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Introduction

The scar is a product of wound healing (1,2), and the 
formation of scars is generally considered a process of 
granulation tissue fibrosis and increasing deposition of 
collagen and elastic fibers. However, the deep mechanism of 
the wound healing process is still a mystery. Cutaneous scars 

not only have an aesthetic dimension but can also restrict 
normal skin psychological function. Scar treatment has 
long been a research focus, and many practical and effective 
methods such as laser treatment have become clinical 
therapies; however, the different treatment methods are 
usually suitable only for specific types of scars. Classifying 
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the type or duration of scars, some traditional methods 
such as biopsies and long-term observation have inevitable 
drawbacks such as secondary trauma or inaccuracy. With 
the development of microscopy and computer science, 
visualization in scientific computing based on microscopic 
images has been a hot research topic. Elastic fibers are 
long, thin, highly refractive extracellular components of 
connective tissue. They are composed of the protein elastin 
and usually branch and anastomose freely. Unlike the 
stronger and non-extensible collagen fibers, elastic fibers 
can be stretched from one and one-third to one and one-
half times their normal length and, when released, return to 
their normal length. Elastic fibers (3) provide the elasticity 
and mobility of organs such as the skin, blood vessels, elastic 
ligaments, and the external ear’s cartilage.

Under the action of a femtosecond laser, the non-
linear optical effects of the internal components of 
biological tissue have been used to study scar formation 
and development, as well as the internal laws of wound 
repair, which has promoted a deeper understanding of the 
scar formation mechanism utilizing early, direct and non-
destructive detection, diagnosis and real-time monitoring. 
The advantages of two-photon excitation fluorescence 
(TPEF) microscopy have greatly expanded its application 
in biological systems. First, TPEF provides high internal 
three-dimensional (3D) resolution, limiting phototoxicity, 
photodamage, and photobleaching to focal points, thus 
allowing it to be used for observation for longer periods. 
Second, because the excitation wavelength of TPEF is very 
different from the emission wavelength, the excitation laser 
can be effectively filtered out to obtain a higher signal-to-
noise ratio. Third, because TPEF does not need additional 
confocal pinholes, most dispersed photons can be detected, 
thus improving the collection of the fluorescence signals’ 
efficiency. Also, considering that the TPEF spectrum of 
many fluorescent molecules is wider than the single-photon 
excitation spectrum, it is possible to excite various fluorescent 
molecules with a single wavelength, thus obtaining more 
image information. Moreover, tissue absorption in the near-
infrared window (700–1,000 nm) is relatively small, giving 
TPEF a deeper penetration depth (4-6).

Many researchers have studied descriptions of 2D 
microscopic images. Some features such as phase parameters 
and texture feature parameters have already been presented. 
There are numerous texture analysis methods, such as grey 
level co-occurrence matrix (GLCM) (7), local binary pattern 
(LBP) (8), binary gradient contours (BGC) (9), local ternary 
pattern (LTP) (10,11), improved local ternary pattern 

(ILTP) (12). Many methods have achieved fantastic results, 
but all 2D analysis methods have inevitable drawbacks. 
Medical section plane images from the surface to depth are 
correlated, and analysis of one of them would unnecessarily 
fall into locality, imperfection, even inaccuracy. Aiming at 
solving the problems with 2D analysis, some researchers 
have presented 3D analysis methods (13-16). Borrelli et al.  
presented two 3D parameters (3D vascular volume and 3D 
perfusion density) to analyze optical coherence tomography 
angiography images to measure macular ischemia in eyes 
affected by non-proliferative diabetic retinopathy (17). 
Varando et al. developed a new tool, MultiMap, which 
allows visualization, 3D segmentation, and quantification 
of fluorescent structures selectively in the neuropil from 
large stacks of confocal microscopy images (18). Hasaballa 
et al. explored 3D quantification of myocardial collagen 
morphology from confocal images and presented some 
morphological parameters, including elongation, flatness, and 
anisotropy, based on the covariance matrix of 3D images (19).  
Liu et al. developed a metric, 3D directional variance, as a 
quantitative biomarker of truly 3D organization of fiber-like 
structures (20).

In this study, we investigated the 3D quantification of 
elastic fibers in cutaneous scar tissue to understand how 
they changed with scar duration. This study’s procedure 
had three main steps: preprocessing and segmentation, 3D 
reconstruction and skeleton extraction, and quantitative 
analysis. Finally, the application of random forests 
regression analysis in the prediction of scar duration was 
studied.

