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Background: Artificial intelligence (AI) products have been widely used for the clinical detection of 
primary lung tumors. However, their performance and accuracy in risk prediction for metastases or benign 
lesions remain underexplored. This study evaluated the accuracy of an AI-driven commercial computer-aided 
detection (CAD) product (InferRead CT Lung Research, ICLR) in malignancy risk prediction using a real-
world database.
Methods: This retrospective study assessed 486 consecutive resected lung lesions, including 320 
adenocarcinomas, 40 other malignancies, 55 metastases, and 71 benign lesions, from September 2015 to 
November 2018. The malignancy risk probability of each lesion was obtained using the ICLR software based 
on a 3D convolutional neural network (CNN) with DenseNet architecture as a backbone (without clinical 
data). Two resident doctors independently graded each lesion using patient clinical history. One doctor 
(R1) has 3 years of chest radiology experience, and the other doctor (R2) has 3 years of general radiology 
experience. Cochran’s Q test was used to assess the performances of the AI compared to the radiologists.
Results: The accuracy of malignancy-risk prediction using the ICLR for adenocarcinomas, other 
malignancies, metastases, and benign lesions was 93.4% (299/320), 95.0% (38/40), 50.9% (28/55), and 40.8% 
(29/71), respectively. The accuracy was significantly higher in adenocarcinomas and other malignancies 
compared to metastases and benign lesions (all P<0.05). The overall accuracy of risk prediction for R1 was 
93.6% (455/486) and 87.4% for R2 (425/486), both of which were higher than the 81.1% accuracy obtained 
with the ICLR (394/486) (R1 vs. ICLR: P<0.001; R2 vs. ICLR: P=0.001), especially in assessing the risk of 
metastases (P<0.05). R1 performed better than R2 at risk prediction (P=0.001). 
Conclusions: The accuracy of the ICLR for risk prediction is very high for primary lung cancers but poor 
for metastases and benign lesions. 
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Introduction

In recent years, there has been a marked increase in the 
use of low-dose computed tomography (CT) screening 
for lung cancers. This, together with the subsequent early 
diagnosis and treatment of patients, has dramatically 
increased radiologists’ workload. According to the white 
paper on medical imaging using artificial intelligence (AI) 
in China that was issued in 2019, the number of chest CT 
examinations in China has been increasing at a rate of 30% 
every year, whereas the number of radiologists has only 
been increasing at a rate of 4% (1). Therefore, there is a 
strong demand for the development of accurate computer-
aided detection (CAD) tools in this context. At present, 
CAD products based on AI can detect pulmonary nodules 
with low false-positive rates (2,3) and provide quantitative 
information on nodules, such as size, volume, consistency, 
location, and probability of malignancy, and even compare 
images from multiple time points to automatically calculate 
the volume doubling time (1,4-6). AI products are often 
used as a first-line or second-line radiography reader (7-9).  
This greatly improves the efficiency of radiologists and 
the detection rate of pulmonary nodules and reduces the 
number of missed nodules and misdiagnoses (3,10-13). 

AI-driven computer-aided diagnosis (CADx) is a non-
invasive, objective solution for assisting radiologists in 
diagnosing lung nodules. Existing CADx methods fall into 
two categories: classification models based on hand-crafted 
features (14) and deep neural networks with automatic 
feature extraction (15-17). Approaches in the first category 
typically measure radiological traits, such as nodule size, 
location, shape, and texture, and adopt a classifier to 
determine malignancy status. In the second category, 
models based on deep neural networks can automatically 
learn features for diagnosis from lung CT images. Both 
two-dimensional (2D) convolutional neural networks 
(CNNs) and three-dimensional (3D) CNNs are commonly 
used deep learning models in AI-driven CADx systems. 
While 2D CNNs have lower computational complexity, 
3D CNNs can better analyze pulmonary nodules’ spatial 
structure (4). Indeed, CADx systems have shown promising 
prediction accuracy for lung nodules’ risk stratification (4,5).

The availability of AI-driven lung nodule detection 
products has gradually increased and is now widely used 
in the clinical frontline to reduce radiologists’ workload 
and improve diagnostic efficiency. On July 3rd, 2020, 
a deep learning-based AI product developed by Beijing 
Infervision Technology Co., Ltd. (China) became the first 

U.S. FDA-approved automated lung nodule detection 
product. Understanding the advantages and disadvantages 
of this AI product is crucial to its clinical applicability. 
The use of AI products in the clinic has primarily focused 
on automatic pulmonary nodule detection (3,5,11) and 
classification (2,4,5,10) to identify primary lung tumors 
(4,5). Furthermore, AI products have mainly been trained 
using screening cohorts or public databases, such as the 
Lung Image Database Consortium and Image Database 
Resource Initiative (LIDC-IDRI) database. However, their 
performance and accuracy in risk prediction of nodules or 
mass lesions with different underlying pathology, especially 
metastases and benign lesions, has not been examined in 
clinical practice. 

