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Introduction

Diffusion weighted magnetic resonance imaging (DW-MRI) 
is a popular diagnostic tool in radiology, and in radiotherapy 
(RT) it is becoming a standard supplementary technique for 
outlining the extent of the tumor for treatment planning. 
In research, its potential as a non-invasive biomarker of 
treatment response is being studied extensively (1,2). DW-
MRI provides image contrast based on differences in the 
Brownian diffusion of water molecules within the tissue. 
The diffusion can in a post-processing step be quantified in 
terms of the so-called apparent diffusion coefficient (ADC). 

In parotid glands, DW-MRI is commonly used in clinical 

evaluation, for example with information about localization 
of the tumor within the parotid gland and differentiation of 
malignancy from benignity (3). It has also been investigated 
for the diagnosis of xerostomia, Sjögren’s syndrome, Kimura 
disease and other non-neoplastic disorders affecting the 
parotid glands. More recently (since 2001) there has been a 
growing interest in using ADC to investigate functional and 
structural changes in the parotid glands in patients treated 
with RT for cancer in the head and neck region to diagnose 
or predict side effects like xerostomia (4-6). 

Furthermore, it may be expected that with the recent 
clinical release of the hybrid MRI linear accelerator (7) 
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ADC may be studied even more intensively in the coming 
years in different anatomies including the parotid gland.

A quick search of the published studies revealed that 
there is a substantial variation in the study designs, DW-
MRI acquisition protocols and post processing steps, 
including definition of the region of interest (ROI) and 
ADC calculation methods. This is problematic since there is 
a potential risk that the reported ADC values are correlated 
to technical differences of the studies rather than biological 
differences within patient subgroups. This has in fact been 
indicated in a few previous studies of for example DW-MRI 
protocols (8), ROI definition (9), and timing of DW-MRI 
following gustatory stimulation and RT (5,10).

The lack of standardization of ADC measurement in the 
parotid gland is a potential limitation for valid inter-study 
comparison, and in the end to reach valid clinical consensus 
for the use of ADC as a biomarker. This review includes 
all currently published DW-MRI studies where ADC has 
been used for evaluation of parotid glands, to provide a 
comprehensive overview of the potential covariates. It 
is organized into introductory sections about DW-MRI 
and the parotid gland including an overview of radiation 
toxicity and ROI selection. This is followed by a discussion 
of possible factors affecting the ADC of the parotid gland 
based on the reviewed publications. 

Throughout this review the term normal parotid 
parenchyma is used to designate the disease-free parotid 
parenchyma. Studies examining normal parotid parenchyma 
and irradiated normal parotid parenchyma in head and 
neck cancer patients treated with RT are included to 
discuss the ADC values in relation to trial design, DWI-
MRI acquisition and post processing. Studies examining the 
diseased parotid gland (parotid tumors, Sjögren’s syndrome 
and Kimura disease) are included to survey acquisition 
parameters only. Conclusions based on current studies and 
recommendations for future studies are provided.

Technical introduction

The biophysical basis of DW-MRI
In DW-MRI, the MRI signal is sensitized to the diffusion 
of water (hydrogen nuclei) within the tissue. Free diffusion 
is characterized by a Gaussian displacement distribution, 
the width of which at a given temperature is proportional to 
the diffusion coefficient and the time during which diffusion 
has taken place (diffusion time), i.e., in this framework, the 
diffusion coefficient can be defined as the proportionality 
constant between the mean squared displacement of 

a particle and the time allowed for diffusion. At body 
temperature (310.15 K or 37 ℃) and at typical diffusions 
times (~5 ms) of the DWI-MRI sequence the mean squared 
displacement of free water (within an imaging voxel) is 
about 10 micrometers, the order of magnitude of a human 
cell. In the tissue the cellular environment delimits the 
degree of free diffusion, and therefore a structural change 
in the cellular environment (for example due to pathology) 
may result in an altered displacement distribution and 
reflected in the diffusion coefficient. The term apparent 
diffusion coefficient (ADC) was coined for DW-MRI to 
underline that it reflects the average diffusivity of water in a 
heterogeneous cellular environment.

DW-MRI acquisition
In DW-MRI the challenge is to measure very small and 
short-lived signals. That requires speed and repetition. The 
initial development of DW-MRI was done specifically in 
the subfield of neuroimaging, and focusing the technique 
on other parts of the body and relevant clinical issues 
has seen challenges from physiological aspects, such as 
movement, and anatomical differentiation, posting sudden 
changes in the signal from tissues or indeed voids, all 
leading to problems in acquiring the signal and assigning 
it properly. The increase in field strength in clinically 
available scanners, moving typically from 1.5 tesla (T) to 
3 T, yields an immediate boost in neuroimaging, but often 
presents a less straightforward advantage in other parts of 
the anatomy, as not only the signal is increased, but also the 
attendant artifacts. 