Methods

Ethics approval

This study of human tissue imaging was approved by the 
Fujian Normal University Research Ethics Board (no. 2018-
3-3). Each volunteer subject gave informed consent, and 
the study strictly conformed to institutional rules governing 
the clinical investigation of human subjects in biomedical 
research. 

Specimen preparation and acquisition

Ex vivo human cutaneous scar samples were obtained from 
30 female patients who had undergone cesarean section 
or abdominal cholecystectomy 2–22 years previously, and 
each of the six duration groups had five patients (Table 1). 
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The samples were snap-frozen in liquid nitrogen (–196 ℃) 
immediately after excision. 

High-resolution images were obtained with a TPEF 
microscopic imaging system on a commercial LSM 510 
META (Zeiss, Inc.) coupled to a mode-locked Ti: sapphire 
laser (110 fs,76 MHz), operated at 810 nm (Coherent 
Mira 900-F). The META detector had eight independent 
channels, and each of them could be set to detect 
backscattered intrinsic TPEF signals. An independent 
channel was selected to obtain the high-resolution images: 
one channel with a wavelength from 430 to 697 nm to 
collect the TPFF signals. To obtain sequential images (16 
sequential 2D images with depth intervals of 2 μm between 
two adjacent images) to reconstruct the 3D images, the 
device’s focal plane (Z-level) needed to be changed at 
different depths. The scar’s central area was focused on for 

imaging, and several images were obtained within the same 
scar sample for averaging. The obtained images (512×512 
pixels) were obtained at 2.5 μs/pixel with a 12-bit depth.

Proposed method of analysis

The image analysis method was developed in the context 
of its application to the 3D confocal microscopy images 
of elastic fibers in human cutaneous scars. With this 
method, we extracted some quantitative 3D information 
of elastic fibers, such as the length and diameter of fibers 
and the number of branches and nodes. An outline of our 
approach is shown in Figure 1. The first stage comprised 
preprocessing and segmentation of sequential microscopy 
images. The second stage was the 3D reconstruction and 
thinning process, which contained a range of processing 

Table 1 Details of the scar specimens

ID Sex Age (years) Duration (years) Type of lesion

1 F 29, 28, 28, 27, 29 2 Caesarean section or abdominal cholecystectomy

2 F 28, 30, 33, 30, 28 5 Caesarean section or abdominal cholecystectomy

3 F 30, 40, 39, 35, 40 8 Caesarean section or abdominal cholecystectomy

4 F 31, 40, 35, 35, 39 10 Caesarean section or abdominal cholecystectomy

5 F 48, 45, 50, 53, 50 21 Caesarean section or abdominal cholecystectomy

6 F 48, 49, 53, 48, 53 22 Caesarean section or abdominal cholecystectomy

Contrast Adjustment

OTSU
Pre-processing And 

Segmentation

3D Reconstruction And 
Skeleton Extraction

Quantitative Analysis

3D Reconstruction

Filling

Smoothing

Pruning

Branches Number
Nodes Number

Average Branch Length
Average Branch Tortuosity

Direction Consistency
Average Branch Sectional Area 

Average Branch Volume

Figure 1 Outline of our approach showing the three main stages.
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steps for better reconstruction performance and more 
accurate extracted quantitative information. Finally, the 
quantitative was extracted on the foundation of the first two 
steps. We implemented our method in Visual Studio 2015, 
VTK 7.0.0, MATLAB R2014b, and ran it on a PC with a  
3.2 GHz Core CPU and 8 GB RAM.

Stage 1: preprocessing
The 2D images were processed mainly to extract the region 
of interest (ROI) and converted to binary images for further 
processing. Using the microscopy image and elastic fibers’ 
characteristics, we designed a pipeline of preprocessing 
and segmentation as follows. The first was increasing the 
contrast of the images to highlight the ROIs, and the second 
step was generating the binary image based on the OTSU 
algorithm and suppressing small noise through elaborating 
the small object region by setting a threshold.