This investigation used real-world data to evaluate risk 
prediction accuracy for a wide range of abnormalities in a 
clinical cohort using an AI-driven lung nodule algorithm 
provided by Beijing Infervision Technology Co., Ltd. 
This AI model was based on a 3D CNN with DenseNet 
architecture as a backbone. The accuracy of risk prediction 
by the algorithm was compared to that of two resident 
doctors in our department. This data will help to improve 
our understanding of the current AI products available and 
their use in the clinic.

Methods

Case selection 

The ethics committee approved this retrospective study 
of the Fifth Affiliated Hospital of Sun Yat-sen University. 
Patient informed consent was waived as the study had 
minimal risk and would not adversely affect the patient’s 
rights or welfare. Two datasets were compiled using an in-
house-developed Radiology Information System/Picture 
Archiving and Communication System search engine. 
Patients who underwent lung resection in our institution 
between September 2015 and November 2018 were 
identified. The following inclusion criteria were applied: (I) 
patients with surgically resected and histologically proven 
lung nodules or masses; and (II) surgery within one month 
from the last CT scan. The following exclusion criteria 
were applied: (I) no available presurgical non-contrast thin-
section (≤ 2 mm) chest CT scan; (II) diffuse disease; (III) 
CT images with severe breathing or other motion artifacts; 
(IV) presurgical chemotherapy or radiotherapy treatment; 
(V) lesions not detected by the AI algorithm; and (VI) 
lesions with detection errors when using the AI algorithm 
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(for example, one large lesion was mis-detected as multiple 
lesions). Moreover, this study utilized the Faster RCNN 
model to detect lesions. The study workflow is displayed in 
Figure 1.

The management protocols were as follows: (I) the 
I-ELCAP protocol was used for nodule screening and 
detection, and the Fleischner society and the National 
Comprehensive Cancer Network (NCCN) guidelines 
were applied for incidental nodules; (II) a multidisciplinary 
team (MDT) discussion on growing subsolid nodules was 
conducted during follow-up; (III) the patient’s wishes 
were accommodated where possible, especially those 
who are nervous and anxious. Subsolid nodules <10 mm 
were resected for the following reasons: (I) the smaller 
accompanying lesions were removed together with, the 
larger lesions, and this accounted for most cases; and (II) 
the patients strongly requested surgery.

Some of the cases included in this current investigation 
were also in our previous studies, which focused on the 
quantitative radiomic model for predicting solid nodules’ 
(SNs) malignancy (18-20).

CT image acquisition

Non-contrast CT scans were acquired in a single-breath 
hold during full inspiration using three CT scanners, 
Somatom Sensation 16 (S16), Definition Flash (DF) 
(Siemens Medical Solutions, Forchheim, Germany), and 
Uct760 (United Imaging; Shanghai, China). The scanning 
range was from the lung apex to the base. All images 

were obtained with a standard dose scanning protocol 
and reconstructed at 1.0-mm or 2.0-mm slice-thicknesses 
with 0.7-mm to 1-mm increments, 512×512 matrix, and a 
moderate or high reconstruction kernel (b50f, b60f, b70f 
for S16 and DF; sharp for Uct760). The lung window 
setting used a window level of -600 Hounsfield units (HU) 
and a window width of 1,500 HU. The mediastinal window 
setting used a window level of 40 HU and a window width 
of 400 Hu.

Evaluation by a computer-aided diagnostic system

The AI-driven commercial CAD product (InferRead CT 
Lung Research, ICLR), which utilizes a detection and 
risk prediction model, was provided by Beijing Infervision 
Technology Co., Ltd. (Beijing, China).

To train the detection model, a total of 11,205 CT scans 
with 3,527,048 image slices were collected from multiple 
hospitals in China. The scanning devices included GE 
MEDICAL SYSTEMS, Siemens, Philips, and TOSHIBA. 
Two radiologists (radiologists A and B) with approximately 
10 years’ experience independently reviewed the CT 
scans and the corresponding radiology reports to label 
the locations and specific attributes of the pulmonary 
nodules or mass lesions in the image slices. In the case 
of disagreements, the annotation was checked by a third 
radiologist (radiologist C) with 15 years’ experience, and 
a consensus was reached by discussion. This study utilized 
the Faster RCNN model (21) to detect the nodules. The 
AI model utilized in the current study was a Region-based 

Figure 1 Study workflow for patient recruitment. CT, computed tomography; ICLR, InferRead CT Lung Research.

Cases from single center

Surgical resected and pathologically confirmed
pulmonary lesions from Sep, 2015 to Nov, 2018

485 patients with 568 lesions

Excluded 43 lesions in 43 patients
• Without available pre-surgical non-contrast thin-section 

(≤2mm) chest CT scans (29 lesions in 29 patients)
• With diffuse diseases (14 lesions in 14 patients)

Excluded 39 lesions in 28 patients
• Non-detectable lesions (20 lesions in 14 patients)
• Lesions with detected error (19 lesions in 14 patients)

ICLR detection
442 patients with 525 lesions 

Evaluation of risk prediction of ICLR
414 patients with 486 lesions 
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CNN for object detection, which consisted of two modules. 
The first was the regional proposal network (RPN), a fully 
convolutional network for generating object proposals. The 
second was the Fast R-CNN detector which aimed to refine 
the proposals generated by the first module. Compared to 
the previous two versions (i.e., R-CNN and Fast R-CNN), 
the Faster R-CNN had better performance and faster 
processing speed, with the less computational burden 
(21,22).