In the case of parotid imaging, the initial approach 
has been to apply the readily available neuroimaging 
techniques without much alteration. As new hardware, 
such as specialized coils, and imaging sequences less prone 
to artifacts have become available, an approach tailored to 
the specific organ is beginning to appear. In coil design, 
proximity to the tissue is key, and moving from head coils, 
designed primarily for brain imaging, to dedicated head 
and neck (HN) or neurovascular (NV) coils has been a step 
forward. A shift away from the standard clinical acquisition 
protocol of two b-values towards an investigation of 
whether other values would be more appropriate is also 
beginning to appear.

The DW-MRI sequence consists  of a diffusion 
sensitization part, in which the diffusion gradients are 
applied, and an imaging part where imaging gradients 
are applied. Diffusion sensitization is achieved by the key 
physical concept that magnetic gradients accumulate a 
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phase difference in water hydrogen nuclei (protons). In the 
standard DW-MRI a pair of diffusion gradient pulses is 
used with a 180 refocusing RF pulse in between (pulsed field 
gradient spin-echo technique) (11). The first gradient labels 
the protons by inflicting a certain position dependent phase 
change. In case of static protons, the second gradient will 
rewind the phase change completely. Diffusing protons on 
the other hand will not be phase refocused which will result 
in a decreased signal. The diffusion sensitized signal decays 
as a function of the amount of diffusion-weighting applied 
through the use diffusion sensitizing gradients expressed as 
b-values. For the imaging part most frequently echo planar 
imaging (EPI) with fat saturation is used since it is fast. 
Sometimes, fast spin echo (FSE) is preferred because it is 
less prone to geometrical distortions (12). This is however 
at the expense of longer imaging time or lower signal-to-
noise (SNR). With longer scan times collateral effects such 
as motion artifacts can further deteriorate image quality. 

The optimal choice of b-values is not clearly defined 
and depends upon system performance (field strength, 
gradient strength and slew rate), number of signal averages 
and the clinical application. The usual range of b-values 
in clinical practice is about 1,000 s/mm2, usually from 0 to  

1,000 s/mm2, with some anatomical site dependent variations. 
The upper limit is basically dictated by the hardware 
capability of clinical systems. If the b-value is set too high 
the SNR can decrease too much and introduce a bias (13). 
At b-values below about 200 s/mm2 the signal attenuation 
is sensitive to signal loss from capillary perfusion (14,15) 
(Figure 1). This can be useful if adequately modelled in 
the postprocessing step, otherwise a bias towards too high 
ADC estimates should be expected. User-defined number 
of excitations of individual b-value images is often used to 
achieve homoscedasticity and sufficient precision.

ADC calculation
In the simplest interpretation of ADC, tissue with 
high cell density will have a low ADC (more hindered 
diffusion) whereas low cell density (e.g., due to necrosis 
or extracellular oedema) will have higher ADC (less 
hindered diffusion). This implies that DW-MRI quantifies 
predominantly diffusion taking place in the extracellular 
space (16,17). DW-MRI can also provide additional 
information about tissue microstructure, especially about 
cell count (18).

To calculate the ADC at least two b-values are required. 
In a clinical setting the ADC is almost exclusively calculated 
on the MRI workstation assuming a mono exponential 
model (free diffusion in a single compartment): 

ADC = ln(S1/S2)/(b2−b1) [1]

Here, S1 and S2 are the signal values in a single voxel or 
average signal value of a region of interest at two different 
b-values, b1 and b2, respectively (11). This shows that 
the ADC becomes the slope of the line connecting the 
two points [b1, ln(S1)] and [b2, ln(S2)]. If more b-values 
(or repetitions of the same b-values) are acquired a better 
estimate of ADC (the slope) can be achieved. Also, with 
more b-values (typically 5 or more) within the same b-value 
range (typically 0–1,000 s/mm2) it is possible to use a model 
that describes the signal better than the mono exponential 
model. The bi-exponential intravoxel incoherent motion 
(IVIM) model (19) is a popular alternative.

Voxel-by-voxel calculation of ADC better appreciates 
the heterogeneity of the tissue, for example by extracted 
histogram descriptors (e.g., minimum and maximum 
ADC). On the other hand, by averaging the signal within 
a given ROI before calculating the ADC is an approach 
less sensitive to bulk motion. The choice of analyses may 
depend on the quality of the DW-MRI scans available, and 

Figure 1 Diagram showing how apparent diffusion coefficient 
(ADC) is related to the MRI signal at different b-values. Modified 
from Mahmood and Hansen, 2015 (15). In the low b-values 
region the signal from capillary blood flow contributes to the total 
signal. In the high b-value region the noise floor can constrain 
the recorded signal to stay higher than can be attributed to the 
underlying diffusion process. ADC should be measured from mid-
range b-values. 
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in general, it is not clear which of these two approaches 
should be used in clinical investigations.