Stage 2: 3D reconstruction and skeleton extraction
To better understand the microstructure and alterations 
of elastic fibers within the normal cutaneous scar, we 
reconstructed 3D images of elastic fibers from the 
different scar types as listed in Table 1. Computerized 3D 
visualization mainly studies the generation and visualization 
of volume data from slice-based image data generated by 
laser scanning confocal microscopy. The 3D visualization 
technique, as a mature technology, can be split into two 
categories: surface rendering and volume rendering. Surface 
rendering firstly extracts the isosurface as intermediate 
and then uses it to fit the 3D image. The fundamental 
difference of volume rendering compared with surface 
rendering is that there is no intermediate generation, and 
all voxels can contribute to the final visualized result. In this 
study, we used four different 3D reconstruction algorithms, 
comprising Contour Matching algorithm (21), Marching 
Cubes (22,23), Ray Casting Volume Rendering (24), and 
Dividing Cubes algorithm (25), to reconstruct the 3D 
elastic fiber images. 

After 3D reconstruction, the skeleton of the output 
fibrin network was extracted using a 3D thinning algorithm 
(26,27). The algorithm was mainly to iteratively remove 
voxels on the boundaries until a 1-voxel-wide medial axis 
was left and did not change the networks’ topological 
structure. However, it is well known that this algorithm is 
sensitive to noise and some fake branches occurred caused 
by perturbations and deformations on the object boundaries. 
These fake branches have a severe effect on the accuracy of 
statistical data, such as the number of branches, which will 

be much increased, and the average length of the branches 
will be shortened for lots of the short fake branches, and 
so on. To solve these problems, we adopted three methods: 
filling, smoothing, and pruning. The first problem was that 
there were many small holes in the volume, which led to 
many fake nodes and branches, and as a solution, we chose 
to fill the holes of the volume data.

With regard to smoothing, we found that the rough 
surface of the 3D image caused burrs, and we adopted a 
closing operation in the 3D morphological processing to 
solve this problem. The final method was pruning, which 
removed segments with a length less than the average 
thickness. After these processing procedures, we obtained 
the refined skeleton of the 3D image.

Stage 3: extraction of quantitative information
The f ina l  s tep was  mainly  to  extract  s igni f icant 
morphological alterations of the scar samples of different 
durations and analyze the possible effects of these 
discrepancies. Based on the characteristics of the 3D 
skeleton image, we extracted a series of 3D morphological 
feature parameters: branches number (B-NUM), nodes 
number (N-NUM), average branch linear length (AB-
LL), average branch broken-line length (AB-BL), average 
branch tortuosity (AB-T), branch direction consistency 
(B-DC), average branch volume (AB-V), and average 
branch sectional area (AB-SA). Our analysis’s foundation 
transformed from a 3D skeleton image to a 3D graph with 
detailed branches and nodes information. The extraction 
methods of the different parameters are described as 
follows.
B-NUM and N-NUM
The first two parameters can be directly obtained from the 
3D graph. N-NUM was defined as the total number of 
branch nodes, and B-NUM as the total number of branches.
AB-LL and AB-BL 
AB-LL was defined as the Euclidean distance between the 
start and endpoints of a branch in 3D data space. AB-BL 
was defined as the sum of the Euclidean distance of pixel-
to-pixel from the start to the end of one branch in 3-D 
data space. We used D (N1, N2) to refer to the Euclidean 
distance of point N1 and point N2 in the 3D dataset defined 
as follows:

 ( ) 2 2 21, 2 ( 2 1) ( 2 1) ( 2 1)D N N x x y y z z= − + − + −  [1]

where N1(x1, y1, z1) and N2 (x2, y2, z2) are two points in 
the 3D dataset. The two parameters above can be defined 
as:
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where I represents one branch and is made up of N sequential 
pixels. Ii denotes the coordinate of the ith pixel of the branch. 
D(I) and B(I) are the linear length and the broken-line length, 
respectively, of the specified skeleton branch. 

AB-LL was defined as the mean value of the sum of all 
branches’ broken-line lengths because AB-BL can truly 
represent one branch’s practical length.
AB-T
After the two types of branch length were defined, we 
defined AB-T as:

 ( ) ( ) ( )/T I D I B I=  [4]

where T(I) represents the tortuosity of branch I. As can 
be seen, T(I) is between 0 and 1, and a value closer to 1 
indicates the branch is straighter. This parameter indicated 
the possible alteration in-branch tortuosity after the 
different duration of scars. 