For training of the risk prediction model, training data 
including 5,000 benign and 3,604 malignant nodules or 
mass lesions were prepared. Among the malignant training 
samples, adenocarcinomas accounted for 93.8% of all 
lesions. Squamous cell carcinomas, other primary malignant 
tumors, and metastases accounted for 4.2%, 1.0%, and 1.0% 
of all lesions, respectively. Biopsy or surgery was performed 
in all malignant cases to determine the characteristics 
of the lesion. Among benign samples, approximately 
21% were highly suspected of being malignant and were 
biopsy- or surgery-proven. The remaining 79% were 
confirmed through long-term follow-up and judged as 
benign by experienced radiologists. These lesions had 
obvious benign features, and most were small nodules 
less than 20 mm. This study utilized a CNN based on the 
ResNet-34 framework as the risk prediction model. The 
fully connected layer’s output was fed into the sigmoid layer 
to acquire the risk probability of lung nodule malignancy. 
A detailed description relating to the risk prediction model 
can be found in our previous study (23).

When radiologists used the CAD product, the imaging 
data were transmitted to an ICLR workstation post-
anonymization. After processing by the workstation, the 
probability of malignancy was recorded. The probability was 
divided into three levels, namely, low-risk (<50%), moderate-
risk (50–70%), and high-risk (>70%). The division criteria 
were determined based on the training model results derived 
from the larger data set and internal verification.

Image interpretation by radiologists

Two thoracic radiologists, each with 12 and 17 years of 
experience, were blinded to the ICLR system’s results. 
Each independently interpreted the CT images using an 
institutional digital database system (PACS, V5.5.4.50720, 
Neusoft, Shenyang, China). Any disagreements were 
resolved by a third radiologist with 30 years of experience. 
Consistency, size, and distribution were recorded for each 
lesion. If the lung parenchyma within the entire nodule 

was obscured, it was classified as a SN, even if there was 
external or internal cystic airspace or internal cavitation. 
If the underlying parenchyma was visible except for 
branching blood vessels within the nodule, it was classified 
as a nonsolid nodule (NS). If the nodule had nonsolid 
components and solid components, it was classified as a 
part-solid nodule (PS) (24). The overall size was determined 
based on the maximum diameter on 3D images. Lesions 
were divided into four subgroups (size10mm, size20mm, size30mm, 
and size>30mm) based on size, representing lesions of ≤10, 
10–20, 20–30, and >30 mm, respectively. Lesions in the 
lower lobes were regarded as lower lobe lesions, and lesions 
in both the upper and right middle lobes were classified as 
upper lobe lesions. 

Observer study

To compare the deep learning system with human 
performance, two radiology resident doctors [one with 
3 years of chest radiology training (R1) and one with  
3 years of general radiology training (R2)], were blinded 
to the results of the ICLR system and pathology. Both 
independently reviewed and graded each lesion. Lesions 
were divided into three categories, namely, malignant (high-
risk, >70%), suspicious for malignancy (moderate-risk, 50–
70%), and benign (low-risk, <50%). The doctors were given 
access to associated patient demographics, clinical history, 
and prior CT images.

Histological classification

Four histological types, including adenocarcinoma, other 
malignancy, metastatic, and benign, were evaluated in our 
study. The histopathologic classification of adenocarcinomas 
was based on the IASLC/American Thoracic Society/ERS 
classification (25) and included preinvasive lesions [atypical 
adenomatous hyperplasia (AAH) and adenocarcinoma in 
situ (AIS)], minimally invasive adenocarcinomas (MIA), and 
invasive adenocarcinomas (IA). Another malignancy refers 
to the 2015 World Health Organization classification of 
malignant lung tumors, except for adenocarcinomas and 
metastatic tumors (26).

Statistical analysis

Categorical variables were summarized as percentages. 
Continuous variables were summarized as means ± standard 
deviations. Differences were evaluated with Chi-square 
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tests for categorical variables. Differences between groups 
were tested with Bonferroni correction. To calculate 
malignancy risk prediction accuracy, a true result was 
defined as a benign lesion that was predicted as low-risk or 
a malignant lesion that was predicted as moderate- or high-
risk. Otherwise, it was defined as a false result. Cochran’s 
Q test was used to compare the malignancy risk prediction 
performance between ICLR, R1, and R2. A P value <0.05 
was considered statistically significant. Statistical analysis 
was performed using IBM SPSS Statistics for Windows, 
Version 25.0 (IBM Corp., Armonk, NY, USA).