Physiology of parotid glands

The parotid glands are the largest salivary glands located in 
the retromandibular fossa. They are purely serous glands 
containing an abundant amount of adipose tissue that 
occupies about a half of the gland parenchyma. The parotid 
glands are secretory organs, where various molecules are 
conveyed into the saliva-producing cells (acinar cells) via 
the capillary network, and the saliva is moving in the small 
ductal termination surrounded by acinar cells and is then 
secreted into the lumen of the excretory ductal system (20). 
These movements of molecules and water represent the 
main function of the parotid glands. 

Human unstimulated salivary flow rates display circadian 
variation that is a cyclic event controlled by the body’s 
biological clock, with a peak level in the afternoon and a 
time span of 12 hours between highest and lowest secretory 
rates (21,22). The parotid gland mainly secretes saliva 
in stimulated conditions like chewing, when it secretes 
50–60% of total whole mouth saliva (23,24). Within the 
gland, alterations in blood perfusion also occur in response 
to various stimuli. Therefore, such a process is altered in 
the diseased states of the parotid glands, for example, in 
sialoadenitis and Sjögren’s syndrome. 

Irradiation and parotid glands
Parotid and other salivary glands are highly sensitive to 
ionizing radiation, which can lead to irreversible loss of 
gland function, xerostomia and reduced quality of life in 
patients after RT (25). Mechanisms of radiation-induced 
damage of salivary glands have previously been investigated, 
suggesting selective damage of plasma membrane of the 
secretory cells immediately after radiation exposure, 
followed by damage of DNA, death of acinar progenitor 
cells and finally lysis of acinar cells (26,27). Loss of acinar 
cells and glandular shrinkage occurs during the acute phase, 
0–10 days after radiation exposure (28). Affected individuals 
display a 50–60% loss of salivary flow in this first week of 
RT (25,29). The chronic effects of radiation (more than  
240 days after radiation exposure) may be the consequence 
of acute damage to salivary glands (30). Chronically, 
affected individuals continue to display significant decreases 
in salivary flow and are diagnosed with xerostomia for 
several months or years following RT (25,29,30). Patients 
receiving low dose (<25 Gy mean dose) to their salivary 

glands can experience recovery of salivary function within 
12–24 months (25,30,31). A mean dose above 39 Gy to the 
parotid gland inflicts high risk of irreversible damage of 
parotid gland tissue and permanent xerostomia (32).

Regions of interest (ROI) in parotid glands
In the parotid glands, ROIs are usually manually drawn, as 
a reader-based circular ROIs or as an outline of as much 
of the gland parenchyma as possible, excluding the regions 
containing large vessels such as the retromandibular vein 
and external carotid artery. Each method has its intrinsic 
advantages and disadvantages. Reader-based circular ROI 
on selected slices may lead to inter-reader variability during 
ROI placement and may not reflect tissue heterogeneity. 
While whole-volume ROI overcomes the above-mentioned 
problem, it is a time-consuming process, which limits its 
application in routine clinical practice (9). Mahmood et al. 
2015 (33) concluded in a study of brain metastases patients 
treated with whole brain irradiation that the effect of 
ROI strategy is significant for the ADC calculation. This 
indicates that ROI methods should be considered in studies 
where ADC is used.

The studies

The literature search was conducted in PubMed and Web 
of Science databases and resulted in 43 DW-MRI studies 
where ADC has been used for evaluation of parotid glands 
(Table 1). All studies were written in English and published 
from 2001 to 2019. They are sorted by their population 
size, from 4 to 149 study subjects. Additionally, Table 1 
contains details regarding scanner manufacturer, acquisition 
method and ADC calculation. Study 13 (4) uses only 
b-values below 150 s/mm2 for calculation of ADC and may 
therefore be considered an outlier.

Factors affecting measurments of ADC

ADC of normal parotid parenchyma

The reported mean ADC values derived from 25 studies 
reporting ADC values of the normal parotid parenchyma 
are illustrated in Figure 2. The ADC values for parotid 
glands range from 0.28×10−3 to 2.42×10−3 mm2/s. 