AB-T was also calculated as the mean value of the sum of 
all branches’ tortuosity.
B-DC
We defined B-DC as the direction of a straight line from 
the start to the endpoint in one branch. After that, B-DC 
can be defined as the distribution of angle θ between the 
branch vector VI and the fixed vector specified as VC (1,1,1). 
The cosine value of angle θ can be calculated as:

 cos ,I I CC V V= < >  [5]

 ( ) ( ) ( )
2 2 2

2 1 2 1 2 1
cos ,

3 ( 2 1) ( 2 1) ( 2 1)
I C

x x y y z z
V V

x x y y z z

− + − + −
< >=

⋅ − + − + −
   [6]

where (x1, y1, z1) and (x2, y2, z2) are coordinates of the 
start and endpoints, respectively, of a branch as mentioned 
above. If two results had the same absolute value, whether 
positive or negative, it indicated they were parallel and had 
the same trend. Therefore, we chose the absolute value to 
display in the next step.
AB-V
The next parameter was the branch’s volume, which was 
defined as the voxels number of the branch. Acquiring 
the parameter was a search procedure of points satisfying 
certain conditions based on the node’s information in 
the 3D skeleton graph. The searching started from the 
skeleton’s central point and proceeded in two opposite 
directions along with the skeleton. The process of searching 

algorithm is shown in Table 2.
According to the upper search procedure, we obtained 

the final AX set, which contained all branch points. We 
used the number of no-zeros points instead of the number 
of voxels to estimate the branch’s volume because of the 
unknown distribution of voxels. 

As before, AB-V was defined as the mean value of all 
branches’ volumes.
AB-SA
After obtaining the volume, the sectional area of the branch 
can be defined as the result of the branch volume divided by 
the length of the corresponding skeleton, which is expressed 
as follows:

 I
I

I

VA
B

=  [7]

where VI denotes the branch’s volume, and I and BI represent 
the broken-line length as defined above. AI measures the 
thickness branch I. 

AB-SA was defined as the mean value of the sum of all 
branches’ sectional areas.

Stage 4: random forests for regression
As an ensemble learning algorithm for classification, 
regression, and other tasks, random forests are a group 
of decision trees and have been widely used in many 
applications. Every decision tree of the forest will vote 
for the final result; when used in classification, the final 
outcome is the label with the most votes, whereas, in 
regression, the final outcome is the average of the individual 
tree predictions. Random forests are not easily overfitting 
machine learning algorithms that mainly depend on its 
radical random mechanism. When training the random 
forest bagging algorithm was used to generate the random 
training set. Also, randomly selected mtry characteristics 
further guarantee the randomness of the forest. Excepting 
the parameter mtry, parameter K, representing the number 
of decision trees, also affects random forests’ performance. 

Table 2 Procedure of algorithm for searching

Searching method

1. Initialize the searching set AX containing only the central 
point of the branch

2. Find a 26-connected point of each element in set AX and 
save with AX as BX

3. Make AX=BX-AX and return to step 1.
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Random forests also have a prominent characteristic: 
random forests can rank a variable according to its 
importance, so this characteristic means random forests can 
be used in feature engineering.

In our study, random forests’ performance was studied 
with the alterations of parameters K and R2, and the root-
mean-square error (RMSE) was used to estimate the 
performance.

Results

Each of the six groups of scar duration included five 
different image sequences from the five patients. Figure 2 
shows the main process: 2D TPEF image sequence, 3D 
reconstructed image, and 3D skeleton extraction image.

In the first step, we reconstructed 3D images of elastic 
fibers, and representative 3D reconstructed elastic fiber 
TPEF images from normal human scars of 2, 5, 8, 10, 21, 
and 22 years duration after cesarean section are presented 
in Figure 3. Through our comparison of the reconstruction 
results, we found that volume rendering had the features of 
fast rendering speed, and was smooth but easily fractured, 
and surface rendering had the features of low rendering 
speed that was, rough but more integrated. From these 
reconstructed images, we can easily see some obvious 
morphological changes with duration. For example, the 
distribution of the elastic fibers in 3D space becomes 
progressively denser, and the thickness of the branches 
seems to become thinner over the 20 years. These changes 
are obvious features displayed in the images, but some other 
characteristics are not easily observed directly, for which we 
need some quantitative data.

3D thinning results and improvements for morphological 
analysis

Figure 4 displays 3D reconstructed results before and after 
improvement. Fake branches and burrs have been well 
pruned.