Results

The detection rate of nodules

A total of 485 patients with 568 lesions met the inclusion 
criteria. Among them, 29 lesions in 29 patients without 
available presurgical non-contrast thin-section chest CT, 14 
lesions in 14 patients with diffuse disease, 20 non-detectable 
lesions in 14 patients, and 19 lesions in 14 patients with 
detection errors in the AI algorithm were excluded. The 
non-detectable lesions included 6 endobronchial lesions, 3 
perihilar lesions, 7 adhesive lesions (lesions were attached 
to the mediastinum in 3 cases, attached to the pleural 
effusion in 2 cases, attached to the inflammatory exudate 
in 2 cases), a large mass attached to the costal pleura in 
1 case, 2 cases with patchy appearance, and 1 case with a 
3-mm NS nodule. Detailed information regarding the 20 
non-detectable lesions and 19 lesions with detection errors 
are shown in Tables S1 and S2, respectively. Examples are 
shown in Figures S1 and S2. 

The remaining 486 lesions in 414 patients (including 
218 males and 196 females) were used for malignancy 
risk evaluation using the ICLR. The detection rate was 
92.6% (486/525), suggesting that the Faster RCNN 
utilized in this study had good lung nodule detection 
performance. There were 342, 52, and 10 patients with 
1, 2, and 3 resected lesions, respectively. The average age 
was 58.4±11.0 years (range, 28 to 81 years). The average 
nodule size was 20.7±13.7 mm (range, 3.0–78.7 mm),  
and there were 90 NS, 75 PS, and 321 SN lesions. A 
total of 320 adenocarcinomas, 40 other malignancies, 55 
metastases, and 71 benign lesions were detected, with 
mean sizes of 20.1±12.1 mm (3.0–78.7 mm), 37.7±16.6 mm  
(11.0–77.6 mm), 15.3±10.5 mm (3.0–69.0 mm), and 
17.3±13.7 mm (3.0–73.0 mm), respectively. Characteristics of 
the patient cohort are shown in Table 1.

Accuracy of malignancy-risk prediction by the ICLR

Out of the 486 lesions, 79 were classified by the ICLR 
as low-risk, 40 were moderate-risk, and 367 were high-
risk. The malignancy risk prediction categories obtained 
from the ICLR and the corresponding pathological 
classification (benign and malignant) for each category 
are shown in Table 2 .  The overall accuracy of risk 
prediction was 81.1% (394/486). The accuracy of risk 
prediction was significantly different based on size, 
consistency, and pathology, but no significant difference 
was observed among different scanners, slice thicknesses, 
and lobe distributions. Factors affecting the accuracy of 
malignancy-risk prediction by the ICLR are summarized 
in Table 3.

The accuracy of malignancy-risk prediction in the  
size10mm, size20mm, size30mm, and size>30mm subgroups was 
74.5% (82/110), 77.5% (145/187), 87.8% (86/98), and 
89.0% (81/91), respectively. The risk prediction accuracy 
for lesions larger than 20 mm was slightly higher than that 
for lesions smaller than 20 mm. However, there was no 
significant difference in the accuracy of prediction in any of 
the size subgroups.

The accuracy of malignancy-risk prediction for NS, PS, 
and SN lesions was 94.4% (85/90), 94.7% (71/75), and 
74.1% (238/321), respectively. The risk prediction accuracy 
for NS and PS lesions was significantly higher than that for 
SN lesions (NS vs. SN, P<0.05; PS vs. SN, P<0.05). 

The accuracy of malignancy-risk prediction for 
adenocarcinomas, other malignancies, metastases, and 
benign lesions was 93.4% (299/320), 95.0% (38/40), 50.9% 
(28/55), and 40.8% (29/71), respectively. The risk prediction 
accuracy for primary lung cancer was significantly higher 
than that for metastases and benign lesions (all P<0.05). 

Accuracy of risk prediction of the ICLR in lesions with 
different histological types and sizes

The accuracy of risk prediction for adenocarcinomas in the 
size10mm, size20mm, size30mm, and size>30mm subgroups was 87% 
(59/68), 91% (116/127), 99% (72/73), and 100% (52/52), 
respectively. For other malignancies, the accuracy of risk 
prediction for the different size subgroups was 0% (0/0), 
88% (7/8), 100% (6/6), and 96% (25/26), respectively. For 
metastases, the accuracy of risk prediction for the different 
size subgroups was 20% (4/17), 60% (15/27), 70% (5/7), and 
100% (4/4), respectively, and for benign lesions, it was 76% 
(19/25), 28% (7/25), 25% (3/12), and 0% (0/9), respectively.

https://cdn.amegroups.cn/static/public/QIMS-20-1314-supplementary.pdf
https://cdn.amegroups.cn/static/public/QIMS-20-1314-supplementary.pdf
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Table 1 Patient characteristics

Characteristics Validation sets

Patient demographics

No. of patients 414

Age, mean ± SD, years 58.4±11.0

Female 196 (44.3)

Smoking history

Non-smoker 278 (67.2)

Current smoker 82 (19.8)

Former smoker 54 (13.0)

Tumor history 96 (23.2)

Image quality distribution

CT scanner

Siemens DF 382 (78.6)

Siemens S16 76 (15.6)

uCT 760 28 (5.8)