The effect of gustatory stimulation
Nine studies are using gustatory stimulation during DW-
MRI examinations of the normal parotid parenchyma. Since 
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Table 1 Included studies with the clinical condition of focus, population size, details about scanner manufacturer, acquisition method and ADC 
calculation

Study 
id

Study (Ref. no.) Clinical condition
Population 

size
Scanner 

manufacturer
Acquisition 

method
ADC calculation

1 Kato et al., 2008 (34) Parotid gland tumor 4 Philips EPI, FS NI Mono-exponential

2 Wang et al., 2014 (35) Kimura disease 5 Siemens EPI, FS NI Mono-exponential

3 Terra et al., 2017 (36) Other parotid glands diseases, 
healthy parotid glands

7 GE EPI, FS NI Mono-exponential

4 Doornaert et al.,  
2015 (37)

Irradiated normal parotid 
parenchyma

8 Siemens EPI + HASTE 
(SS-TSE), FS NI

Mono-exponential

5 Dirix et al., 2008 (38) Irradiated normal parotid 
parenchyma

8 Siemens EPI, FS NI Mono-exponential

6 Thoeny et al., 2004 (8) Normal parotid parenchyma 8 Siemens EPI, FS NI Mono-exponential

7 Juan et al., 2015 (10) Irradiated normal parotid 
parenchyma

11 GE EPI, FS NI Mono-exponential

8 Thoeny et al., 2005 (39) Normal parotid parenchyma 12 Siemens EPI, FS NI Mono-exponential

9 Liu et al., 2015 (40) Irradiated normal parotid 
parenchyma, normal parotid 
parenchyma

13 GE EPI, FS NI Mono-exponential

10 Zhou et al., 2016 (41) Irradiated normal parotid 
parenchyma

18 Philips SS-EPI, SPAIR IVIM, Bi-
exponential

11 Louimu et al., 2017 (5) Irradiated normal parotid 
parenchyma

20 GE EPI, FS NI Mono-exponential

12 Kato et al., 2011 (42) Other parotid glands diseases, 
normal parotid parenchyma

20 Philips EPI, STIR Mono-exponential

13 Zhang et al., 2001 (4) Irradiated normal parotid 
parenchyma

21 GE EPI, FS NI Mono-exponential 
b-values below 
150 s/mm²

14 Zhang et al., 2018a (6) Irradiated normal parotid 
parenchyma

23 GE EPI, FS NI Mono-exponential

15 Habermann et al.,  
2007 (43)

Normal parotid parenchyma 27 Siemens EPI, SPIR Mono-exponential

16 Zhang et al., 2013 (44) Irradiated normal parotid 
parenchyma

28 GE EPI, FS NI Mono-exponential

17 Zhou et al., 2017 (45) Irradiated normal parotid 
parenchyma

28 Philips SS-TSE, FS NI Mono-exponential

18 Yoshino et al.,  
2001 (46)

Other parotid glands diseases, 
normal parotid parenchyma

28 Siemens EPI, SPIR Mono-exponential

19 Sumi et al., 2012 (47) Parotid gland tumor 31 Philips EPI, FS NI IVIM, Mono-
exponential

20 Xu et al., 2017 (9) Sjögren's syndrome, normal 
parotid parenchyma

31 Siemens EPI, FS NI Mono-exponential

21 Zhou et al., 2018 (48) Irradiated normal parotid 
parenchyma

32 Philips EPI, FS SPAIR DKI, Mono-
exponential

Table 1 (continued)
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Table 1 (continued)