Application of random forests regression

Random forests regression analysis was applied to predict 
scar duration using the extracted parameters of the 30 
samples. The average value of every parameter in scars of 
different duration is listed in Table 3. From the table, we 
found that several parameters had an explicit changing rule 
while some did not. B-NUM and N-NUM increased with 
time, AB-LL, AB-BL, AB-V, AB-SA were in reverse order, 
and AB-T and B-DC did not show a clear regular change. 
As discussed earlier, random forests have better predicting 
and assessing features in regression problems. In random 
forests, the parameters mtry and ntree have an important 
role. To explore the relationship between ntree and random 
forests’ performance, we fixed ntree =5, 10, 50, 100, 500, 
1,000, 1,500, 2,000, 2,500, and 3,000 as depicted in Figure 5.  
We observed that after ntree=100, random forests’ 
performance remained stable with little fluctuation, so we 
need to set ntree=100 to satisfy the requirement without 
needing any more decision trees.

Next, to determine the appropriate parameter mtry, we 
explored random forests’ performance when mtry =1, 2, 
and 3 and ntree =100 as depicted in Table 4. We observed 
that when mtry =3, random forests had a better fitting 
performance with R2=0.981 and RMSE =0.513 when ntree 
=100 and mtry =3.

Figure 2 The main process of 3D characterization. (A) Field of view for the 2D TPEF image sequence from normal human scars of 2–22 
years’ duration, (B) 3D reconstruction of 3D TPEF image, (C) 3D reconstruction, and skeleton extraction for 3D TPEF image. TPEF, two-
photon excitation fluorescence.

A B C
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Discussion

We explored how to quantify the 3D morphological 
changes of elastic fibers in cutaneous scars over time. This 
study’s main procedure can be split into four steps: 3D 
reconstruction, skeleton extraction, quantitative information 
extraction, and random forests regression. The first step, 
3D reconstruction, mainly achieved a 3D image of elastic 
fiber in dermal tissue but did not influence quantitative 
information accuracy. The second step, skeleton extraction, 
is mainly applied as a bridge between visualization and 
calculation and has an important influence on quantitative 
information accuracy. Aiming at overcoming the drawbacks 
of the existing 3D thinning algorithm, we propose three 
improvements: filling, smoothing, and pruning. As 
shown in Figure 4, the skeleton of the original 3D image 
becomes much more unambiguous, which means much 
more accurate quantitative information can be extracted. 
The third step, quantitative information extraction, 

mainly extracted eight parameters: number of branches, 
number of nodes, mean length and tortuosity of branches, 
congruency of branches direction, the volume of branches, 
and the mean sectional area of branches. The fourth step, 
random forests regression, is mainly applied to explore the 
prediction of scar duration. Figure 5 shows the performance 
of random forests with changing duration, and the result 
indicated that K=100 satisfied the requirement of this study. 
Table 4 shows the performance of random forests with mtry 
=1, 2, and 3 when K=100, and the result indicated that mtry 
=3 and K=100 had the best fitting performance. Table 4 also 
compares random forests and unitary regression models, 
and the result showed that random forests with multiple 
parameters had better performance in predicting scar 
duration than unitary regression with only one parameter.

To verify the effectiveness of our 3D characterization 
method for TPEF images of elastic fibers in the future, 
more samples for more effective model development, the 

Figure 3 (A-F) Representative 3D TPEF images of elastic fibers from normal human cutaneous scars in sequence from 2, 5, 8, 10, 21, and 
22 years duration. TPEF, two-photon excitation fluorescence.
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Figure 4 Magnification of one segment of 3D reconstruction images after successive processing of different durations. From left to right, 
(A-D) is the original image, hole filling image, smoothing image, and pruning image, respectively; from top to bottom, every row is a sample 
image of a scar whose duration is 2, 5, 8, 10, 21 and 22 years respectively. Every inset in the lower-left corner is the complete reconstruction 
image, as in Figure 2, and the yellow arrow indicates the segment that has been enlarged.

A B C D
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importance of the parameters, the effect of patients’ ages 
on the growth and distribution of elastic fibers, and the 3D 
characterization for pathologic scars are future research.