Slice thickness

1 mm 394 (81.1)

2 mm 92 (18.9)

Dose

Standard 476 (97.9)

Low 10 (2.1)

Pulmonary lesion information

No. of lesions 486

Location

Right upper lobe 144 (29.6)

Right middle lobe 46 (9.5)

Right lower lobe 98 (20.2)

Left upper lobe 115 (23.7)

Left lower lobe 83 (17.1)

Size, mean ± SD, mm 20.7±13.7

Size subgroup

≤10 mm 110 (22.6)

10–20 mm 187 (38.5)

20–30 mm 98 (20.2)

>30 mm 91 (18.7)

Table 1 (continued)

Table 1 (continued)

Characteristics Validation sets

Consistency 

Nonsolid 90 (18.5)

Part-solid 75 (15.4)

Solid 321 (66.1)

Histological type 

Adenocarcinoma 320 (65.8)

Atypical adenomatous hyperplasia 7 (1.4)

Adenocarcinoma in situ 1 (0.2)

Minimally invasive adenocarcinoma 15 (3.1)

Invasive adenocarcinoma 297 (61.1)

Other malignancy 40 (8.2)

Squamous 29 (6.0)

Adenosquamous 2 (0.4)

Sarcomatoid carcinoma 3 (0.6)

Lymphoepithelioma-like carcinomas 3 (0.6)

Neuroendocrine carcinoma 1 (0.2)

Epithelioid hemangioendothelioma 1 (0.2)

Follicular dendritic cell tumor 1 (0.2)

Metastasis 55 (11.3)

Benign 71 (14.6)

Congenital cystic adenomatoid mal-
formation

2 (0.2)

Tuberculosis 12 (2.5)

Chronic granuloma 15 (3.1)

Cryptococcus 7 (1.4)

Fungus 2 (0.2)

Hamartoma 7 (1.4)

Sclerosing pneumocytoma 5 (1.0)

Inflammatory pseudotumor 2 (0.4)

Intrapulmonary lymph node 5 (1.0)

Bronchocele with inflammation 1 (0.2)

Other non-specific 13 (2.7)

Unless otherwise stated, each cell indicates the number  
(percentage). SD, standard deviation; CT, computed tomography.
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Table 2 The frequency of malignancy risk prediction categories obtained from the ICLR and the corresponding pathological classification under 
different conditions

Variable Low (n=79) B/M Moderate (n=40) B/M High (n=367) B/M

Scanner 

Siemens DF 59 (15.4) 22/37 31 (8.1) 4/27 292 (76.4) 56/326

Siemens S16 8 (10.5) 3/5 7 (9.2) 0/7 61 (80.3) 7/54

Uct760 12 (42.9) 4/8 2 (7.1) 1/1 14 (50.0) 0/14

Slice thickness 

1 mm 69 (17.5) 25/44 31 (7.9) 5/26 294 (74.6) 29/265

2 mm 10 (10.9) 4/6 9 (9.8) 0/9 73 (79.3) 8/65

Lobe distribution

Upper 44 (14.5) 14/30 26 (8.6) 3/23 234 (77.0) 19/215

Lower 35 (19.2) 15/20 14 (7.7) 2/12 133 (73.1) 18/115

Size

≤10 mm 41 (37.3) 19/22 19 (17.3) 1/18 50 (45.5) 5/45

10–20 mm 31 (16.6) 7/24 17 (9.1) 3/14 139 (74.3) 15/124

20–30 mm 6 (6.1) 3/3 1 (1.0) 0/1 91 (92.9) 9/82

>30 mm 1 (1.1) 0/1 3 (3.3) 1/2 87 (95.6) 8/79

Consistency

Nonsolid 4 (4.4) 1/3 14 (15.6) 0/14 72 (80.0) 2/72

Part-solid 0 (0) 0/0 2 (2.7) 0/2 73 (97.3) 4/69

Solid 75 (23.4) 28/47 24 (7.5) 5/19 222 (69.2) 31/191

Histological types

Adenocarcinoma 21 (6.6) 0/21 26 (8.1) 0/26 273 (85.3) 0/273

Other malignancy 2 (5.0) 0/2 2 (5.0) 0/2 36 (90.0) 0/36

Metastasis 27 (49.1) 0/27 7 (12.7) 0/7 21 (38.2) 0/21

Benign 29 (40.8) 29/0 5 (7.0) 5/0 37 (52.1) 37/0

Each cell indicates the number (percentage) of patients in the corresponding malignancy risk prediction categories (low, moderate, high). 
B/M, benign/malignant according to final pathology results; ICLR, InferRead CT Lung Research. 

For adenocarcinomas and metastases, the accuracy of 
risk prediction increased significantly with an increase 
in lesion size (P=0.005 and P=0.016, respectively). 
For adenocarcinomas, the accuracy of risk prediction 
was significantly higher in the size30mm and size>30mm 
subgroups than the size10mm subgroup (both P<0.05). For 
benign lesions, the accuracy of risk prediction decreased 
significantly with an increase in lesion size (P<0.001). For 
other malignant lesions, there was no significant difference 
among the size subgroups (P=0.513) (Figure 2).