Study 
id

Study (Ref. no.) Clinical condition
Population 

size
Scanner 

manufacturer
Acquisition 

method
ADC calculation

22 Matsushima et al., 
2007 (49)

Parotid gland tumor 32 NI EPI, FS NI Mono-exponential

23 Juan et al., 2009 (50) Normal parotid parenchyma 33 GE EPI, both FS 
and no-FS, NI

Mono-exponential

24 Marzi et al., 2015 (51) Irradiated normal parotid 
parenchyma

34 GE EPI, FS NI IVIM, Mono-
exponential

25 Zhang et al., 2018b (52) Parotid gland tumor 36 Siemens EPI, FS NI Mono-exponential

26 Matsusue et al.,  
2017 (53)

Parotid gland tumor 36 GE EPI, FS NI Mono-exponential

27 Ikeda et al., 2004 (54) Parotid gland tumor 36 GE EPI, FS NI Mono-exponential

28 Fruehwald-Pallamar  
et al., 2013 (55)

Parotid gland tumor 38 Philips EPI, FS NI Mono-exponential

29 Eida et al., 2007 (56) Parotid gland tumor, normal 
parotid parenchyma

41 Philips EPI, FS NI Mono-exponential

30 Kato et al., 2017 (57) Parotid gland tumor 45 Philips EPI, FS STIR Mono-exponential

31 Milad et al., 2017 (58) Parotid gland tumor 46 Philips EPI, FS NI Mono-exponential

32 Motoori et al.,  
2004 (59)

Other parotid glands diseases, 
parotid gland tumor

46 GE EPI, FS NI Mono-exponential

33 Yabuuchi et al.,  
2008 (60)

Parotid gland tumor 47 Siemens EPI, FS NI Mono-exponential

34 Zhang et al., 2018c (61) Parotid gland tumor 51 Siemens EPI, FS NI Mono-exponential

35 Sumi et al., 2002 (62) Sjögren's syndrome, other 
parotid glands diseases, 
normal parotid parenchyma

58 GE EPI, FS NI Mono-exponential

36 Ma et al., 2018 (63) Parotid gland tumor 60 Siemens EPI, FS NI Mono-exponential

37 Regier et al., 2009 (64) Sjögren's syndrome, normal 
parotid parenchyma

65 Siemens EPI, FS NI Mono-exponential

38 Sun et al., 2019 (65) Parotid gland tumor, normal 
parotid parenchyma

65 Philips EPI, TSS, FS NI Mono-exponential

39 Ries et al., 2008 (66) Other parotid glands diseases, 
normal parotid parenchyma

71 Siemens EPI, FS SPIR Mono-exponential

40 Celebi et al., 2013 (67) Other parotid glands diseases 75 GE EPI, FS STIR Mono-exponential

41 Wang et al., 2001 (68) Parotid gland tumor 97 Siemens EPI, FS NI Mono-exponential

42 Chang et al., 2014 (69) Normal parotid parenchyma 100 GE EPI, both FS 
and no-FS, NI

Mono-exponential

43 Habermann et al.,  
2009 (70)

Parotid gland tumor 149 Siemens EPI, FS SPAIR Mono-exponential

Philips, Philips Medical Systems, Best, Netherlands; Siemens, Siemens Medical Systems, Erlangen, Germany; GE, General Electric 
medical Systems, Milwaukee, WI, USA; EPI, echo planar imaging; HASTE, half-fourier acquisition single-shot turbo spin-echo; IVIM, 
intravoxel incoherent motion; DKI, diffusion kurtosis imaging; SPAIR, spectral pre-saturation attenuated inversion recovery; STIR, short-tau 
inversion recovery; SS, single-shot; TSE, turbo spin-echo; TSS, transversal single-shot; FS, fat-suppression; NI, type not indicated.
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the parotid glands produce only about one-thirds of the 
total saliva at rest and about two-thirds of the total saliva 
during gustatory stimulation, more valuable information 
regarding secretory function of parotid glands can be 
acquired by DW-MRI during gustatory stimulation (39,44). 
The nine studies using gustatory stimulation during DW-
MRI examinations are listed in Table 2 together with the 
stimulating agent applied during the stimulation. The 
mean ADC values from those nine studies vary from  
0.92×10−3 to 1.49×10−3 mm2/s (Figure 3). 

All the studies where parotid glands were scanned 
both at rest and under gustatory stimulation observed a 
significant increase in ADC values after stimulation (at rest, 
1.08±1.14×10−3 mm2/s, stimulated, 1.22±1.19×10−3 mm2/s,  
matched pairs t-test (Excel 2019, ver. 16.0, Microsoft 
Corporation, Washington, USA), P=0.003 (Figure 4), but 
the pattern of response to gustatory stimulation and the 
stimulating agent used varied considerably. In the studies 

5 and 8 a 500 mg tablet of ascorbic acid was used as the 
stimulating agent. The patients were advised to let the 
tablet dissolve in their mouths, not to chew on it. This 
resulted in an initial decrease and subsequent increase in 
the ADC values. On the other hand, studies 15, 30 and 39, 
having used lemon juice as a stimulant, and 11, 14, and 16, 
who performed the gustatory stimulation with six tablets 
and two instantly bitten tablets of 100 mg of ascorbic acid, 
reported an initial increase and subsequent fluctuation in 
the ADC values. This may be explained by the quicker 
saliva production as a response to more immediate 
stimulation such as lemon juice, higher number of tablets 
or instantly bitten tablets of ascorbic acid are likely to 
stimulate simultaneously more receptors than a single 
slowly dissolving tablet of ascorbic acid does.

There are also differences in when and how frequent 
DW-MRI were acquired during gustatory stimulation  
(Table 2). Some of the studies (Study id: 15, 37, 39) 

Figure 2 Mean apparent diffusion coefficient (ADC) of normal parotid parenchyma. Numbers indicate study id.
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Table 2 Studies using gustatory stimulation under DW-MRI scans

Study id Stimulating agent DWI acquisition

5 One 500-mg tablet of ascorbic acid Repeated 8 times with intervals of 30 s

8 One 500-mg tablet of ascorbic acid Continuous series without time interval between them (range, 24–28 min)

11 Two 500-mg tablet of ascorbic acid Repeated 10 times

12 5 mL of a commercially available lemon juice Repeated 9 times without a time interval

14 Six 100 mg tablets of ascorbic acid Repeated 7 times with intervals of 18 s

15 5 mL of a commercially available lemon juice 30 seconds after stimulation, the DW sequence was repeated

16  Six 100 mg tablets of ascorbic acid Repeated 7 times with intervals of 18 s

37 5 mL of a commercially available lemon juice 30 seconds after stimulation, the DW sequence was repeated

39 5 mL of a commercially available lemon juice 30 seconds after stimulation, the DW sequence was repeated
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performed only one DW-MRI scanning 30 seconds 
after stimulation, while the others repeated the sequence 
7–10 times during stimulation (Study id: 5, 8, 11, 12, 
14, 16). There seems to be no difference in mean ADC 
values between these two groups of studies (One DW-
MRI scanning 30 seconds after stimulation, three studies, 
mean ADC =1.19±0.02×10−3 mm2/s; Repeated sequence 
7–10 times during stimulation, six studies, mean ADC 
=1.29±0.27×10−3 mm2/s).