Conclusions

In this study, a process for quantitatively analyzing 3D 
elastic fibers of human scars was designed, comprising 3D 
reconstruction, skeleton extraction, quantitative analysis, 
and random forests regression. Our findings demonstrated 

that the parameters we extracted had a distinct relationship 
with scar duration and that random forests had better 
performance in forecasting scar duration than unitary 
models.
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Figure 5 The correlation coefficient of random forests is 
constituted by a different number of decision trees when mtry =3.

Table 3 Average value of every parameter in scars of different duration

Duration (years) B-NUM N-NUM AB-LL AB-BL AB-T B-DC AB-V AB-SA

2 580 333 15.18 18.32 0.83 0.066 623 33.33

5 1,196 791 12.52 14.90 0.86 0.073 420 24.84

8 1,084 737 13.32 16.35 0.85 0.084 283 17.99

10 1,373 904 11.39 14.56 0.85 0.065 253 18.15

21 1,974 1,326 9.23 10.96 0.83 0.079 227 18.20

22 4,495 2,907 6.58 8.07 0.85 0.080 159 14.30

B-NUM, branches number; N-NUM, nodes number; AB-LL, average branch linear length; AB-BL, average branch broken-line length;  
AB-T, average branch tortuosity; B-DC, branch direction consistency; AB-V, average branch volume; AB-SA, average branch sectional 
area.
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Table 4 Performance of random forests with changing mtry 

Mtry R2 RMSE

1 0.930 0.891

2 0.965 0.665

3 0.981 0.513

RMSE, root-mean-square error.

http://dx.doi.org/10.21037/qims-20-1051
http://dx.doi.org/10.21037/qims-20-1051


3593Quantitative Imaging in Medicine and Surgery, Vol 11, No 8 August 2021

© Quantitative Imaging in Medicine and Surgery. All rights reserved.   Quant Imaging Med Surg 2021;11(8):3584-3594 | http://dx.doi.org/10.21037/qims-20-1051

Open Access Statement: This is an Open Access article 
distributed in accordance with the Creative Commons 
Attribution-NonCommercial-NoDerivs 4.0 International 
License (CC BY-NC-ND 4.0), which permits the non-
commercial replication and distribution of the article with 
the strict proviso that no changes or edits are made and the 
original work is properly cited (including links to both the 
formal publication through the relevant DOI and the license). 
See: https://creativecommons.org/licenses/by-nc-nd/4.0/.

References

1. Tsao SS, Dover JS, Arndt KA, Kaminer MS. Scar 
management: keloid, Hyper trophic, atrophic, and acne 
scars. Semin Cutan Med Surg 2002;21:46-75.

2. Roten SV, Bhat S, Bhawan J. Elastic fibers in scar tissue. J 
Cutan Pathol 1996;23:37-42.

3. Johnson EF, Chetty K, Moore IM, Stewart A, Jones 
W. The distribution and arrangement of elastic fibres 
in the intervertebral disc of the adult human. J Anat 
1982;135:301-9.

4. Sun Y, You S, Du X, Spaulding A, Liu ZG, Chaney EJ, 
Spillman DR Jr, Marjanovic M, Tu H, Boppart SA. Real-
time three-dimensional histology-like imaging by label-
free nonlinear optical microscopy. Quant Imaging Med 
Surg 2020;10:2177-90.

5. Lin HX, Yang LJ, Zhang X, Liu GM, Zhuo SM, Chen 
JX, Song JB. Emerging Low-Dimensional Nanoagents 
for Bio-Microimaging. Advanced Functional Materials 
2020;30:2003147.

6. Lin H, Fan T, Sui J, Wang G, Chen J, Zhuo S, Zhang H. 
Recent advances in multiphoton microscopy combined 
with nanomaterials in the field of disease evolution 
and clinical applications to liver cancer. Nanoscale 
2019;11:19619-35.

7. Mohanaiah P, Sathyanarayana P, Gurukumar L. Image 
texture feature extraction using GLCM approach. Int J Sci 
Res Publications 2013;3:1-5.

8. Ojala T, Pietikainen M, Maenpaa T. Multiresolution gray-
scale and rotation invariant texture classification with local 
binary pattern. IEEE Trans PAMI 2002;24:971-87.

9. Fernández A, Álvarez MX, Bianconi F. Image classification 
with binary gradient contours. Opt Lasers Eng 
2011;49:1177-84.

10. Guo Z, Zhang L, Zhang D. A completed modeling of local 
binary pattern operator for texture classification. IEEE 
Trans Image Process 2010;19:1657-63.