Accuracy of risk prediction of the ICLR in lesions with 
different histological types and consistencies

The respective accuracy of risk prediction in NS, PS, and 
SN lesions was 97% (84/87), 100% (71/71), and 89% 
(144/162) for adenocarcinomas; and 33.3% (1/3), 0% (0/4), 
and 43.8% (28/64) for benign lesions. For adenocarcinoma, 
the accuracy of risk prediction was slightly lower in SN 
lesions than in PS and NS lesions. However, the difference 
was only significant between SN and PS lesions (P<0.05). 
No significant difference based on consistency was observed 
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in benign lesions (P=0.277). Only SN lesions were observed 
among other malignancies and metastases.

A comparison of the accuracy of risk prediction between the 
ICLR and the radiologists

The overall accuracy of risk prediction for R1 and R2 was 

93.6% (455/486) and 87.4% (425/486), respectively, which 
were significantly higher than that for the ICLR (P<0.001 
and P=0.001, respectively). R1 performed better than R2 
(P=0.001). Representative examples of the performance 
of the ICLR and the radiologists are shown in Figure 3. A 
comparison of the performance between the ICLR and the 
two radiologists based on size, consistency, and pathology is 
shown in Table 4.

There were significant differences in the accuracy of 
malignancy risk prediction between the ICLR and the 
radiologists in the size10mm, size20mm, and size30mm subgroups 
(P=0.005, P<0.001, and P=0.017, respectively; Figure 4A). 
R1 significantly outperformed the ICLR in all three size 
subgroups (P=0.003, P<0.001, and P=0.014, respectively). 
R2 only outperformed ICLR in the size20mm subgroup 
P=0.015. There was no significant difference in accuracy 
between the radiologists and the ICLR in the size>30mm 
subgroup (P=0.062).

In terms of lesion consistency, only SN lesions showed 
a significant difference in the accuracy of risk prediction 
between the ICLR and the radiologists (Figure 4B). The 
performance of the ICLR was again poorer than that of the 
two radiologists (both P<0.001). There was no significant 
difference in accuracy among lesions of other consistencies 
(NS, P=0.459; PS, P=0.247).

There were significant differences in the radiologists’ 
accuracy and the ICLR in predicting the risks of 
adenocarcinomas, metastases, and benign lesions (P<0.001, 
P<0.001, and P=0.012, respectively; Figure 4C). R1 
significantly outperformed the ICLR in all three histological 
types (P=0.001, P=0.001, and P=0.010, respectively). R2 
only outperformed the ICLR in metastases (P<0.001). 
There was no significant difference in the accuracy of 
other malignancies (P=0.247). For adenocarcinomas, a 
significant difference was observed between the ICLR and 
the radiologists in assessing solid type lesions (P<0.001) but 
not in subsolid type lesions (P=0.078).

R1 outperformed R2 in three subgroups (size20mm, 
P=0.027; SN lesions, P=0.008; and adenocarcinoma, 
P=0.004).

Discussion

The AI-driven commercial CADx product used in this 
study applied a 3D CNN with DenseNet architecture 
as a backbone to determine the malignant probability of 
pulmonary lesions. The experimental results showed that 
the AI model had promising applications in clinical practice. 

Table 3 Factors affecting the accuracy of malignancy risk  
prediction by the ICLR

Variable False (n=92) True (n=394) P value

Scanner 0.157

Siemens DF 71 (18.6) 311 (81.4)

Siemens S16 12 (15.8) 64 (84.2)

Uct760 9 (32.1) 19 (67.9)

Slice thickness 0.313

1 mm 78 (20.0) 316 (80.0)

2 mm 14 (15.2) 78 (84.8)

Lobe distribution 0.184

Upper 52 (17.1) 252 (82.9)

Lower 40 (22.0) 142 (78.0)

Size 0.011

a≤10 mm 28 (25.5) 82 (74.5)

a10–20 mm 42 (22.5) 145 (77.5)

a20–30 mm 12 (12.2) 86 (87.8)

a>30 mm 10 (11.0) 81 (89.0)

Consistency <0.001

aNonsolid 5 (5.6) 85 (94.4)

aPart-solid 4 (5.3) 71 (94.7)

bSolid 83 (25.9) 238 (74.1)

Histological types <0.001

aAdenocarcinoma 21 (6.6) 299 (93.4)

aOther malignancy 2 (5.0) 38 (95.0)

bMetastasis 27 (49.1) 28 (50.9)

bBenign 42 (59.2) 29 (40.8)