The effect of b-values
Figure 5 shows the distribution of b-values used for ADC 
measurement in the 43 studies included in this review. 

The most frequent individual choices are b=0 s/mm2 and 
b=1,000 s/mm2 (Figure 6), and the combination of these 
two which is present in 33 % of the studies. The use of  
b=500 s/mm 2 in combination with b=0 s/mm2 and  

b=1,000 s/mm2 is reported in 11 studies (24 %). The overall 
most frequent range is b=0 s/mm2 to b=1,000 s/mm2 which 
is reported in 60% of the studies. Furthermore, only three 
studies exceed b=1,000 s/mm2 (Study id: 3, 18, 21), of which 
one extended to b=2,000 s/mm2 (Study id: 21). In the latter 
study a higher field strength (3 T) was used compared to the 
other two studies (1.5 T), which might explain the choice 
of the much higher b-value (diffusional kurtosis was also 
reported which also requires high b-values). Multiple b-values 
(b>3) are used in 11 studies, 5 of which acquire most of their 
b-values up till b=300 s/mm2. Six studies avoid the use of low 
b-values (Study id: 3, 5, 8, 29, 31, 35).

The b-value profiles shown here (Figure 5) reflects that the 
typical radiology DWI-MRI protocol is acquired with two 
b-values only, a high b-value, typically 800 or 1,000 s/mm2,  
and 0 s/mm2 (i.e., without diffusion weighting).

In the high end of the b-value range (typically above 
1,000 s/mm2 for most clinical systems), there is a risk that 
the measurement has very low SNR. For this reason, it is 
advised to assess the SNR at the highest b-value planned 
for the study with the intended coil setup. A generally valid 
way of increasing the SNR is by increasing the number of 
signals averaged. This however does not remove the bias 
from the measurement if the initial SNR is too low (13) 
and results in an underestimated ADC value if not properly 
dealt with in the post-processing step (71).

For the examination of the effect of choice of different 
b-values on ADC measurements of normal parotid 
parenchyma 25 studies are selected. Figure 7 shows how 
the choice of different b-values affect calculation of ADC. 
It is seen that if only low b-values are used (<300 s/mm2),  
like in study 13, it will lead to higher ADC values. This 
was in particular demonstrated in study 6, study of 

Figure 3 Mean apparent diffusion coefficient (ADC) of normal parotid parenchyma under gustatory stimulation. Numbers indicate study id.
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Figure 5 Overview of the variation in b-values in all 43 included studies.
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the influence on b-values on the ADC of the parotid 
gland. When lower b-values were included in a mono-
exponential model higher ADC was obtained. This increase 
in ADC is related to the signal contribution of the so-
called IVIM which stems from capillary perfusion (14).  
This means that if two exponentials are required to 
model data properly, and if the ADC is calculated from all 
acquired b-values using a mono exponential model, it will 
be overestimated (72). Studies 10 and 19 acquired DW-
MRI with both lower and higher b-values but accounted for 
capillary perfusion with the IVIM formalism and arrived 

at lower ADC values. In the other hand, the use of high 
b-values in absence of b=0 s/mm2 will lead to low ADC 
values. This is also indicated in this overview where six 
studies avoided use of low b-values (Figure 7).

The effect of ROI definition method
From the examined literature, region of interest (ROI) 
selection methods can be divided into four groups: whole-
gland ROI, ROI on the slice with largest parotid gland cross 
section, ROI selected on 3 contiguous slices, and reader-
based circular ROI in selected slices (Figure 8).

Figure 7 Reported mean apparent diffusion coefficient (ADC) values of the normal parotid parenchyma and the corresponding b-values 
configurations. Horizontal lines indicate that b-values belong to the same acquisition.