11. Tan X, Triggs B. Enhanced local texture feature sets for 

face recognition under difficult lighting conditions. IEEE 
Trans Image Process 2010;19:1635-50.

12. Nanni L, Brahnam S, Lumini A. A local approach based 
on a Local Binary Patterns variant texture descriptor for 
classifying pain states. Expert Syst Appl 2010;37:7888-94.

13. Campagnola PJ, Millard AC, Terasaki M, Hoppe PE, 
Mohler WA. Three-dimensional high-resolution second-
harmonic generation imaging of endogenous structural 
proteins in biological tissues. Biophys J 2002;82:493-508.

14. Königa1 K, Schenke-Layland K, Riemann I, Stock UA. 
Multiphoton autofluorescence imaging of intratissue 
elastic fibers. Biomaterials 2005;26:495-500.

15. Mostaço-Guidolin LB, Ko ACT, Wang F, Xiang B, Hewko 
M, Tian GH, Major A, Shiomi M, Sowa MG. Collagen 
morphology and texture analysis: from statistics to 
classification. Sci Rep 2013;3:2190.

16. Cai S, Tian Y, Lui H, Zeng H, Wu Y, Chen G. Dense-
UNet: a novel multiphoton in vivo cellular image 
segmentation model based on a convolutional neural 
network. Quant Imaging Med Surg 2020;10:1275-85.

17. Borrelli E, Sacconi R, Querques L, Battista M, Querques 
G. Quantification of diabetic macular ischemia using 
novel three-dimensional optical coherence tomography 
angiography metrics. J Biophotonics 2020;13:e202000152.

18. Varando G, Benavides-Piccione R, Muoz A, Kastanauskaite 
A, Defelipe J. MultiMap: A Tool to Automatically Extract 
and Analyse Spatial Microscopic Data From Large 
Stacks of Confocal Microscopy Images. Front Neuroanat 
2018;12:37.

19. Hasaballa AI, Sands GB, Wilson AJ, Young AA, Wang VY, 
LeGrice IJ, Nash MP. Three-Dimensional Quantification 
of Myocardial Collagen Morphology from Confocal 
Images. International Conference on Functional Imaging 
and Modeling of the Heat 2017; 10263. Springer, Cham.

20. Liu Z, Pouli D, Sood D, Sundarakrishnan A, Mingalone 
CKH, Arendt LM, Alonzo C, Quinn KP, Kuperwasser C, 
Zeng L. Automated quantification of three-dimensional 
organization of fiber-like structures in biological tissues. 
Biomaterials 2017;116:34-47.

21. Fuchs H, Kedem ZM, Uselton SP. Optimal surface 
reconstruction from planar contours. Communications of 
the ACM 1977;20:693-702.

22. Lorensen WE, Cline HE. Marching cubes: a high 
resolution 3d surface construction algorithm. Computer 
Graphic 1987;21:163-9.

23. Dürst MJ. Additional reference to "Marching Cubes". 
Computer Graphics 1988;22:72-3.

24. Harvey R, Pfister H. Ray Casting Architectures for 

https://creativecommons.org/licenses/by-nc-nd/4.0/


3594 Lin et al. 3D characterization of TPEF images of elastic fibers varied

© Quantitative Imaging in Medicine and Surgery. All rights reserved.   Quant Imaging Med Surg 2021;11(8):3584-3594 | http://dx.doi.org/10.21037/qims-20-1051

Volume Visualization. IEEE Trans Vis Comput Graph 
1999;5:210-23.

25. Ellis CH, Siegwalt L, Edward LW. Dividing cubes and 
method for the display of surface structures contained 
within the interior region of a solid body. European Patent 
EP 0216156[P]: 1993-12-15.

26. Lee TC. Building skeleton models via 3-D medial surface/
axis thinning algorithm. Graphical Models Image Process 
1994;56:462-78.

27. Lobregt S, Verbeek PW, Groen FCA. Three-dimensional 
skeletonization: Principle and algorithm. IEEE Trans 
Pattern Anal Mach Intell 1980;2:75-7.

Cite this article as: Lin Y, Lin H, Zhu X, Chen G. Three-
dimensional characterizations of two-photon excitation 
fluorescence images of elastic fibers affected by cutaneous scar 
duration. Quant Imaging Med Surg 2021;11(8):3584-3594. doi: 
10.21037/qims-20-1051