Each cell indicates the number (percentage) of patients in the 
corresponding performance of risk prediction (false, true). a,bFor 
groups with the same superscript letters, the difference between 
the two subgroups was not statistically significant. For groups 
with different superscript letters, the difference between the two 
subgroups was statistically significant. ICLR, InferRead CT Lung 
Research.
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Figure 2 Accuracy of the ICLR for risk prediction of lesions with different pathological types and sizes. For adenocarcinomas and 
metastases, the accuracy of risk prediction significantly increased with an increase in size (P=0.005 and P=0.016, respectively). The accuracy 
of risk prediction was significantly higher in the size30mm and size>30mm subgroups than in the size10mm subgroup (both P<0.05). For benign 
lesions, the accuracy of risk prediction significantly decreased with an increase in size (P<0.001). For other malignant lesions, there was no 
significant difference in accuracy based on size (P=0.513). ICLR, InferRead CT Lung Research.
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The model achieved high performance for detection (92.6%) 
and risk probability prediction (81.1% with metastasis, 
84.9% without metastasis) of pulmonary nodules and 
masses. This AI product was accurate in the risk prediction 
of primary lung cancers (93.6%). The accuracy was 
especially high in adenocarcinomas manifesting as NS or 
PS nodules (98.1%, 155/158), whereas it was less accurate 
in solid adenocarcinomas (89%, 139/157). This study is 
an important supplement to prior investigations using the 
same software (23). In a previous report, researchers used 
the National Lung Screening Trial (NLST) database as the 
training set to build the model and the LIDC-IDRI and 
Infervision Multi-Center (IMC) databases for verification. 
They showed excellent performances for the classification 
of malignancy of lung nodules with the area under the curve 
(AUC) values of 0.91, 0.86, and 0.95 for receiver operating 
characteristic curves on the NLST dataset, LIDC-IDRI 
dataset, and IMC dataset, respectively. The accuracy for 
classification of benign and malignant lesions using deep 

learning-based CADx systems reported in the LIDC-IDRI 
was between 86.84% and 92.3%, with an average AUC of 
0.956 (4).

However, this AI product’s performance for risk 
prediction of metastases and benign lesions was poor, with 
accuracy rates of 50.9% and 40.8%, respectively. The major 
reason for this poor performance is likely due to bias in 
the training dataset. With the increase in the availability of 
CT equipment and lung cancer screening in recent years, 
the detection of asymptomatic lung cancer has increased. 
Adenocarcinoma accounts for the vast majority of surgically 
resected cases, and thus, adenocarcinomas are the main 
component of the training set. As computer output always 
comes from input, CADx performance heavily depends 
on the difficulty and diversity of the training and testing 
datasets (27). The low accuracy may also be due to the lack 
of malignant features of metastases, especially when they are 
small, round and regular, less lobular, and less spiculated, 
which does not match the AI’s malignant features. 
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Additionally, it appears that the AI has learned that large 
lesions have a high probability of being malignant. Our 
results showed that the accuracy of prediction of metastases 
was proportional to size, whereas accuracy was inversely 
proportional to size in benign lesions. 

The observer study in this report showed that the 
resident doctor undergoing chest training (R1) had 
a higher diagnostic accuracy compared to the doctor 
undergoing general radiology training (R2), although 
both were more accurate than the AI, especially for 
metastases. The predictive power was roughly equivalent 
for subsolid adenocarcinomas and other malignancies. 

Usually, a resident’s diagnostic level is considered to be 
relatively low (13,28). However, we believe the residents 
performed well for several reasons. First, they were not 
required to distinguish between different histological 
types of adenocarcinoma (for example, AAH, AIS, MIA, 
and partial IA), which have similar imaging characteristics 
and are difficult to distinguish, even by experienced chest 
radiologists (29,30). This greatly reduced the difficulty of 
differential diagnosis. The reason for not distinguishing 
between histological types is that nodule consistency on CT 
is a more significant prognostic indicator than either pleural 
invasion or parenchymal invasion (angiolymphatic and/or 

Figure 3 A comparison of the accuracy between the ICLR and the radiologists. The ICLR and both radiologists (R1 and R2) provided 
accurate risk assessments for the following lesions: (A) 10-mm nonsolid adenocarcinoma; (B) 20-mm part-solid adenocarcinoma; (C) 14-
mm solid adenocarcinoma; (D) 38-mm solid other malignancy (adenosquamous); (E) 14-mm solid benign lesion (tuberculosis); (F) 5-mm 
solid benign lesion (lymph node). The ICLR and both radiologists provided inaccurate risk assessments for the following lesions: (G) 14-
mm nonsolid benign lesion (other non-specific); (H) 10-mm part-solid benign lesion (other non-specific); (I) 13-mm solid benign lesion 
(cryptococcus); (J) 21-mm solid benign lesion (inflammation). R1 provided accurate risk assessments for the following lesions, whereas 
both ICLR and R2 provided inaccurate assessments: (K) 13-mm solid benign lesion (inflammatory pseudotumor); (L) 66-mm solid benign 
lesion (inflammation). Both radiologists provided accurate assessments for the following lesions, whereas the ICLR provided inaccurate 
assessments: (M) 28-mm solid benign lesion (sclerosing pneumocytoma); (N) 32-mm part-solid benign lesion (inflammation); (O) 11-
mm solid metastasis; (P) 14-mm solid adenocarcinoma; (Q) 15-mm solid adenocarcinoma; (R) 19-mm solid other malignancy (epithelioid 
hemangioendothelioma). ICLR, InferRead CT Lung Research.
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Table 4 A comparison of the accuracy of malignancy risk prediction between the ICLR and the two radiologists in different size, consistency, and 
pathological subgroups