2.50

2.25

2.00

1.75

1.50

1.25

1.00

0.75

0.50

0.25

M
ea

n 
A

D
C

 (×
10

–3
m

m
2 /s

)

b-values (s/mm2)
100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500 1600 1700 1800 1900 20000



3822 Bruvo and Mahmood. ADC measurement of the parotid gland parenchyma

© Quantitative Imaging in Medicine and Surgery. All rights reserved.   Quant Imaging Med Surg 2021;11(8):3812-3829 | http://dx.doi.org/10.21037/qims-20-1178

Table 3 shows an overview of ROI selection methods 
in the 25 studies describing delineation of normal 
parotid parenchyma. There is no significant difference 
in mean ADC values between the four ROI selection 
methods (reader-based circular ROI in selected slices, 
mean ADC =1.08±0.60×10−3 mm2/s, whole-gland ROI, 
mean ADC =0.90±0.30×10−3 mm2/s, ROI on the slice 
with largest parotid gland cross section, mean ADC= 
0.93±0.18×10−3 mm2/s, ROI selected on 3 contiguous slices, 
mean ADC =1.06±0.26×10−3 mm2/s, The one-way analysis 
of variance (ANOVA) (Excel 2019, ver. 16.0, Microsoft 
Corporation, Washington, USA, P=0.75).

Study 20 performed ROC analysis based on whole-gland 
ROI, selected slice ROI on the largest slice and reader-
based circular ROI. This analysis relived no significant 
difference in ADC values between the three ROI selection 
methods. On the other hand, the same study showed that 
the best inter- and intra-reader agreement during ROI 
placement, and the best diagnostic ability in detecting 
parotid gland abnormality was achieved using whole-gland 
ROI method. The study pointed out that whole-gland ROI 
method is significantly more time consuming which might 
be a distinct obstacle to its routine application in clinical 
practice. In contrast, it points out that the selected slice 
ROI approach significantly reduce the delineation time 
while showing comparable diagnostic performance and is 
recommended for routine clinical practice. Reader-based 
circular ROI was not recommended because of the relatively 
lower inter-reader agreement and diagnostic performance. 

Study 38 performed ADC measurements with defined 12 
concentric round ROIs (areas: 9, 28, 34, 50, 60, 82, 93, 98, 
115, 130, 136, and 149 mm2). This study revealed that there 
were no significant differences in mean ADCs with the 12 
ROIs for normal parotid parenchyma.

Irradiated normal parotid parenchyma 

For the examination of the effect of irradiation on ADC 
measurements of normal parotid parenchyma 10 studies 
that report both mean dose to the parotid glands and mean 
ADC values are selected (Study id: 4, 5, 7, 10, 11, 13, 14, 16, 
17, 21). Study 13, using only low b-values, which therefore 

Figure 8 Number of studies divided into the different delineation 
strategies.

Whole-gland ROI

Reader-based circular ROI in 
selected slices

ROI selected on 3 contiguous 
slices

ROI on the slice with largest 
parotid gland cross section

Table 3 ROI definition methods from 25 studies describing 
delineation of normal parotid parenchyma

Study id ROI definition method

4 Reader-based circular ROI: Three 7 mm ROIs

5 Whole-gland ROI

6 Reader-based circular ROI: One ROI

7 Selected slice ROI on the largest slice

8 Whole-gland ROI

9 Whole-gland ROI

10 Selected slice ROI on the largest slice

11 Whole-gland ROI

12 Selected slice ROI on the largest slice

13 Reader-based circular ROI: One 9.4 mm ROI on 4 
DWI images

14 Selected slice ROI on 3 contiguous slices

15 Selected slice ROI on the largest slice

16 Selected slice ROI on 3 contiguous slices

17 Whole-gland ROI

18 Reader-based circular ROI: 3–4, 100–200 pixels 
ROIs

20 Whole-gland ROI; Selected slice ROI on the largest 
slice; Reader-based 3 circular ROI

21 Selected slice ROI on 3 contiguous slices

23 Selected slice ROI on 3 contiguous slices

24 Selected slice ROI on 3 contiguous slices

29 Selected slice ROI on the largest slice

35 Whole-gland ROI

37 Whole-gland ROI

38 Reader-based circular ROI: 12 concentric round 
ROIs

39 Whole-gland ROI

42 Selected slice ROI on 3 contiguous slices

ROI, region of interest.
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more likely is a measure of so-called pseudo diffusion from 
perfusion and saliva flow, rather than true diffusion, was also 
excluded, leaving nine studies to be examined.

The effect of radiation dose
There is a significant difference between pre-RT ADC and 
post-RT ADC values based on the nine studies examined 
(pre-RT, mean ADC =0.92±0.21×10−3 mm2/s, post-RT, 
mean ADC =1.31±0.28×10−3 mm2/s, matched pairs t-test 
(Excel 2019, ver. 16.0, Microsoft Corporation, Washington, 
USA), P<0.001). The changes in mean ADC values were 
all positive, i.e., post RT ADC were higher than pre-RT 
ADC. A very early in-treatment transient reduction in 
ADC followed by a steady increase can be indicative of 
good response (73). This can be attributed to cell swelling 
(cytotoxic edema) followed by necrosis and lysis resulting in 
reduced cellularity (1,18).

There was a weak correlation between the change in 
ADC and the mean dose to the parotid glands (R2 =0.17) 
(Figure 9).

