attention modules in boosting the 
discriminative feature extraction for disease diagnosis, we 
conducted the ablation study on different combinations of 
the two attention modules with the backbone of HAS. The 
results are illustrated in Table 6.

For MCI vs. NC, we find that (I) the backbone + 
visual attention and the backbone + semantic attention 
are superior to the backbone in terms of ACC, SEN, F1, 
and AUC. (II) The backbone + visual attention module + 
semantic attention module (i.e., THAN) achieves the best 
performance referring to the six metrics when compared 
with the backbone and the backbone + semantic attention, 
and it obtains the highest values referring to the five 
matrices except SEN when compared with the backbone 
+ visual attention. These results imply that both the visual 
attention module and the semantic attention module 
facilitate the extraction of discriminative features and 
further promote the performance of MCI vs. NC to some 
extent. Moreover, the performance of MCI vs. NC is best 
improved when the two attention modules are combined. 

For AD vs. NC, the following results can be acquired. 
(I) Both the backbone + visual attention module and the 
backbone + semantic attention module are a little better 
than the backbone overall. (II) THAN achieves the best 
performance among the four methods. These results imply 
that both the visual attention module and the semantic 
attention module boost the performance of AD vs. NC. 
Furthermore, the performance of AD vs. NC is improved 
to the highest point when the two attention blocks are 
employed together.

For AD vs. MCI, we can see that (I) the backbone + 
visual attention module is better than the backbone in terms 
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of ACC, SPE, PRE, F1, and AUC; the backbone + semantic 
attention module is superior to the backbone for ACC, SPE, 
PRE, and F1. (II) THAN achieves the best performance 
for all the matrices among the four methods. These results 
imply that the performance of AD vs. MCI is promoted 
by the visual attention module and the semantic attention 
module, respectively. Moreover, it is best improved when 
the two attention modules are combined.

For AD vs. MCI vs. NC, we observe that (I) the backbone 
+ visual attention module is better than the backbone in 
terms of the six metrics; the backbone + semantic attention 
module is superior to the backbone for ACC, SPE, PRE, 
and F1. (II) THAN achieves the best performance for all 
the metrics when compared with the four methods. These 
results indicate that AD vs. MCI vs. NC is improved by 
the two attention modules, respectively, and it is improved 
to the best point when the two attention modules are 
combined.

Overall, the performance of the four tasks is promoted by 
the visual attention block and the semantic attention block, 
respectively, and it is highly improved by combining the 
visual and semantic attention modules into the backbone. 
This demonstrates that HAS can effectively extract both 
discriminative visual and semantic features for disease 
diagnosis.

Discussion

We first investigate the execution time of THAN. 
Moreover, we visualize the features extracted using THAN. 
Finally, we compare THAN with state-of-the-art methods.

Execution time of THAN

To discuss the efficiency of THAN, we described the 
execution time of THAN on the test sets for the four tasks, 

as shown in Table 7. The mean time indicates the average 
execution time of an sMRI image in a task. The max time 
indicates the maximum execution time of an sMRI image 
in a task. The min time indicates the minimum execution 
time of an sMRI image in a task. It can be seen that the 
mean time, the min time and even the max time of every 
sMRI image in the four tasks are far less than 1 s. This 
demonstrates that the proposed THAN is very efficient, 
even though it is made up of two sub-networks.

Visualization of the original images and their features 
extracted using THAN

To further demonstrate the ability of THAN in extracting 
discriminative features, t-distributed stochastic neighbor 
embedding (t-SNE) (38) was utilized to visualize the 
original images of the test set and the features of the test set 
extracted using THAN. t-SNE is a technique to visualize 
high-dimensional data by giving each datapoint a location 
in a 2D or 3D map (38). To be specific, it projects features 
from a high dimension to a low dimension and meanwhile 
attempts to preserve the local structures of these features. 
Since the dimensions of high-dimensional features have 
no specific meanings, the two dimensions of the projected 
2D features also have no detailed meanings. Furthermore, 
since the 2D map is simpler than the 3D map, it is chosen 
to visualize each datapoint. It is noted that t-SNE cannot 
demonstrate the classification performance of THAN, 
which is determined by both the features extracted and the 
classifier used.

Specifically, each original image was reshaped into a 
one-dimensional feature vector first. T-SNE was then 
utilized to visualize these original images. For the features 
extracted using THAN, the trained IS was taken to produce 
information maps for the sMRI images. After that, the first 
to the GAP layers of the trained HAS were used to produce a 
512-dimensional feature vector for each sMRI image. Finally, 
t-SNE was employed to visualize these 512-dimensional 
feature vectors of the test set. Results are shown in Figure 6. 
A red point represents the original image or its feature vector 
of an MCI subject, a yellow point the original image or its 
feature vector of an NC subject, and a blue point the original 
image or its feature vector of an AD subject. 

We can find that (I) compared with original images, 
the features extracted using THAN has the ability to 
differentiate different categories. This indicates that the 
proposed THAN can learn discriminative features from 
sMRI images. (II) The two kinds of features in AD vs. NC 

Table 7 Execution time of THAN for the test sets (ms)

Execution 
time

MCI vs. NC AD vs. NC AD vs. MCI
AD vs. MCI 
vs. NC

Mean time 45.48 45.67 45.15 45.32

Max time 46.28 46.96 47.02 48.21

Min time 44.64 44.77 44.65 43.96

THAN, task-driven hierarchical attention network; MCI, mild 
cognitive impairment; NC, normal control; AD, Alzheimer’s 
disease.



3351Quantitative Imaging in Medicine and Surgery, Vol 11, No 7 July 2021

© Quantitative Imaging in Medicine and Surgery. All rights reserved.   Quant Imaging Med Surg 2021;11(7):3338-3354 | http://dx.doi.org/10.21037/qims-21-91

A B

C D

E F

G H

Figure 6 Visualization of the original images and their features of the test sets using t-SNE. The left four figures refer to the t-SNE results 
of the original images, and the right four figures refer to the t-SNE results of the features extracted using THAN. The four rows from 
the top to the bottom correspond to the tasks of MCI vs. NC, AD vs. NC, AD vs. MCI and AD vs. MCI vs. NC, respectively. MCI, mild 
cognitive impairment; NC, normal control; AD, Alzheimer’s disease; t-SNE, t-distributed stochastic neighbor embedding.



3352 Zhang et al. THAN for MCI and AD diagnosis

© Quantitative Imaging in Medicine and Surgery. All rights reserved.   Quant Imaging Med Surg 2021;11(7):3338-3354 | http://dx.doi.org/10.21037/qims-21-91

are best distinguished compared with those in MCI vs. NC, 
AD vs. MCI, and AD vs. MCI vs. NC. This result matches 
the result in Table 6, that is, ACC of AD vs. NC is the best, 
followed by MCI vs. NC, by AD vs. MCI, and then by AD 
vs. MCI vs. NC. This indicates that AD vs. NC is the easiest 
task in the four tasks, and MCI vs. NC, AD vs. MCI, and 
AD vs. MCI vs. NC require more exploration, especially the 
task of AD vs. MCI vs. NC. Motivated by the observation, 
in the future, we will pay more attention to investigate the 
recognition between MCI and NC, between AD and MCI, 
and among AD, MCI, and AD. 
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