Variable
ICLR R1 R2

P
P1 P2 P3

True False True False True False ICLR vs. R1 ICLR vs. R2 R1 vs. R2

Total 394 (81.1) 92 (18.9) 455 (93.6) 31 (6.4) 425 (87.4) 61 (12.6) <0.001 <0.001 0.001 0.001

Size

≤10 mm 82 (74.5) 28 (25.5) 99 (90.0) 11 (10.0) 91 (82.7) 19 (17.3) 0.005 0.003 0.256 0.378

10–20 mm 145 (77.5) 42 (22.5) 174 (93.0) 13 (7.0) 160 (85.6) 27 (14.4) <0.001 <0.001 0.015 0.027

20–30 mm 86 (87.8) 12 (12.2) 94 (95.9) 4 (4.1) 91 (92.9) 7 (7.1) 0.017 0.014 0.231 0.867

>30 mm 81 (89.0) 10 (11.0) 88 (96.7) 3 (3.3) 83 (91.2) 8 (8.8) 0.062 NA NA NA

Consistency

Nonsolid 85 (94.4) 5 (5.6) 86 (95.6) 4 (4.4) 83 (92.2) 7 (7.8) 0.459 NA NA NA

Part-solid 71 (94.7) 4 (5.3) 73 (97.3) 2 (2.7) 70 (93.3) 5 (6.7) 0.247 NA NA NA

Solid 238 (74.1) 83 (25.9) 296 (92.2) 25 (7.8) 272 (84.7) 49 (15.3) <0.001 <0.001 <0.001 0.008

Histological type

Adenocarcinoma 299 (93.4) 21 (6.6) 317 (99.1) 3 (0.9) 301 (94.1) 19 (5.9) <0.001 0.001 >0.99 0.004

Other malignancy 38 (95.0) 2 (5.0) 40 (100) 0 (0) 37 (92.5) 3 (7.5) 0.247 NA NA NA

Metastasis 28 (50.9) 27 (49.1) 54 (98.2) 1 (1.8) 52 (94.5) 3 (5.5) <0.001 0.001 <0.001 >0.99

Benign 29 (40.8) 42 (59.2) 44 (62.0) 27 (38.0) 35 (49.3) 36 (50.7) 0.012 0.010 0.718 0.233

Each cell indicates the number (percentage) of patients in the corresponding performance of risk prediction (false, true). ICLR, InferRead 
CT Lung Research; NA, non-available; R1, radiologist 1; R2, radiologist 2.

vascular). Lung adenocarcinomas that appear as subsolid 
or nonsolid, have a much better prognosis than that of 
lung adenocarcinomas manifesting as SNs (31-33). Second, 
doctors had access to clinical information and prior images, 
which were especially beneficial for diagnosing metastases, 
but the AI did not have access to this information. Ardila 
and colleagues also demonstrated the importance of prior 
images. They proposed a deep learning algorithm to predict 
lung cancer risk and found that when prior imaging was 
not available, the AI model outperformed radiologists. 
In contrast, in cases where prior imaging was available, 
the model performance was on par with that of the same 
radiologists (34). Third, a resident doctor’s participation in 
research and review of related literature could strengthen 
their understanding of pulmonary lesions and improve their 
ability to diagnose lung lesions.

This study had some limitations. First, not all module-
specific features were analyzed. However, these features, 
such as calcification, internal structure, lobulation, 
spiculation, texture, and subtlety, are important features for 

the differential diagnosis of benign and malignant pulmonary 
nodules. Second, the sample size was unbalanced, with only a 
small number of non-adenocarcinoma cases. The numbers of 
the different histological types of adenocarcinomas were also 
unbalanced. Third, the time required for diagnosis was not 
assessed and should be included in future studies. Fourth, 
other currently recognized nodule classification systems, 
such as LungRADS, were not analyzed, and this may have 
limited the clinical value of the report. Fifth, the device types 
and scanning techniques that were not in the model training 
set will have a certain impact on the model’s performance. 
The generalization of AI models can be improved by 
including as many types of scanners as possible in the 
training set. For AI products to be more useful in clinical 
practice, the training sample size will need to be expanded 
to optimize the model, and class imbalance issues need to 
be resolved to make the model more robust. Furthermore, 
since the best-known CADx schemes distinguish between 
benign and malignant nodules based on volume doubling 
time (35,36), embedding clinical information and volume 
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change information in the algorithm in future investigations 
will be beneficial.

Conclusions 

AI malignancy risk prediction for lung nodules and masses 
with different pathological types is particularly important 
and useful but complicated and challenging. The ICLR 
(Infervision, China) had very high accuracy in primary 

lung cancer malignancy prediction but poor accuracy in 
predicting metastases and benign lesions. Further efforts are 
warranted to augment the number of metastatic and benign 
lesions in the training dataset to improve the AI products’ 
performance. 
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