The relationship between the mean dose to the salivary 
glands and changes in ADC in the unstimulated state has 
been investigated by studies 4, 7, 11, 21 and 24. Study 24 
found no significant correlation between ADC changes 
and mean dose to the parotid glands. Meanwhile, study 4 
found a slight correlation (r =0.33) between mean dose to 
the salivary glands and changes of ADC at 2 to3 months 
after end of the RT course. Study 11 was the first study to 
confirm a dose-response relationship in ADC changes in a 
longer term follow up. The increase in ADC was evident in 
irradiated salivary glands, and correlated with mean dose (at 
rest, r=0.61, P<0.001; under stimulation, r=0.48, P<0.01). 

Study 7 found that the parotid gland ADC was positively 
associated with the radiation dose (R2 =0.212, P=0.0001). 
Study 21 showed no correlation between ADC values and 
mean radiation dose.

The effect of post radiotherapy timing of DW-MRI
Post RT treatment timing vary from 7 days (Study id: 14) 
to 270 days (Study id: 5) in the nine included studies. This 
wide range in the timing of the DW-MRI can influence 
changes in mean ADC considerably, since the radiation 
induced damage of salivary gland is most pronounced in the 
acute phase (0–10 days) and early phase (10–60 days) after 
RT dye to loss of acinar cells and glandular shrinkage (28),  
and after that a partial restitution of parotid gland function 
can appear during the first two years after RT (74). Therefore, 
the largest changes in mean ADC values are expected 
within the first 60 days after end of the RT course (10).  
This is indeed seen in the reviewed data (Figure 10), as a 
slight negative correlation between changes in mean ADC 
pre-post values and time point of post treatment (R2 =0.39). 

Study 7 reported longitudinal evaluation of parotid glands 
after DWI-MR examinations 51.2±15.9 days (time point 
1), 240.3±54.6 days (time point 2), and 489.3±99.2 days  
(time point 3) after RT. The ADC post-RT was highest at 
time point 1 and decreased through time point 2 and 3. At 
time point 3, although the ADC post was still higher than 
pre-RT ADC, the difference was not significant (P=0.153) 
while the post-RT ADC was significantly higher at time 
point 1 (P<0.005) and 2 (P<0.005) than pre-RT ADC, 
respectively. Similar results were obtained from study 14 
where parotid ADC values showed an increase one week 
after RT (pre RT, mean ADC =1.26±0.10×10−3 mm2/s,  

Figure 9 The change in apparent diffusion coefficient (ADC) from pre-RT to post-RT as a function of mean dose (28.4–53.9 Gy). R2-
correlation coefficient. Numbers indicate study id.
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Figure 10 Apparent diffusion coefficient (ADC) change from pre-RT to post-RT plotted as function of post treatment time in days (7–270 
days). R2-correlation coefficient. Numbers indicate study id. 
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one week after RT, mean ADC =1.75±0.16×10−3 mm2/s,  
P<0.001), followed by a decrease at one year after RT 
(one year post-RT, mean ADC= 1.57 ± 0.15×10−3 mm2/s, 
P<0.001).

Other factors influencing ADC

During the review process other potential ADC modulating 
factors were disclosed. 

It is known that saliva flow rates display circadian 
variation (21,22), and thus ADC may show a similar rhythm. 
Only one study (Study id:16) performed all DW-MRI 
examinations around the same time of day. In this study 
patients were also asked not to eat or drink at least one hour 
prior to examination to secure that parotid glands were at 
rest at time of the examination. Examinations performed 
under the same physical conditions and at the same time of 
day are crucial for reproducibility of examinations (75).

The negative association between parotid ADC of 
healthy volunteers and age has been shown in previous 
studies (76). The age-related changes in the parotid 
glands is therefore another factor that can influence ADC 
measurements but has not been separately analyzed in any 
of the included studies.

Different diets and nutritional states by the time of 
examination, different seasons and temperatures, smokers vs. 
non-smokers, medications, certain medical conditions, and 
differences in race may also influence the saliva production 
and therefore changes in the ADC (77-80). Further, there is 
a high inter-individual variability of saliva production (up to 
40–50%) in healthy volunteers (80,81). This suggests that 
ADC variability could be considerable due to this natural 
difference in parotid function. One way to mitigate this effect 
is by conducting longitudinal studies to assess the individual 
changes in ADC allowing for linear mixed effect analyses.

Conclusion

The review analyses revealed a discrepancy in the reported 
ADC values of the parotid gland based on 43 clinical 
studies. The analysis indicates that technical differences 
related to trial design, MRI acquisition and post-processing 
can be potential culprits but may not explain all of the 
variation in measured ADC values.

Lack of standardization of ADC measurement potentially 
restricts inter-study comparisons and hampers the effort 
towards validation of ADC as a biomarker in the parotid 
gland. Conclusions based on the reviewed studies and 
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recommendations for the future studies are listed in Table 4.
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